DK157312B - PROCEDURE FOR DISPERSING A FLUID IN A RADIATION OF ANOTHER FLUID - Google Patents

PROCEDURE FOR DISPERSING A FLUID IN A RADIATION OF ANOTHER FLUID Download PDF

Info

Publication number
DK157312B
DK157312B DK474981A DK474981A DK157312B DK 157312 B DK157312 B DK 157312B DK 474981 A DK474981 A DK 474981A DK 474981 A DK474981 A DK 474981A DK 157312 B DK157312 B DK 157312B
Authority
DK
Denmark
Prior art keywords
fluid
density
greatest
venturi nozzle
wall
Prior art date
Application number
DK474981A
Other languages
Danish (da)
Other versions
DK474981A (en
DK157312C (en
Inventor
Yves Arbeille
Jean Lucas
Original Assignee
Cemagref
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8023001A external-priority patent/FR2492679B1/en
Priority claimed from FR8117654A external-priority patent/FR2513142B2/en
Application filed by Cemagref filed Critical Cemagref
Publication of DK474981A publication Critical patent/DK474981A/en
Publication of DK157312B publication Critical patent/DK157312B/en
Application granted granted Critical
Publication of DK157312C publication Critical patent/DK157312C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C3/00Preservation of milk or milk preparations
    • A23C3/02Preservation of milk or milk preparations by heating
    • A23C3/03Preservation of milk or milk preparations by heating the materials being loose unpacked
    • A23C3/033Preservation of milk or milk preparations by heating the materials being loose unpacked and progressively transported through the apparatus
    • A23C3/037Preservation of milk or milk preparations by heating the materials being loose unpacked and progressively transported through the apparatus in direct contact with the heating medium, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C1/00Apparatus in which the main direction of flow follows a flat spiral ; so-called flat cyclones or vortex chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C7/00Apparatus not provided for in group B04C1/00, B04C3/00, or B04C5/00; Multiple arrangements not provided for in one of the groups B04C1/00, B04C3/00, or B04C5/00; Combinations of apparatus covered by two or more of the groups B04C1/00, B04C3/00, or B04C5/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)

Description

DK 157312 BDK 157312 B

Den foreliggende opfindelse vedrorer en fremgangsmâde til disper-gering af et fluid i en strâle i et fluid med sterre massefylde, ved hvilken fremgangsmâde fluidet med den storste massefylde bringes til at cirkulere i form af en fluidstrâle med stor hastighed, idet den 5 nævnte strâle bringes til at folge en krum stromningsbane, hvorved der i strâlen frembringes en trykgradient vinkelret pâ væggen som folge af centrifugalkraften.The present invention relates to a method for dispersing a fluid in a jet of a higher density fluid, wherein the method of the highest density fluid is circulated in the form of a high speed fluid jet, bringing the said jet to follow a curved flow path, thereby producing in the beam a pressure gradient perpendicular to the wall as a result of centrifugal force.

Hidtil har man til indforing af en gas i en væske i en sâ findelt tilstand som muligt benyttet forskellige apparater, i hvilke der sker 10 en lagdeling af det ene eller begge fluida, frembringes chockvirkning mellem de to fluida eller sker filtrering eller mekanisk bearbejdning af blandingen efter dannelsen af samme.Heretofore, various devices have been used to introduce a gas into a liquid in as finely divided a state as possible, in which one or both fluids are layered, shock action is produced between the two fluids, or filtration or mechanical processing of the mixture is effected. after the formation of the same.

Disse kendte apparater har imidlertid haft en række ulemper, der dels skyldes, at der i apparaterne optræder store energitab, dels 15 skyldes, at apparaterne er meget komplekst opbygget og har en tendens til at blive tilstoppet. I de kendte apparater har de i væsken dannede bobler endvidere ofte haft tendens til at smelte samraen pàny, hvorved blandingens finhed begrænses.However, these known devices have had a number of disadvantages, partly because of the large energy losses in the appliances and partly because the devices are very complex in structure and tend to be clogged. Furthermore, in the prior art, the bubbles formed in the liquid have often tended to melt again, thereby limiting the fineness of the mixture.

Den foreliggende opfindelse har til formai at tilvejebringe en frem-20 gangsmâde til sikring af en homogen dispergering af en gas i en væske i form af fine bobler og mere generelt til i et forste fluid at dispergere et andet fluid med meget mindre massefylde i form af fine bobler eller smâ drâber. Den foreliggende opfindelse har yderligere til formâl at eliminere de ovenfor omhandlede ulemper ved de kendte 25 apparater.The present invention aims to provide a method for ensuring a homogeneous dispersion of a gas in a liquid in the form of fine bubbles and more generally to disperse in a first fluid another fluid of much lesser density in the form of fine bubbles or small drops. The present invention further aims to eliminate the above-mentioned disadvantages of the known apparatus.

De ovenfor angivne formâl opnâs i overensstemmelse med opfindelsen med en fremgangsmâde af den indledningsvis angivne art, hvilken fremgangsmâde er ejendommelig ved, at det fluid, der har storst massefylde, bringes til at cirkulere i en passage med en konstant 30 krumning i det mindste over et vist stykke, og at det fluid, der har mindst massefylde, og som er under tryk, fores direkte ind i det fluid, der har storst massefylde, gennem i det mindste én âbning, der er udformet i væggen af passagens krumme del med storst krumningsradius, dvs. den væg, langs hvilken trykket i fluidet, derThe above objects are achieved in accordance with the invention by a method of the type mentioned in the preamble, characterized in that the fluid having the greatest density is circulated in a passage with a constant curvature at least over a and that the fluid having the least density and which is pressurized is fed directly into the fluid having the greatest density through at least one aperture formed in the wall of the curved portion of the passage with the largest radius of curvature. , ie the wall along which the pressure in the fluid that

DK 157312 BDK 157312 B

2 har starst massefylde, er starst som falge af trykgradienten, idet âbningen er placeret i det mindste i en vis afstand far afslutningen af den krumme del i et omrâde, hvor trykgradienten optræder.2 has started density, is started as fall of the pressure gradient, the aperture being located at least at some distance before the end of the curved portion in an area where the pressure gradient occurs.

5 Uden pà nogen mâde at være begrænset af denne teori kan fremgangsmâden ifalge opfindelsen forklares ved frembringelse af et fænomen, der afbryder den geometriske stabilitet i grænsefladen mellem de to fluida med forskellig massefylde, nâr disse sammen udsættes for en variation i et accelerationsfelt.. ünder pâvirkning af 10 de store kræfter, som induceres i accelerationsfeltet, bryder trykgradienterne i nærheden af grænsefladen mellem de to fluida den geometriske ligevægt i denne grænseflade, hvorved krumningsradien ændrer sig lokalt, indtiï de tilsvarende kapillærkræfter i grænsefladen genskaber ligevægten. Ved dispergering af et let fluid i 15 et fluid med en starre massefylde gâr denne udvikling i retning af en formindskelse af krumningsradieme for elementerne i det lette fluid, dvs. en formindskelse af disse elementers middelvolumen.Without in any way being limited by this theory, the method of the invention can be explained by producing a phenomenon that interrupts the geometric stability of the interface between the two fluids of different density when subjected together to a variation in an acceleration field. By the influence of the large forces induced in the acceleration field, the pressure gradients near the interface between the two fluids break the geometric equilibrium of this interface, whereby the radius of curvature changes locally, as the corresponding capillary forces in the interface restore the equilibrium. By dispersing a light fluid into a fluid of a rigid density, this evolution is towards a reduction of the radii of curvature of the elements of the light fluid, i.e. a decrease in the mean volume of these elements.

Dette fænomen kan kun realiseres ved en relativ forskydning af de to fluida, idet det tunge fluid forskydes i det skabte 20 accelerationsfelts retning, og det lette fluid forskydes i den modsatte retning. Den oprindelige konfiguration af de to fluida bar altsâ tillade denne udvikling uden for tidligt at nâ til en ny ligevægtstilstand.This phenomenon can only be realized by a relative displacement of the two fluids in that the heavy fluid is displaced in the direction of the created acceleration field and the light fluid is displaced in the opposite direction. The original configuration of the two fluids thus allows this development to reach a new equilibrium state prematurely.

Det ovenfor beskrevne fysiske fænomen medfarer i modsætning til de 25 hidtil kendte fremgangsmâder ikke nogen væsentlig fornyet sammensmeltning af det letteste element umiddelbart efter · dispergeringen.The physical phenomenon described above, in contrast to the 25 known methods, does not result in any significant re-fusion of the lightest element immediately after the dispersion.

Anvendelsen af dette dispergeringsprincip til blanding og dispergering af store væskemængder nadvendiggar udnyttels'e af en 30 kontinuerlig fremgangsmâde, dvs. at den anvendes lokalt pâ en stram af to fluida, idet disse fluida i denne stram har en fælles grænseflade.The use of this dispersion principle for mixing and dispersing large quantities of liquid necessitates the utilization of a continuous process, i. that it is applied locally to a strain of two fluids, since these fluids in this strain have a common interface.

I overensstemmelse med en farste udfarelsesform for fremgangsmâden ifalge opfindelsen bringes det fluid, der har starst massefylde, tilIn accordance with a first embodiment of the method according to the invention, the fluid which has started density is

DK 157312 BDK 157312 B

3 at cirkulere i en venturidyse med en aksial kerne, hvorhos midteraksen af passagesektionen efter venturidysens hais har en konkav form udefter, og at fluidet, der har mindst massefylde, og som skal dispergeres i fluidet, som har storst massefylde, indfores 5 via en àbning, der er placeret pâ kernens væg i ait væsentligt ved venturidysens hais.3 to circulate in a venturi nozzle with an axial core, the center axis of the passage section following the venturi nozzle having a concave shape outwardly, and the fluid having the least density to be dispersed in the fluid having the greatest density 5 through an aperture located on the wall of the core substantially by the venturi nozzle.

I overensstenimelse med den foretrukne udferelsesform for opfindelsen suges fluidet, som har mindst massefylde, ind i strâlen af fluidet, der har storst massefylde, ved det trykfald, som skabes i 10 venturidysens hais, idet det er muligt at regulere mængden af indsuget fluid, som har mindst massefylde, ved elastisk montering, i forhold til den 0verste del, af den nederste del af venturidysens aksiale kerne, som med sin averste del afgrænser indsugningsgabet for fluidet, som har mindst massefylde.In accordance with the preferred embodiment of the invention, the fluid having the least density is sucked into the jet of the fluid having the greatest density by the pressure drop created in the venturi nozzle's shaft, as it is possible to control the amount of suction fluid which has the least density, when elastically mounted, relative to the upper part of the lower part of the axial core of the venturi nozzle, which, with its lower part, defines the suction gap of the fluid having the least density.

15 Opfindelsen vil i det f0lgende blive nærmere forklaret under henvisning til tegningen, pâ hvilken fig. 1 skematisk illustrerer fremgangsmâden ifolge opfindelsen, fig. 2 viser et længdesnit gennem en dyse, som kan monteres pâ et skrueblad til ventilering af en væske ved dispergering af luft i 20 denne væske, som omrores af dette skrueblad, fig. 3 i perspektiv og skematisk et apparat til indforing af en stor mængde af et let fluid i en fluidstrom, og fig. 4 et vandret snit gennem en variant af det i fig. 3 viste apparat.BRIEF DESCRIPTION OF THE DRAWINGS The invention will be explained in greater detail below with reference to the drawing, in which: FIG. 1 schematically illustrates the method according to the invention; FIG. Figure 2 shows a longitudinal section through a nozzle which can be mounted on a screw blade for ventilating a liquid by dispersing air in this liquid which is agitated by this screw blade; Fig. 3 is a perspective and schematic apparatus for introducing a large amount of a light fluid into a fluid stream; 4 is a horizontal section through a variant of the embodiment shown in FIG. 3.

25 Som det skematisk er vist i fig. 1, har apparatet til udovelse af fremgangsmâden en kanal 1 til cirkulation af det fluid, der har den storste massefylde, fx en væske, som indfores ved A. Denne kanal har fx et rektangulært tværsnit og omfatter regnet oppefra og nedefter - set i stromningsretningen - et retlinet stykke la, en krum del lb 30 og en nederste retlinet del le. I overensstemmelse med fremgangsmâden ifolge opfindelsen indforer man gennem spalter 2, der - regnet i stromningsretningen - er placeret umiddelbart for den krumme del lb, og som er udformet i den krumme kanalvæg, der har den storste krumningsradius, det letteste fluid, især gas, som skal dispergeres 35 i den strom af fluid, der har den storste massefylde. Gassen kan25 As schematically shown in FIG. 1, the apparatus for practicing the method has a channel 1 for circulating the fluid having the greatest density, for example a liquid introduced at A. This channel, for example, has a rectangular cross section and comprises the rain from top to bottom - in the flow direction - a rectilinear piece la, a curved portion lb 30 and a lower rectilinear portion le. In accordance with the method according to the invention, slots 2 are inserted which - calculated in the flow direction - are located immediately in front of the curved part 1b and which are formed in the curved duct wall having the largest radius of curvature, the lightest fluid, especially gas, which must be dispersed in the stream of fluid having the greatest density. The gas can

DK 157312 BDK 157312 B

4 indfares under tryk germera spalterne 2, idet den er komprimeret i et kamroer 3. Den stabile dispersion med yderst fine gasbobler ledes bort gennem kanalen ved B.4 is pressurized into the gaps 2, being compressed in a cam tube 3. The stable dispersion with extremely fine gas bubbles is passed through the channel at B.

I den i fig. 2 viste udfarelsesform for opfindelsen angiver 4 et rar, 5 der tjener til indfaring af luft, og som samtidigt udgar et forbindelsesorgan mellem et ikke-vist skrueblad og apparatet.In the embodiment shown in FIG. 2 illustrates 4 a bar 5 which serves to enter the air and simultaneously provides a connecting means between an unscrewed blade and the apparatus.

Raret 4 udmunder i et ægformet legeme 5, i hvilket der er udformet et âbent cylindrisk kammer 6, langs hvis akse der er monteret en stang 7, hvis frie ende er forsynet med indvendigt gevind, og hvis anden 10 ende er indskruet i et aksialt indvendigt gevind udformet i bunden af kammeret 6. Til stangen 7's indvendige gevind er fastgjort gevindet pâ en skrue 8, der strækker sig gennem en basning 9, som danner et anslag, samt gennem en skruefjeder 10. Basningen 9 og skruefjederen 10 danner henholdsvis et stop ved enden af strammen og et elastisk 15 tilbagefaringsorgan for selve dysen. Dysen udgares af en central kerne 11, der med sin rarformede ende 12 er monteret forskydeligt pà stangen 7, og som har med en konisk flade 13, der omslutter denne rarformede ende 12 og svarer til en konisk flade 14, der omslutter âbningen af kammeret 6. Den koniske flade 13 gâr over i en konkav 20 oindrejningsflade 15, hvis frembringer i hovedsagen er en cirkelbue, og hvis mindste tværsnit befinder sig tæt ved den centrale kernes frie ende. I den venstre halvdel af figuren er der ved 13a vist en ændret udfarelsesform, ved hvilken den koniske del 13 har en sâledes reduceret bredde, at dens ydre kant befinder sig tilbagetrukket i 25 forhold til de fluidstremme, der forlader overfladen af det ægformede legeme 5 vinkelret pâ fladen 14's kant. Ved denne ændrede udfarelsesform dannes der en grænseflade, der starter ved denne kant, og gasindfaringen forages. Lige ud for den centrale kernes frie ende, som samarbejder med fj ederen 10 og eventuelt basningen 9, er 30 fastgjort radiale eger 16, der bærer dysens ydre kappe 17. Denne kappes ydre overflade er konveks cylindrisk, medens kappens indre omdrejnings flade 18 har en sâdan frembringer, at der mellem denne flade og henholdsvis det ægformede legeme 5 og den centrale kerne 11 dannes en passage, hvis tværsnit aftager betydeligt indtil den 35 koniske flade 14's kant og derefter vokser progressivt indtil afgangsâbningen 19.The bar 4 opens into an egg-shaped body 5, in which is formed an open cylindrical chamber 6, along the axis of which is mounted a rod 7, the free end of which is provided with an internal thread and the other end of which is screwed into an axial interior. threads formed at the bottom of chamber 6. To the inner thread of the rod 7, the thread is secured to a screw 8 extending through a base 9 forming a stop and through a screw spring 10. The base 9 and the screw spring 10 respectively form a stop at the end of the tensioner and an elastic return member for the nozzle itself. The nozzle is constituted by a central core 11 which, with its rim-shaped end 12, is displaceably mounted on the rod 7, and having a conical surface 13 enclosing this rim-shaped end 12 and corresponding to a conical surface 14 enclosing the opening of the chamber 6 The tapered surface 13 passes into a concave 20 end face 15, which produces in the main case a circular arc and whose smallest cross-section is close to the free end of the central core. In the left half of the figure, a modified embodiment is shown at 13a, in which the conical part 13 has such a reduced width that its outer edge is retracted relative to the fluid strains leaving the surface of the egg-shaped body 5 perpendicular on flats 14's side. In this modified embodiment, an interface starting at this edge is formed and the gas inlet is forged. Just beyond the free end of the central core, which cooperates with the spring 10 and optionally the base 9, 30 are fixed radial spokes 16 which support the outer sheath of the nozzle 17. The outer surface of this sheath is convex cylindrical, while the inner rotating surface 18 of the sheath has a so that a passage is formed between this surface and the ovoid body 5 and the central core 11, respectively, the cross-section of which decreases significantly to the edge of the conical surface 14 and then grows progressively until the outlet opening 19.

55

DK 157312 BDK 157312 B

Den sâledes udformede dyse fungerer som venturidyse med en trykreduktion i halsen lige ud for de koniske flader 14 og 13 og mod en efterfalgende trykforagelse med etablering af en trykgradient over tværsnittet, idet trykket ved fladen 15 er starre end trykket ved 5 væggen 18 som falge af fluidstrammenes krumning. Der frembringes en langsgâende trækkraft, som pàvirker kappen 17, hvilket medfarer en forskydning af fladen 13 i forhold til fladen 14, hvorved fjederen 10 trykkes sammen, og der suges luft ind gennem raret 4, kammeret 6 og spalten mellem fladerne 13 og 14. Den sâledes indfarte luftstram 10 udsættes for en sammensnaring som falge af de turbulensfrie fluidstramme samtidig med, at de starste bobler forskydes mod væggen 18, idet de opdeles som falge af det ovenfor beskrevne stabilitetsafbrydelsesfænomen ved grænsefladen. Alt i ait opnâs der en homogen og fin dispergering af luft i den væskestram, der ledes ud 15 gennem afgangen 19.The nozzle thus designed acts as a venturi nozzle with a pressure reduction in the throat just off the tapered surfaces 14 and 13 and against a subsequent pressure reduction with the establishment of a pressure gradient across the cross section, the pressure at the surface 15 being higher than the pressure at the wall 18 due to the curvature of the fluid streams. A longitudinal traction is produced which acts on the sheath 17, which causes a displacement of the surface 13 with respect to the surface 14, whereby the spring 10 is compressed and air is sucked in through the spar 4, the chamber 6 and the gap between the surfaces 13 and 14. The thus entering air stream 10 is subjected to a constriction as the fall of the turbulence-free fluid streams while displacing the rigid bubbles against wall 18, dividing as fall by the above-described stability interruption phenomenon at the interface. All in all, a homogeneous and fine dispersion of air is obtained in the liquid stream which is discharged 15 through the outlet 19.

De i fig. 3 og 4 viste udfarelsesformer er konstrueret med en ydre cylinder 21, jtil hvis averste og nederste ende der er tilsluttet ledninger 22a og 22b med rektangulære tværsnit. Ledningerne 22a og 22b er forbundet tangentielt til cylindervæggen 21 og er orienteret 20 modsat pâ en sâdan mâde, at det fluid, der indfares ved A gennem ledningen 22a, i kontakt med væggen foretager en opadstigende skruelinjebevægelse og strammer ud ved 13 gennem ledningen 22b.The 3 and 4 are constructed with an outer cylinder 21, each with its rearmost and lower ends connected to conduits 22a and 22b having rectangular cross sections. The conduits 22a and 22b are tangentially connected to the cylinder wall 21 and are oriented 20 in such a way that the fluid entering at A through the conduit 22a makes contact with the wall an upwardly moving helical movement and exits at 13 through the conduit 22b.

Smalle spalter 23, der er parallelle med cylinderen 21's akse, er udformet i cylindervæggen (i fig. 4 er kun vist enkelte af disse 25 spalter). Gylinderens ender er lukket med vægge 24, der kan være gennemgâende eller ringformede. Nâr de er ringformede, kan der være tilvejebragt en indre cylindervæg 25, men denne væg er ikke absolut nadvendig, idet den væske, som indfares ved A, cirkulerer i kontakt med væggen 21 og lober ud ved B. Uden om væggen 21 er der anbragt en 30 ydre kappe 26, der sammen med denne væg danner et trykkammer. Denne ydre kappe 26 kan være af en hvilken som helst form. Det perifere kammer er forbundet til en forsyningskilde under tryk for det fluid, der har den mindste massefylde, og som skal dispergeres i den væske, der indfares ved A. Dette kammer kan være isoleret termisk og 35 eventuelt omfatte varmevekslerorganer til ophedning af damp, nâr fluidet med den mindste massefylde er overophedet damp.Narrow slots 23 parallel to the axis of the cylinder 21 are formed in the cylinder wall (in Fig. 4 only some of these 25 slots are shown). The ends of the cylinder are closed by walls 24 which may be continuous or annular. When annular, an inner cylinder wall 25 may be provided, but this wall is not absolutely necessary as the fluid entering at A circulates in contact with wall 21 and flows out at B. Outside wall 21, a outer casing 26 which together with this wall forms a pressure chamber. This outer jacket 26 may be of any shape. The peripheral chamber is connected to a pressurized supply source for the fluid having the smallest density to be dispersed in the liquid entering at A. This chamber may be thermally insulated and optionally comprise steam heat exchanger means when the fluid with the smallest density is superheated steam.

Claims (4)

15 Den damp, som trænger ind gennem spalterne 23 i en mængde pâ ca. 25 1/s, dispergeres i form af meget fine bobler, som meget hurtigt kondenseres, nâr de som folge af centrifugalvirkningen trænger ind i mælkemassen. Under sin skruelinjeformede gennemstromning stiger mælkens temperatur 20 altsâ meget hurtigt pâ homogen mâde, hvilket sikrer en effektiv stérilisation. Opfindelsen er ogsâ egnet til talrige andre anvendelser, der vedrerer dispergering af gas i væsker.The steam which enters through the slots 23 in an amount of approx. 25 l / s, are dispersed in the form of very fine bubbles which condense very quickly as they enter the milk mass as a result of the centrifugal action. Thus, during its helical flow, the temperature of the milk 20 rises very rapidly in a homogeneous manner, ensuring efficient sterilization. The invention is also suitable for numerous other applications relating to gas dispersion in liquids. 1. Fremgangsmâde til dispergering af et fluid i en strâle af et fluid med sterre massefylde, ved hvilken fremgangsmâde fluidet med den storste massefylde bringes til at cirkulere i form af en fluidstrâle med stor hastighed, idet den nævnte strâle bringes til at felge en krum stremningsbane, hvorved der i strâlen frembringes en 30 trykgradient vinkelret pâ væggen som felge af centrifugalkraften, DK 157312 B kendetegnet ved, at det fluid, der har storst massefylde, bringes til at cirkulere i en passage med en konstant krumning i det mindste over et vist stykke, og at det fluid, der har mindst massefylde, og som er under tryk, fores direkte ind i det fluid, der 5 har storst massefylde, gennem i det mindste én âbning, der er udformet i væggen af passagens krumme del med storst krumningsradius, dvs. den væg, langs hvilken trykket i fluidet, der har storst massefylde, er storst som folge af trykgradienten, idet âbningen er placeret i det mindste i en vis afstand for afslutningen 10 af den krumme del i et omrâde, hvor trykgradienten optræder.A method for dispersing a fluid in a jet of a higher density fluid, wherein the method of the highest density fluid is circulated in the form of a high velocity fluid jet, said jet being rimed to a curved flow path , thereby producing in the beam a pressure gradient perpendicular to the wall as rims of the centrifugal force, characterized in that the fluid having the greatest density is circulated in a passage with a constant curvature at least over a certain distance. and that the fluid having the least density and which is pressurized is fed directly into the fluid having the greatest density through at least one aperture formed in the wall of the curved portion of the passage with the largest radius of curvature, i.e. the wall along which the pressure in the fluid having the greatest density is greatest as a result of the pressure gradient, the aperture being located at least at some distance for the termination 10 of the curved portion in an area where the pressure gradient occurs. 2. Fremgangsmâde ifolge krav 1, kendetegnet ved, at fluidet, der har storst massefylde, bringes til at cirkulere i en venturidyse med en aksial kerne, hvorhos midteraksen af passagesektionen efter venturidysens hais har 15 en konkav form udefter, og at fluidet, der har mindst massefylde, og som skal dispergeres i fluidet, som har storst massefylde, indfores via en âbning, der er placeret pâ kernens væg i ait væsentligt ved venturidysens hais.A method according to claim 1, characterized in that the fluid having the greatest density is circulated in a venturi nozzle with an axial core, the center axis of the passage section of the venturi nozzle having a concave shape outwards and the fluid having at least density, which is to be dispersed in the fluid having the greatest density, is inserted through an opening located on the wall of the core substantially at the venturi nozzle lift. 3. Fremgangsmâde ifolge krav 2, 20 kendetegnet ved, at fluidet, der har mindst massefylde, suges ind i strâlen af fluidet, som har storst massefylde, ved det trykfald, som skabes i venturidysens hais.Method according to claim 2, 20, characterized in that the fluid having the least density is sucked into the jet of the fluid which has the greatest density, at the pressure drop created in the venturi nozzle lift. 4. Fremgangsmâde ifolge krav 3, kendetegnet ved, at mængden af fluid, som har mindst 25 massefylde, og som suges ind, justeres ved elastisk montering, i forhold til den overste del af den nederste del af venturidysens aksiale kerne, som med sin overste del afgrænser indsugningsgabet for det fluid, som har mindst massefylde.Method according to claim 3, characterized in that the amount of fluid having at least 25 densities and which is sucked in is adjusted by elastic mounting, relative to the upper part of the lower part of the axial core of the venturi nozzle, as with its upper one. part delimits the intake gap for the fluid which has the least density.
DK474981A 1980-10-28 1981-10-27 PROCEDURE FOR DISPERSING A FLUID IN A RADIATION OF ANOTHER FLUID DK157312C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8023001 1980-10-28
FR8023001A FR2492679B1 (en) 1980-10-28 1980-10-28 METHOD FOR THE DISPERSION OF A FLUID IN A FLUID VEIN OF VERY HIGH DENSITY, IN PARTICULAR OF A GAS IN A LIQUID AND DEVICE FOR IMPLEMENTING IT
FR8117654A FR2513142B2 (en) 1981-09-18 1981-09-18 METHOD FOR THE DISPERSION OF A FLUID IN A FLUID VEIN OF VERY HIGH DENSITY, IN PARTICULAR OF A GAS IN A LIQUID AND DEVICE FOR IMPLEMENTING IT
FR8117654 1981-09-18

Publications (3)

Publication Number Publication Date
DK474981A DK474981A (en) 1982-04-29
DK157312B true DK157312B (en) 1989-12-11
DK157312C DK157312C (en) 1990-05-07

Family

ID=26222051

Family Applications (1)

Application Number Title Priority Date Filing Date
DK474981A DK157312C (en) 1980-10-28 1981-10-27 PROCEDURE FOR DISPERSING A FLUID IN A RADIATION OF ANOTHER FLUID

Country Status (4)

Country Link
EP (1) EP0051021B1 (en)
DE (1) DE3173465D1 (en)
DK (1) DK157312C (en)
ES (1) ES8300265A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525044A1 (en) * 1995-07-10 1997-01-16 Linde Ag Method and device for introducing substances into flowing media

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE404938A (en) *
US1437649A (en) * 1920-09-25 1922-12-05 Guelbaum David Mixing and proportioning device or valve
US1839952A (en) * 1928-01-07 1932-01-05 American Ozone Company Device for mixing gases and liquids
US1853045A (en) * 1931-01-09 1932-04-12 Air Conditioning & Eng Fluid mixing means
DE631458C (en) * 1931-02-09 1936-06-22 Jean Antoine Marcel Teliet Device for the intimate mixing of powdery substances with gases or liquids
NL77535C (en) * 1951-10-19
US3006622A (en) * 1957-08-26 1961-10-31 Chiyoda Chem Eng Construct Co Fluid contact system
US3450022A (en) * 1965-10-05 1969-06-17 Nat Dairy Prod Corp Steam infuser
DE1907278A1 (en) * 1969-02-13 1970-08-27 Ludwik Smolski Circulation and agration of water
DE2046254A1 (en) * 1969-09-18 1971-04-01 Atomic Energy Of Canada Ltd
US3600817A (en) * 1969-11-28 1971-08-24 Siemens Ag Processing apparatus for effecting interaction between, and subsequent separation or gaseous and solid or liquid particulate substances
US3680781A (en) * 1970-12-30 1972-08-01 Fuller Co Liquid spray nozzle
DE2620634A1 (en) * 1976-05-10 1977-11-24 Paul Liesenhoff Treatment of sewage with oxygen in closed pipe - allowing use of compact appts. giving less noise as no aeration surface is exposed
JPS584467Y2 (en) * 1978-10-18 1983-01-25 雪印乳業株式会社 High concentration liquid sterilizer

Also Published As

Publication number Publication date
EP0051021A2 (en) 1982-05-05
EP0051021B1 (en) 1986-01-08
DE3173465D1 (en) 1986-02-20
ES506599A0 (en) 1982-11-01
DK474981A (en) 1982-04-29
DK157312C (en) 1990-05-07
EP0051021A3 (en) 1982-08-18
ES8300265A1 (en) 1982-11-01

Similar Documents

Publication Publication Date Title
RU2386911C2 (en) Throttle valve and method of increasing sizes of liquid drops in fluid medium flow passing through it
ES2253439T3 (en) A DEVICE AND A METHOD FOR CREATING HYDRODINAMIC CAVITATION IN FLUIDS.
DE60213442T2 (en) CYCLONE SEPARATOR WITH SWIVEL GENERATOR IN THE INLET AREA
US4479908A (en) Device for dispersing a fluid in a jet of fluid of higher density, particularly of a gas in a liquid
US2790310A (en) Axial flow vortex tube mechanism
DK157312B (en) PROCEDURE FOR DISPERSING A FLUID IN A RADIATION OF ANOTHER FLUID
RU2631876C1 (en) Device for dehumidification of compressed gas
US2773598A (en) Apparatus for the selective and/or total separation and collection of particles from suspension in fluid media
EP3150954B1 (en) Heat transfer tubes
JP2006521199A5 (en)
US2301045A (en) Unit heater
US5301878A (en) Device for producing a particulate dispersion
RU2613556C1 (en) Device for oil desalting and dehydration
US2016341A (en) Condenser swirl
RU2619783C1 (en) Acoustic mixer
CN210544087U (en) Rotatory alternating expression ultrasonic wave removes foam device
CN110180305A (en) Rotate alternating expression ultrasonic wave Despumation device
RU2622952C1 (en) Acoustic nozzle for liquid spraying
SU1268868A1 (en) Steam generating arrangement
RU2043402C1 (en) Installation for desulfurization of juice
US2751037A (en) Mist eliminator
SU486190A1 (en) Swirl tube
SU719681A2 (en) Ultrasonic hydrodynamic emitter
JPH0226530B2 (en)
RU2023500C1 (en) Neutralizer

Legal Events

Date Code Title Description
PBP Patent lapsed