DK157572C - PROCEDURE FOR OPERATING A GAS TURBIN INSTALLATION COMBINED WITH A FUEL GAS - Google Patents

PROCEDURE FOR OPERATING A GAS TURBIN INSTALLATION COMBINED WITH A FUEL GAS

Info

Publication number
DK157572C
DK157572C DK410784A DK410784A DK157572C DK 157572 C DK157572 C DK 157572C DK 410784 A DK410784 A DK 410784A DK 410784 A DK410784 A DK 410784A DK 157572 C DK157572 C DK 157572C
Authority
DK
Denmark
Prior art keywords
air
installation
gas
fuel gas
fuel
Prior art date
Application number
DK410784A
Other languages
Danish (da)
Other versions
DK157572B (en
DK410784A (en
DK410784D0 (en
Inventor
Dietrich Ceelen
Bora Ipek
Original Assignee
Bbc Brown Boveri & Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6207739&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DK157572(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bbc Brown Boveri & Cie filed Critical Bbc Brown Boveri & Cie
Publication of DK410784D0 publication Critical patent/DK410784D0/en
Publication of DK410784A publication Critical patent/DK410784A/en
Publication of DK157572B publication Critical patent/DK157572B/en
Application granted granted Critical
Publication of DK157572C publication Critical patent/DK157572C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/046Completely integrated air feed compression, i.e. common MAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

1. Method of operating a gas turbine installation combined with a fuel vaporization installation (44) which is designed for the use of high-calorie fuel gas having a calorific value of 30 to 50 MJ/kg and exhibits a combustion chamber (24) which is fed with fuel gas and with air compressed in an air compressor (10), a part, preferably 8 to 12% by weight, of the compressed air being separated in an air separation installation (40) into oxygen-poor air and oxygen which is used in the vaporization of solid fuel using steam to generate medium-calorie fuel gas having a calorific value of 10 to 16 MJ/kg which, after the subsequent purification in a gas purifier (52) and after admixture of the oxygen-poor air to increase the mass flow in order to improve the overall efficiency of the installation, is perheated before firing by the air flowing from the air compressor (10) to the air separation installation (40), is fed as a low-calorie fuel gas having a calorific value of 3 to 7 MJ/kg to the combustion chamber (24) of the gas turbine installation, and after reacting with the compressed air supplied by the air compressor (10), flows through the gas turbine (14) and is admitted to a waste heat boiler (30) to generate steam which is utilized as to one part to supply the fuel vaporization installation (44) and as to the other part to operate a steam turbine (32).
DK410784A 1983-08-30 1984-08-28 PROCEDURE FOR OPERATING A GAS TURBIN INSTALLATION COMBINED WITH A FUEL GAS DK157572C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833331152 DE3331152A1 (en) 1983-08-30 1983-08-30 METHOD FOR OPERATING A GAS TURBINE PLANT COMBINED WITH A FUEL GASIFICATION PLANT
DE3331152 1983-08-30

Publications (4)

Publication Number Publication Date
DK410784D0 DK410784D0 (en) 1984-08-28
DK410784A DK410784A (en) 1985-03-01
DK157572B DK157572B (en) 1990-01-22
DK157572C true DK157572C (en) 1990-06-18

Family

ID=6207739

Family Applications (1)

Application Number Title Priority Date Filing Date
DK410784A DK157572C (en) 1983-08-30 1984-08-28 PROCEDURE FOR OPERATING A GAS TURBIN INSTALLATION COMBINED WITH A FUEL GAS

Country Status (4)

Country Link
EP (1) EP0137152B1 (en)
AT (1) ATE48893T1 (en)
DE (2) DE3331152A1 (en)
DK (1) DK157572C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1007639B (en) * 1985-07-19 1990-04-18 西门子股份有限公司 Combination gas and steam-turbine power station
ATE50831T1 (en) * 1985-08-05 1990-03-15 Siemens Ag COMBINED GAS AND STEAM TURBINE POWER PLANT.
DE3642619A1 (en) * 1986-12-13 1988-06-23 Bbc Brown Boveri & Cie Combined-cycle turbine power station with fluidised-bed coal gasification
FR2690711B1 (en) * 1992-04-29 1995-08-04 Lair Liquide METHOD FOR IMPLEMENTING A GAS TURBINE GROUP AND COMBINED ENERGY AND AT LEAST ONE AIR GAS ASSEMBLY.
US5388395A (en) * 1993-04-27 1995-02-14 Air Products And Chemicals, Inc. Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output
DE19832294C1 (en) * 1998-07-17 1999-12-30 Siemens Ag Gas-and-steam turbine installation with integrated fossil fuel gasification
DE19832293A1 (en) * 1998-07-17 1999-10-21 Siemens Ag Gas-and-steam turbine plant with integrated fossil fuel gasification
DE19846225C2 (en) * 1998-10-07 2002-05-29 Siemens Ag Gas and steam turbine plant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA766776B (en) * 1975-11-13 1977-10-26 Bbc Brown Boveri & Cie Thermal power plant with oxygen-fed compressed-gas generator
DE2835852C2 (en) * 1978-08-16 1982-11-25 Kraftwerk Union AG, 4330 Mülheim Combined gas-steam power plant with a gasification device for the fuel
GB2067668A (en) * 1980-01-21 1981-07-30 Gen Electric Control of NOx emissions in a stationary gas turbine
DE3319711A1 (en) * 1983-05-31 1984-12-06 Kraftwerk Union AG, 4330 Mülheim COMBINED GAS TURBINE-STEAM TURBINE PLANT WITH UPstream COAL GASIFICATION PLANT

Also Published As

Publication number Publication date
EP0137152B1 (en) 1989-12-20
DK157572B (en) 1990-01-22
DK410784A (en) 1985-03-01
EP0137152A2 (en) 1985-04-17
EP0137152A3 (en) 1987-02-04
ATE48893T1 (en) 1990-01-15
DE3480800D1 (en) 1990-01-25
DE3331152A1 (en) 1985-03-07
DK410784D0 (en) 1984-08-28

Similar Documents

Publication Publication Date Title
NO163152C (en) COMBINED GAS TURBIN DAMP TURBIN INSTALLATION WITH CONNECTED COAL GASING EQUIPMENT.
DK660188D0 (en) PLANT FOR MECHANICAL ENERGY GENERATION BY A GAS FLUID AND METHOD FOR OPERATING THE PLANT
FI862354A (en) FOERFARANDE FOER GENERERING AV EL- OCH VAERMEENERGI GENOM ANVAENDNING AV ETT FAST KOLHALTIGT BRAENSLE.
ES2034180T3 (en) POWER CENTER BASED ON GAS TURBINE WITH FUEL CONTAINING WATER.
DK157572C (en) PROCEDURE FOR OPERATING A GAS TURBIN INSTALLATION COMBINED WITH A FUEL GAS
DE59005510D1 (en) Combined gas / steam turbine process.
US5199356A (en) Efficient incinerator
AU597261B2 (en) Combined gas and steam turbine power plant
SU1550274A1 (en) Method of fuel combustion
SU1573219A1 (en) Steam-gas unit for blast furnace production
SU1638319A1 (en) Combined steam-gas device with solid fuel gasification
SE8900384L (en) SET TO INCREASE THE EFFECTIVENESS OF A PFBC POWER PLANT
JPS6445924A (en) Constant output gas turbine generating device
UA21804A (en) Gas-steam turbine unit
JPS5762907A (en) Compound cycle plant
ES312096A3 (en) Improvements in energy production facilities to mixed vapor and gas cycle. (Machine-translation by Google Translate, not legally binding)
GB685530A (en) Improvements in or relating to gas turbine plant

Legal Events

Date Code Title Description
PBP Patent lapsed