DK157213B - PROCEDURE AND APPARATUS FOR TRANSFER OF MEASUREMENT VALUES FROM A BOREHOLE TO THE EARTH SURFACE - Google Patents
PROCEDURE AND APPARATUS FOR TRANSFER OF MEASUREMENT VALUES FROM A BOREHOLE TO THE EARTH SURFACE Download PDFInfo
- Publication number
- DK157213B DK157213B DK647472AA DK647472A DK157213B DK 157213 B DK157213 B DK 157213B DK 647472A A DK647472A A DK 647472AA DK 647472 A DK647472 A DK 647472A DK 157213 B DK157213 B DK 157213B
- Authority
- DK
- Denmark
- Prior art keywords
- signal
- phase
- output
- generator
- frequency
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 21
- 238000005259 measurement Methods 0.000 title description 8
- 238000005553 drilling Methods 0.000 claims description 38
- 239000012530 fluid Substances 0.000 claims description 26
- 230000008859 change Effects 0.000 claims description 19
- 230000000295 complement effect Effects 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 230000007306 turnover Effects 0.000 claims description 3
- 210000000056 organ Anatomy 0.000 claims 2
- 230000001052 transient effect Effects 0.000 claims 2
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 239000003380 propellant Substances 0.000 claims 1
- 230000000875 corresponding effect Effects 0.000 description 20
- 230000010354 integration Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000004181 pedogenesis Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/14—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
- E21B47/18—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/14—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
- E21B47/18—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
- E21B47/20—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry by modulation of mud waves, e.g. by continuous modulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Geophysics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Remote Sensing (AREA)
- Acoustics & Sound (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Geophysics And Detection Of Objects (AREA)
- Steroid Compounds (AREA)
Description
DK 157213BDK 157213B
ιι
Den foreliggende opfindelse angâr en fremgangsmâde til overf0ring af mâleværdier fra borehul, af den i krav l's indledning angivne art.The present invention relates to a method for transmitting borehole measurement values of the kind specified in the preamble of claim 1.
Det har længe været praksis at overvâge borehuller, dvs. at aff0le forskellige underjordiske forhold i et borehul og at overf0re de erhvervede data til overfladen. Ved de kendte overvâgningsoperationer, sâledes som de udf0res af serviceselskaber, anvendes metoder med trâdforbin-delser eller kabelforbindelser. Til udf0relse af mâling-er standses boringen, og boreudstyret tages op fra boringen. Det er dog kostbart at standse boreoperationer med henblik pâ mâling. Fordelen ved at kunne mâle eller overvâge under selve boringen er umiddelbart indlysende, men hidtil har manglen pâ en acceptabel fjernmâlingsme-tode imidlertid været en alvorlig hindring for en til-fredsstillende ud0velse af en sâdan procès.It has long been the practice of monitoring boreholes, ie. sensing various underground conditions in a borehole and transmitting the acquired data to the surface. In the known monitoring operations, as performed by service companies, methods of wiring or cable connections are used. To perform the measurement, the bore is stopped and the drilling equipment is removed from the bore. However, it is expensive to stop drilling operations for measurement. The advantage of being able to measure or monitor during the drilling itself is immediately obvious, but so far the lack of an acceptable distance measurement method has been a serious obstacle to the satisfactory exercise of such a process.
Der er blevet foreslâet forskellige fjernmâlingsmetoder til anvendelse ved mâling under boring. Det er for ek-sempel blevet foreslâet at overf0re de konstaterede data elektrisk til overfladen. Sâdanne metoder har hidtil vist sig upraktiske, fordi det er n0dvendigt at forsyne borer0ret med en særlig isoleret ledning og midler til dannelse af passende forbindelser for lederen ved sam-lingerne pâ borer0ret. André foreslâede metoder gâr ud pâ overf0ring af akustiske signaler gennem borer0ret.Various distance measurement methods have been proposed for use in drilling measurement. For example, it has been proposed to electrically transmit the recorded data to the surface. Such methods have so far proved impractical because it is necessary to provide the drill pipe with a particularly insulated conduit and means for forming appropriate connections for the conductor at the joints of the drill pipe. André's proposed method is to transmit acoustic signals through the drill pipe.
Eksempler pâ sâdanne fjernmâlingssystemer er beskrevet i beskrivelserne til ü.S.A.-patenterne nr. 3 015 801 og 3 205 477. Ved disse systemer bliver et akustisk signal indf0rt i borer0ret, og signalet bliver frekvensmodule-ret i overensstemmelse med en konstateret underjordisk tilstand. Der anvendes frekvensskiftimpulsering til at 2Examples of such remote sensing systems are described in the descriptions of ü.S.A. Patents Nos. 3 015 801 and 3 205 477. In these systems, an acoustic signal is introduced into the drill pipe and the signal is frequency modulated in accordance with an underground condition found. Frequency shift pulse is used to 2
DK 157213 BDK 157213 B
overf0re de konstaterede data i digitalform. André fjernmâlingsmetoder, der er foreslâet til anvendelse ved raâling under boring, anvender borevæsken i borehullet som transmissionsmedium, sâledes som det er beskrevet i U.S.A.-patentskrift nr. 3 309 656. Ved den her beskrevne fremgangsmâde bliver der frembragt et signal med akus-tiske b0lger i borevæsken, imens denne cirkuleres igen-nem borehullet. Dette signal frekvensmoduleres til over-f0ring af den 0nskede information til overfladen. Ved overfladen bliver det akustiske signal detekteret og de-moduleret til tilvejebringelse af den 0nskede aflæs-ningsinformation.transmit the recorded data in digital form. Other methods of remote measurement proposed for use during drilling operations use the borehole fluid as the transmission medium as described in U.S. Patent No. 3,309,656. In the method described herein, a signal with acoustic waves is generated. in the drilling fluid while circulating through the borehole. This signal is frequency modulated to transmit the desired information to the surface. At the surface, the acoustic signal is detected and demodulated to provide the desired reading information.
Formâlet med opfindelsen er at anvise en fremgangsmâde af den indledningsvis nævnte art til at fjernoverf0re data vedr0rende forholdene i et borehul under anvendelse af en str0mmende borevæske, og samtidigt med at hullet bores.The object of the invention is to provide a method of the kind mentioned above for remotely transmitting data on the conditions in a borehole using a flowing drilling fluid, and at the same time drilling the hole.
Dette formâl opnâs ved, at fremgangsmâden ud0ves som an-givet i krav l's kendetegnende del. Det kodede signal bliver modtaget ved stationen for oven og bliver dér moduleret eller afkodet til frembringelse af aflæsnings-funktioner svarende til faseforholdene og dermed de mâl-te forhold eller tilstande.This object is achieved by the method being carried out as specified in the characterizing part of claim 1. The encoded signal is received at the station above and is modulated or decoded there to produce readout functions corresponding to the phase conditions and hence the measured conditions or states.
Opfindelsen angâr ogsâ et apparat af den i krav 8's ind-ledning angivne art til at overf0re data gennem en str0mmende borevæske mellem adskilte punkter under bo-ringen af et borehul, og dette apparat er if0lge opfin-delsen ejendommeligt ved den i krav 8's kendetegnende del angivne udformning.The invention also relates to an apparatus of the kind specified in the preamble of claim 8 for transmitting data through a flowing drilling fluid between separate points during the drilling of a borehole, and according to the invention this property is characterized by the characterizing part of claim 8. design.
DK 157213 BDK 157213 B
33
Opfindelsen vil blive nærmere forklaret ved den felgende beskri-velse af nogle udforelsesformer, idet der henvises til tegnin-gen, hvor fig. 1 viser skematisk, delvis i snit, et boreanlæg med udstyr ifsl-ge opfindelsen, fig. 2 et snit gennem et sendeapparatur, der nedsænkes i et bore-hul fig. 3 et blokskema for kode- og sendeudstyret i dette apparatur, fig. 4 og 5 forskellige kurver, der forekommer i forbindelse med det i fig. 3 viste udstyr, fig. 6 et blokskema for det over jorden anvendte modtageudstyr, medens fig. 7 og 8 viser forskellige kurver, der forekommer under driften af dette udstyr.The invention will be further explained by the following description of some embodiments, with reference to the drawing, in which fig. 1 shows schematically, partly in section, a drilling system with equipment according to the invention; FIG. 2 is a section through a transmitting apparatus immersed in a borehole; FIG. 3 is a block diagram of the coding and transmitting equipment of this apparatus; FIG. 4 and 5 show various curves occurring in connection with the one shown in FIG. 3; FIG. 6 is a block diagram of the above-ground receiving equipment, while FIG. 7 and 8 show various curves occurring during operation of this equipment.
Yed de i det felgende beskrevne foretrukne udfsrelsesformer bliver et akustisk signal overfsrt gennem den borevæske, der anvendes ved normale boreopérationer. I forbindelse med boringen bliver i det mindste én tilstand i borebullet affolt, og der frembringes et signal, i de fleste tilfælde et analogsignal, der repræsenterer den affelte tilstand. Et analogt signal bliver konverteret til et digitalt seriesignal. Det i borevæsken frembragte akustiske signal bliver moduleret svarende til det digitale signal derved, at fasen af det akustiske signal under sekventielle perioder svarende til cifferintervallerne for det digitale signal bliver korreleret med forskellige fasetilstande, der repræsenterer de forskellige ciffer-værdier i det digitale signal. Det akustiske signal bliver mod-taget ved en station over jorden og bliver demoduleret til frem-In the preferred embodiments described below, an acoustic signal is transmitted through the drilling fluid used in normal drilling operations. In connection with the drilling, at least one state in the drill bit is decomposed and a signal is generated, in most cases an analog signal representing the decomposed state. An analog signal is converted to a digital serial signal. The acoustic signal generated in the drilling fluid is modulated corresponding to the digital signal in that the phase of the acoustic signal during sequential periods corresponding to the digit intervals of the digital signal is correlated with different phase states representing the different digit values of the digital signal. The acoustic signal is received at a station above the ground and demodulated to produce
4 DK 15 7 213 B4 DK 15 7 213 B
bringelse af udgangssignaler svarende til de respektive fasetil-stande. Disse udgangssignaler kan derefter fores til passende anvendelsesapparatur, sâsom registrerende instrumenter, eller databebandlingsanlæg, sâsom datamaskiner, bvorfra den onskede information vil kunne udtages.providing output signals corresponding to the respective phase states. These output signals can then be fed to appropriate application equipment, such as recording instruments, or data processing systems, such as computers, from which the requested information can be extracted.
I fig. 1 er vist et borebul 10, der fores ned gennem jordskorpen ved bjælp af et roterende laor. Ved boringen anvendes et boreskær 12 fastgjort til den nederste ende af en borespindel H. Bore-spindelen er for oven afsluttet i et glidestykke 16, der liar poly-gonformet tværsnit, og som passerer igennem drejebor 18 ved foden af boretâmet. Ved bjælp af en ikke vist bosning kan der overfores drejningsmoment mellem glidestykket 16 og drejebor et 18. Dreje-boret drives af en motor 20 gennem en passende drivmekanisme, sâsom et kædetræk 21 pâ sœdvanlig mâde. Borespindelen H er ophængt i boretâmet ved bjælp af en krog 23 pâ en taljeblok 24. Denne er ved en lober 26 i forbindelse med en ikke vist fast blok i toppen af boretâmet. Glidestykket 16 er forbundet til krogen gennem en drejekobling 28, der tillader drejning af borespindelen i forbold til krogen. Borevæske fra en bebolder 30, som regel betegnet slamgrube, fores ved en pumpe 31 gennem en ledning 32 ind i kob-lingen 28 og derfra nedefter gennem en indre passage i borespindelen til skæret 12. Borevæsken strommer derfra udefter i borehullet gennem porte i boreskæret og strommer op til overfladen gennem det ringformede mellemrum mellem borespindelen og borehullets væg-ge. Ved overfladen udtages slammet fra mellemrumme.t gennem en ledning 33 og fores tilbage til slamgruben 30. Ledningen 32 er udstyret med en svingningsdæmper 34, der virker til at undertrykke uonsket stoj i borevæsken, hidrorende fra pulsationer fra pumpen 31.In FIG. 1, a drill bit 10 is shown which is guided down through the crust by a rotating shank. In the drilling, a drill bit 12 attached to the lower end of a drill spindle H. is used. The drill spindle is terminated above in a sliding piece 16, which is of polygonal cross-section, and which passes through pivot 18 at the foot of the drill bar. By means of a bushing not shown, torque can be transmitted between the slider 16 and pivot 18. The pivot drill is driven by a motor 20 through an appropriate drive mechanism, such as a chain pull 21 in the usual manner. The drill spindle H is suspended in the drill bar by means of a hook 23 on a waist block 24. This is at a lobe 26 in connection with a fixed block not shown at the top of the drill bar. The slider 16 is connected to the hook through a swivel coupling 28 which allows rotation of the drill spindle in the hook to the hook. Drilling fluid from a hopper 30, usually referred to as mud pit, is fed through a pump 31 through a conduit 32 into the coupling 28 and thence downward through an inner passage in the drill bit to the cutter 12. The drilling fluid then flows outwardly into the borehole through ports in the drill bit and flows up to the surface through the annular space between the drill bit and the borehole walls. At the surface, the sludge is taken out of gaps through a conduit 33 and fed back to the sludge pit 30. The conduit 32 is provided with a vibration damper 34 which acts to suppress unwanted noise in the drilling fluid resulting from pulsations from the pump 31.
Borevæsken bar som regel form af et slam, dvs. en væske med op-slæmmede, faste dele. De faste dele virker til at bibringe borevæsken onskedeTheologiske egenskaber og endvidere til at foroge dens vægtfylde til en sâdan værdi, at der fâs et passende bydro-statisk tryk vedbunden af borebullet. I nogle tilfælde vil der kunne anvendes en forboldsvis klar væske, der indebolder fâ eller ingen opsÜÆmmede materialer. Hovedbestanddelen i borevæsken kanThe drilling fluid usually took the form of a sludge, ie. a liquid with slurry solid parts. The solid parts act to impart theological properties to the drilling fluid and also to increase its density to such a value as to provide an appropriate bydrostatic pressure attached to the borehole. In some cases, a colloidal liquid may be used, containing little or no accumulated materials. The main component of the drilling fluid can
5 DK 157213 BDK 157213 B
enten være vand eller olie.either water or oil.
Borespindelen 14 indeholder nær ved boreskæret 12 et sendeapparatur 36, der indeholder en eller flere mâletransorer til affeling af forskellige tilstande i borehullet og en akastisk generator, der indfsrer et akustisk signal i borevæsken. Sendeapparaturet 36 vil som regel være udstyret med transorer til mâling af et antal forskellige tilstande, sâsom vægten pâ skæret, drejningsmomente t ved skæret, trykfald over skæret, tryk i borehullet, tryk i jord-formationen, vibrationer, boreslammets temperatur, og værdien af naturlig gammastrâling. Den anvendte akustiske generator vil kun-ne være af enhver passende type, der vil overfsre et trykbelge-signal til borevæsken med en sâdan amplitude, at det kan overferes til en station over 3orden. En særlig egnet generator til anven-delse ved udevelse af den foreliggende opfindelse er en sender med roterende ventil af den art, der er omhandlet i det forannævnte ïï.S.A,-patent.The drill spindle 14 includes near the drill bit 12 a transmitting apparatus 36 containing one or more target transducers for sensing different states of the borehole and an acoustic generator which feeds an acoustic signal into the drilling fluid. The transmitting apparatus 36 will usually be equipped with transducers for measuring a number of different states, such as the weight of the cutter, torque t at the cutter, pressure drop across the cutter, borehole pressure, soil formation pressure, vibration, drilling mud temperature, and the value of natural gammastrâling. The acoustic generator used will be of any suitable type, which will transmit a pressure-bellows signal to the drilling fluid of such amplitude that it can be transmitted to a station above 3 degrees. A particularly suitable generator for use in the practice of the present invention is a rotary valve transmitter of the kind disclosed in the aforementioned patent.
Ved udsvelse af fremgangsmâden ifelge opfindelsen overfsres et akustisk signal til borevæsken ved hjælp af den akustiske generator i sendeapparaturet 36, hvilket signal overferes opefter gennem borevæsken. Bette signal bliver moduleret i afhængighed af en ved en mâletransor konstateret tilstand ved variering af fasen af det akustiske signal. Ved overfladen udtages det akustiske signal fra borevæsken ved hjælp af en eller flere modtagetransorer og bliver omsat til et elektrisk udgangssignal. Ber kan for eksempel som vist i fig. 1 være monteret en transor 38 pâ den sverste del af dre^ekoblingen 28. Signalet fra transoren 38 bliver fort til mod-tageapparatur 40, hvor det demoduleres til frembringelse af ud-gangssignaler, der repræsenterer de mâlte tilstande i borehullet.In the case of swelling of the method according to the invention, an acoustic signal is transmitted to the drilling fluid by means of the acoustic generator in the transmitting apparatus 36, which signal is transmitted upwardly through the drilling fluid. Better signal is modulated in dependence on a condition detected by a measurement transducer by varying the phase of the acoustic signal. At the surface, the acoustic signal is extracted from the drilling fluid by means of one or more receiving transducers and converted into an electrical output signal. For example, as shown in FIG. 1, a transistor 38 is mounted on the heaviest part of the rotary coupling 28. The signal from the transducer 38 is rapidly transmitted to receiving apparatus 40 where it is demodulated to produce output signals representing the measured states of the borehole.
Ifslge opfindelsen anvendes fortrinsvis et m-nært impulskodeformat, hvor m er lig med 2, 4 eller 8, ved hvilket det akustiske signal, der frembringes i borehullet, undergâr faseskiftning til overfs-ring af den enskede information i et serieformet digitalformat, I forbindelse med opfindelsen vil kunne anvendes enhver passende teknik med faseskift, ved hvilken fasen af det akustiske signal bliver korreleret med et antal forskellige fasetilstande svarende til cifferværdier i en passende kode. Ber vil kunne anvendes for-Preferably, according to the invention, an m-close pulse code format is used, where m is equal to 2, 4 or 8, in which the acoustic signal produced in the borehole undergoes phase switching to transmit the individual information in a serial digital format. the invention will be applicable to any suitable phase shift technique in which the phase of the acoustic signal is correlated with a number of different phase states corresponding to digit values in a suitable code. Berries can be used for-
6 DK 157213 B6 DK 157213 B
skellige kodningsmetoder. De fasetilstande, der survendes til at overfsre information til den akustiske belge, vil for eksempel kunne være fasetilstanden af signalet, nemlig fasevinkelen for signalet i forhold til en referencebelge eller referencekurve. Yed en binær kode (m=2) kan sâledes anvendes tilstanden med faselighed (fasevinkel lig med nul) for den ene bitværdi og en til stand med fasevending (fasevinkel lig med 180°) for den anden bitværdi. Por en kode med basis eller radix fire (m=4) kan fasetilstandene sva-rende til de respektive cifferværdier være fasetilstandene ved 0°, 90°9 180° og 270°. Alternativt vil der kunne anvendes en form uden tilbagevenden til nul, ved hvilket fasetilstandene svarende til de forskellige cifferværdier udger flere fasetilstande af sig-nalet i forhold til fasetilstanden af signalet under et forudgâ-ende cifferinterval. Yed et binært kodesystem vil for eksempel saisine fase i et cifferinterval- og - det felgende kunne betegne en cifferværdi pâ "0”, medens en omskiftning af fasen fra et cifferinterval til det næste vil kunne angive en cifferværdi ”1”. Yed et temært kodet System vil eifferværdieme kunne angives ved et konstant faseforhold fra et cifferinterval til det næste for én cifferværdi, et faseskift pâ 120° for en anden cifferværdi og et faseskift pâ 240° for den tredje cifferværdi. Denne kodetelaiik uden tilbagevenden til nul mâ foretrækkes af hensyn til pâlidelig-heden ved afkodning, eftersom en bitværdi bliver angivet ved fase-ændring. Qpfindelsen vil i det felgende blive beskrevet i forbin-delse med en binær kode af denne art.different coding methods. For example, the phase states surviving to transmit information to the acoustic bellows could be the phase state of the signal, namely, the phase angle of the signal relative to a reference bellows or reference curve. Thus, with a binary code (m = 2), the state of phase variability (phase angle equal to zero) can be used for one bit value and one with phase inversion (phase angle equal to 180 °) for the other bit value. For a code with base or radix four (m = 4), the phase states corresponding to the respective digit values can be the phase states at 0 °, 90 ° 9 180 ° and 270 °. Alternatively, a non-return form can be used, at which the phase states corresponding to the different digit values constitute several phase states of the signal relative to the phase state of the signal during a preceding digit range. For example, for a binary coding system, sixteen phases in a digit range - and the following - could denote a digit value of "0", while switching the phase from one digit range to the next could indicate a digit value "1". System, the numerical values can be specified at a constant phase ratio from one digit range to the next for one digit value, a phase change of 120 ° for another digit value and a phase shift of 240 ° for the third digit value. This code relay without return to zero should be preferred for The reliability of decoding, since a bit value is indicated by phase change, the invention will be described below in connection with a binary code of this kind.
Sendeapparaturet 36 er vist med flere enkeltheder i fig. 2. Det har et indre hus 42 og et ydre hus 44, der afgrænser et ringformet mellemrum 45, gennem hvilket borevæsken passerer. Det ydre hus har ved begge ender gevind til tilslutning til borespindelen. Apparaturet er som vist delt i tre afsnit 46, 48 og 50. Det ever-ste afsnit 46 er forbundet til en akustisk generator, der bestâr af en fortandet stator 52 og en pâ tilsvarende mâde fortandet ro-terende ventil 54, der drives i forhold til statoren. Rotoren er vist i en âben stilling, i hvilken en slids 54a i rotoren og en slids 52a i statoren er i forbindelse. Rotoren 54 drives gennem et reduktionsgear 57 af en drivmotor 56. Som det vil fremgâ af fig. 2, vil borevæske passere gennem slidseme i rotoren og statoren. Nâr rotoren roterer, drevet af motoren, bliver væskestrem-men intermitterende afbrudt, hvorved det onskede akustiske signal overferes til borevæsken. Diameteren af rotoren 54 er lidt mindreThe transmitting apparatus 36 is shown in more detail in FIG. 2. It has an inner housing 42 and an outer housing 44 defining an annular space 45 through which the drilling fluid passes. The outer housing has threads at both ends for connection to the drill spindle. The apparatus is as shown in three sections 46, 48 and 50. The first section 46 is connected to an acoustic generator consisting of a toothed stator 52 and a similarly toothed rotary valve 54 operated in relation to to the stator. The rotor is shown in an open position in which a slot 54a in the rotor and a slot 52a in the stator are connected. The rotor 54 is driven through a reduction gear 57 by a drive motor 56. As will be seen from FIG. 2, drilling fluid will pass through the slots in the rotor and stator. As the rotor rotates, driven by the motor, the fluid stream intermittently is interrupted, thereby transmitting the desired acoustic signal to the drilling fluid. The diameter of the rotor 54 is slightly smaller
7 DK 157213 B7 DK 157213 B
end den indre diameter af huset 44. Der vil derfor passere en vis mængde borevæske udenom rotoren og germern slidseme i stator en, nâr rotoren er i en lukket stilling.than the inner diameter of the housing 44. Therefore, a certain amount of drilling fluid will pass around the rotor and the germline slots in the stator one when the rotor is in a closed position.
Pâ den nederste ende af motorens aksel er monteret et takometer 58, der tjener til at frembringe et signal, som repræsenterer motorens hastighed og dermed omlebshastigheden for ventilen 54. Takometersignalet anvendes som senere beskrevet i en tilbage-koblingskreds til styring af frekvensen og fasen for det akustiske signal. Takometeret 58 bestâr af en spole 59 og en rotor 60, der er fastgjort pâ motorakselen. Ved drejning af rotoren 60 i forhold til spolen 59 bliver der i denne induceret en vekselspænding med en frekvens, der er proportional med oml0bsh.astigh.eden for motoren 56. Signalet fra spolen 59 fores til sædvanlige, ikke viste kreds-10b til impulsformning og frekvensdeling til frembringelse af et impulssignal, der anvendes til at styre motorens hastighed.On the lower end of the shaft of the motor is mounted a tachometer 58 which serves to produce a signal representing the motor speed and thus the rotational speed of the valve 54. The tachometer signal is used as described later in a feedback circuit to control the frequency and phase of the motor. acoustic signal. The tachometer 58 consists of a coil 59 and a rotor 60 fixed to the motor shaft. By rotating the rotor 60 relative to the coil 59, an alternating voltage is induced therein at a frequency which is proportional to the orbital speed of the motor 56. The signal from the coil 59 is fed to usual, not shown, circuit 10b for pulse forming and frequency division to produce an impulse signal used to control the motor speed.
Det mellemste afsnit 48 er afspærret fra de to andre afsnit ved hjælp af tværvægge 62 og 65, gennem hvilke der passerer elektriske ledninger. Dette afsnit indeholder de senere omtalte elektroniske komponenter, der herer til sendeapparaturet, herunder sâdanne til modtagelse af udgangssignalerne fra de forskellige transorer, der anvendes til at mâle eller affole forskellige tilstande i bore-huile t. Huset 44 er omgivet af en ring 64, der afgrænser et ydre rum 65 til anbringelse af mâletransorer.The middle section 48 is blocked from the other two sections by cross walls 62 and 65 through which electrical wires pass. This section contains the later discussed electronic components associated with the transmitting apparatus, including those for receiving the output signals from the various transducers used to measure or sense different states of the drill housing. The housing 44 is surrounded by a ring 64 which defines an outer space 65 for positioning target transducers.
Det nederste afsnit 50 indeholder en generator 68, der frembrin-ger elektrisk effekt til motoren 56. Den elektriske generator 68 drives af en turbine 70. Turbinen 70 drives af borevæske, der strommer nedefter gennem apparaturet gennem mellemrummet 45 mellem de to huse 42 og 44. En mere detaljjeret beskrivelse af de mekani-ske egenskaber ved det i fig. 2 viste sendeapparatur kan findes i den ovenfor nævnte U.S.A.-patentbeskrivelse.The lower section 50 contains a generator 68 which provides electrical power to the motor 56. The electric generator 68 is driven by a turbine 70. The turbine 70 is driven by drilling fluid flowing down through the apparatus through the space 45 between the two housings 42 and 44. A more detailed description of the mechanical properties of the one shown in FIG. 2 can be found in the above-mentioned U.S.A. patent specification.
Fig. 3 viser et blokskema for de vigtigste dele i sendeapparaturet 36. Dette System indeholder en generator 74 for synkroniserings-ord og et antal mâletransorer D^, Dg ... D^ til konstatering af tilstande som ovenfor beskrevet og til frembringelse af dertil sva-rende udgangssignaler. Udgangssignalerne fra disse transorer, som regel analoge spændingssignaler, fores gennem en multiplexer 80FIG. 3 shows a block diagram of the main parts of the transmitting apparatus 36. This System contains a generator 74 for synchronization words and a number of target transducers D ^, Dg ... D ^ for detecting states as described above and for producing corresponding ones. output signals. The output signals from these transducers, usually analog voltage signals, are fed through a multiplexer 80
8 DK 157213 B8 DK 157213 B
til en koder 82. Multiplexeren virker til at fore de analoge signaler til koderen 82 i en passende sekvens. Desuden bar multiplexeren 80 en kanal S¥, der horer til et synkroniseringsord, der indfores i den anden del af systemet fra generatoren 74. Sâfremt det nskes, kan multiplexeren være udstyret med sâ mange kanaler, at der fâs mulighed for hyppigere eksemplering af et eller flere af signa-leme fra transor eme. For eksempel kan signale t fra transor en fores til to indgangskanaler til multiplexeren, sâledes at demie storrelse vil blive overfort to gange under hver cyklus i multiplexeren.to the encoder 82. The multiplexer acts to feed the analog signals to the encoder 82 in a suitable sequence. In addition, the multiplexer 80 carried a channel S belonging to a synchronization word inserted in the second part of the system from the generator 74. If desired, the multiplexer may be provided with so many channels that more frequent exemplification of one or the other is possible. several of the signals from the trans eme. For example, signal t from transor 1 can be fed to two input channels to the multiplexer so that the size will be transmitted twice during each cycle of the multiplexer.
Koderen 82 er en analog-digital-omsætter, der vil frembringe et digitalt ord i afhængighed af bvert analogt signal fra transorer-ne. Udgangssignalet fra omsætteren 82 fores til en koder 84 gennem et âbningskredslob 75 med ti elementer, og udgangssignalet fra generatoren 74 fsres til koderen 84 gennem et âbningskredslob 76 med ti elementer. Koderen 84 er et parallel-serie-skifteregi-ster, der virker til at omsætte det parallelle signal fra kredsen 82 og fra generatoren 74 til et serieformet digitalsignal, der derefter fores til en motorstyrekreds 85. Motorstyrekredsen, multiplexeren, omsætteren og koderen styres til synkron funktion ved en taktkreds 86.Encoder 82 is an analog-to-digital converter that will generate a digital word in dependence on each analog signal from the transducers. The output of converter 82 is fed to an encoder 84 through a ten element open circuit 75 and the output of generator 74 is fed to encoder 84 through a ten element open circuit 76. Encoder 84 is a parallel series switch register which acts to convert the parallel signal from circuit 82 and from generator 74 to a serial digital signal which is then fed to a motor control circuit 85. The motor control circuit, multiplexer, converter and encoder are controlled in synchronous fashion. function at a clock circuit 86.
Generatoren 74 er en komponentenhed, der efter kommando fra takt-kredsen 86 og en tæller 87 afgiver udgangssignaler i form af et eller flere fastlagte ord, der anvendes til at betegne begyndelsen af en blok af dataord.Generator 74 is a component unit which, at the command of clock circuit 86 and counter 87, provides output signals in the form of one or more determined words used to denote the beginning of a block of data words.
Fortrinsvis indebolder systemet ogsâ en paritetsgenerator 88, der virker til at tilfoje en paritetsbit til udgangssignalet fra kredsen 84, sâledes at der fâs paritetskontrol for bvert overfort ord. Paritetsgeneratoren frembringer en paritetsbit med én tilstand i afbængighed af et ulige antal bits af en bestemt tilstand i et ord, og en paritetsbit af en anden tilstand i afbængighed af et lige antal bits af den nævnte tilstand i ordet. Sâfremt der for eksempel anvendes ulige paritetskontrol for bitværdier pâ "I", vil paritetsgeneratoren 88 tælle antallet af "1"ere i ordet og afgive den 11'te bit soin "I”, bvis antallet af "1"ere i de forste ti bit er lige, og et "O”, bvis antallet af "1"ere i de forste ti bit er ulige. Hvert overfort ord vil sâledes indebolde etPreferably, the system also incorporates a parity generator 88 which acts to add a parity bit to the output of the circuit 84 so that parity check is obtained for each transmitted word. The parity generator produces a parity bit with one state in dependence on an odd number of bits of a particular state in a word, and a parity bit of another state in dependence on an equal number of bits of said state in the word. For example, if odd parity checks are used for bit values on "I", the parity generator 88 will count the number of "1" in the word and output the 11th bit soin "I" if the number of "1" is in the first ten bits is equal, and an "O", if the number of "1" in the first ten bits is odd. Thus, every word transmitted will imply one
9 DK 157213 B9 DK 157213 B
ulige antal "1"ere, der giver en kontrol for fejl ved overfzring eller modtagning.odd number of "1" ones that provide a check for transmission or reception errors.
Motorstyreenheden 85 virker til at opretholde overfsring med fase-lâsning, idet den sammenligner et tilbagekoblingssignal fra takome-teret med det primære taktsignal fra taktkredsen 86. Endvidere virker styreenheden 85 til at bevirke en faseomskiftning af det akustiske signal ved hvert signal "1" fra kredsen 84. I begge tilfælde fores der styrespændinger fra enbeden 85 til en spændings-styret enhed 90, der afgiver effekt til en tofaset induktionsmotor 56. Motoren 56 er som beskrevet i forbindelse med fig. 2 mekanisk forbundet til drift af rotoren 54.The motor control unit 85 acts to maintain phase-locking transmission by comparing a feedback signal from the tachometer with the primary clock signal from the clock circuit 86. Furthermore, the control unit 85 acts to effect a phase change of the acoustic signal at each signal "1" from the circuit. 84. In both cases, control voltages are supplied from single-bed 85 to a voltage-controlled unit 90 which delivers power to a two-phase induction motor 56. The motor 56 is as described in connection with FIG. 2 mechanically connected to drive the rotor 54.
Yirkemâden af styrekredsen 85 og de tilhzrende kredse under gennem-forelse af de foran nævnte funktioner vil blive beskrevet i forbindelse med de i fig. 4 og 5 viste kurver. De forskellige kurver i fig. 4 og 5 er forsynet med henvisningsbetegnelser, der benviser til de punkter, ved bvilke de optræder i kredsene i fig. 5. I det folgende forudsættes det, at rotoren 54 er en roterende ventil med ti slidser af den foran beskrevne type, der drives med en akue-tisk bærefrekvens pâ 25 Hertz, svarende til et omlobstal pâ 150 o/m. Yed en udfzrelsesform, hvor reduktionsgearet 57 bavde et omsætnings-forbold pâ 25:1, blev motoren 56 drevet med en hastigbed pâ 3750 o/m, sâledes at rotoren 54 gav et udgangssignal pâ 25 Hz. Endvi-dere var kredsen 84 indrettet til at frembringe.binære ord med el-leve bit, nemlig ti informationsbit plus én paritetsbit.The operation of the control circuit 85 and its associated circuits in carrying out the aforementioned functions will be described in connection with the functions of FIG. 4 and 5. The various curves of FIG. 4 and 5 are provided with reference numerals which indicate the points at which they appear in the circuits of FIG. 5. In the following, it is assumed that the rotor 54 is a rotary valve with ten slots of the type described above, operated at an acuity bearing frequency of 25 Hertz, corresponding to an orbital number of 150 rpm. In an embodiment in which the reduction gear 57 bore a turnover example of 25: 1, the motor 56 was driven with a speed bed of 3750 rpm, so that the rotor 54 gave an output of 25 Hz. Further, the circuit 84 was arranged to generate binary words with electric live bits, namely ten bits of information plus one parity bit.
Taktkredsen 86 og tælleren 87 afgiver taktsignaler a, b, c, d og g, fig. 5, til benboldsvis multiplexeren, omsætteren, koderen, motorstyreenheden og synkroniseringsgeneratoren. Desuden frembrin-ger impulsgeneratoren 58a en række signalimpulser e, der fzres til motorstyreenheden 85. Impulsfrekvensen for impulseme e er et mâl for omlzbsbastigbeden af motoren 56. Generatoren 58a indebol-der takometeret 58, fig. 2, og de tilbzrende impulsformekredsleb. Impulsfrekvensen for det primære taktsignal d er 50 impulser pr. sekund. Signalet e vil ligeledes bave en frekvens af 50 impulser pr. sekund, nâr ventilen eller senderen 54 arbejder ved 25 Hz.The clock circuit 86 and the counter 87 provide clock signals a, b, c, d and g, fig. 5, to the leg ball multiplexer, transducer, encoder, motor control unit and synchronization generator. In addition, the pulse generator 58a produces a series of signal pulses e which are supplied to the motor controller 85. The pulse frequency of the pulses e is a measure of the bypass bed of the motor 56. The generator 58a incorporates the tachometer 58; 2, and the impulse-forming pulse circuits. The pulse frequency of the primary clock signal d is 50 pulses per second. second. The signal e will also emit a frequency of 50 pulses per second. second when the valve or transmitter 54 is operating at 25 Hz.
De forskellige signaler eller impulser a, b, c, d, e og g fremkom-mer med impulsfrekvenser, der er knyttet sammen pâ fzlgende mâde: 10The different signals or pulses a, b, c, d, e and g are obtained with pulse frequencies linked in the following manner: 10
f DK 157213 Bf DK 157213 B
a ** * = s! „ fs O = y- d = e = 2fs g _ fs S - SW ’ hvor fg = akustisk frekvens = 25 Hertz B = antallet af "bit pr. ord = 11 P = perioder eller cykler pr. bit = 25 ¥ s antallet af ord pr. blok = 16.a ** * = s! "Fs O = y- d = e = 2fs g _ fs S - SW 'where fg = acoustic frequency = 25 Hertz B = number of" bits per word = 11 P = periods or cycles per bit = 25 ¥ s number of words per block = 16.
OmXobshastigheden for motoren 56 er bestemt ved amplituden af ud-gangssignalet fra styreenheden 85. Dette udgangssignal er atter en funktion af summen af fire spændinger, nemligs , hvis værdi er bestemt ved faseforholdet mellem impulseme d og e, Y2> en jævnspæn-ding med konstant amplitude, der er indstillet pâ en værdi, der er bestemt til at frembringe et akustisk signal med 25 Hertz, V^, en jævnspænding med konstant amplitude (en negativ forspænding, h. vis værdi er lig med den positive , nâr impulseme d og e er i mod-fase, samt Y^, en spænding til fasevending, der frembringes til ændring af omlobshastigheden for motoren 56. til omskiftning af fa-sen af det signal, der frembringes af senderen 54.The OmXob speed of motor 56 is determined by the amplitude of the output of the control unit 85. This output is again a function of the sum of four voltages, whose value is determined by the phase relationship between pulses d and e, Y2> a constant voltage constant amplitude set to a value intended to produce an acoustic signal of 25 Hertz, V ^, a constant amplitude DC voltage (a negative bias, i.e., value equal to the positive when pulses d and e is in the counter phase, as well as Y 1, a phase reversing voltage produced to change the orbital speed of the motor 56. to switch the phase of the signal produced by the transmitter 54.
Spændingerne Y2 og Y^ fâs som vist i fig. 5 fra batterier 91 og 93. Spændingen fâs pâ folgende mâde: Signalet d fra taktkredsen fores til en bistabil multivibrator 92 og til en lineær integrator 94. Signalet e fores ogsâ til multivibratoren 92 og til en holde-kreds 96. Œaktsignalet d virker til at skifte multivibratoren til inde-tilstânden, hvor den forer en jævnspænding med konstant amplitude V-j til integratoren 94. Signalet e fra impulsgeneratoren 58a virker til at fore multivibratoren tilbage til afbrudt stil-ling. Udgangssignalet fra multivibratoren 92 er sâledes et tog af impulser med konstant amplitude og variabel varighed, hvor impuls-længden er proportional med intervallet mellem impulsen d og im-pulsen e. Dette impulstog fores til integratoren 95, der frembrin-ger et spændingssignal, hvis amplitude er proportional med varig-The voltages Y2 and Y ^ are obtained as shown in FIG. 5 from batteries 91 and 93. The voltage is obtained as follows: The signal d from the clock circuit is fed to a bistable multivibrator 92 and to a linear integrator 94. The signal e is also fed to the multivibrator 92 and to a holding circuit 96. The clock signal d acts switching the multivibrator to the indoor state, where it carries a DC constant voltage Vj to the integrator 94. The signal e from the pulse generator 58a acts to return the multivibrator to disconnected position. The output of the multivibrator 92 is thus a train of pulses of constant amplitude and variable duration, the pulse length being proportional to the interval between the pulse d and the pulse e. This pulse train is fed to the integrator 95 which produces a voltage signal whose amplitude is proportional to lasting-
DK 157213 BDK 157213 B
heden af de respektive tilforte impulser. Integratoren vil holde den integrerede værdi, indtil den stilles tilbage til nul ved den næstfolgende impuls d, hvorpâ den konditioneres til at reagere for den efterfolgende impuls fra multivibratoren 92. Hver endelig integreret værdi i integratoren bliver eksempleret og fastholdt af holdekredsen 96» der virker i afhængighed af impulsen e. Der vil sâledes fra den ene impuls e til den næste blive fastboldt en spænding, der repræsenterer faseforskellen mellem impulseme d og e. Derme spænding, spændingen Y-j og spændingeme Y2 °S Ÿj, bliver fort til en summeringsforstærker 98.of the respective impulses applied. The integrator will hold the integral value until it is reset to zero by the next pulse d, upon which it is conditioned to respond to the subsequent pulse from the multivibrator 92. Each final integral value in the integrator is exemplified and maintained by the holding circuit 96 dependence on the pulse e. Thus, from one pulse e to the next, a voltage representing the phase difference between pulses d and e will be established. This voltage, the voltage Yj and the voltages Y2 ° S Ÿj, will quickly become a summing amplifier 98.
üdgangssignalet fra forstærkeren 98 fores til en motorforsyningskreds 90 til ændring af frekvensen for dennes udgangssignal,og dermed styres omlobshastigheden for induktionsmotoren 56. Kredsen 90 in-debolder en inverter 102, en spændingsstyret oscillator 104 og en jævnstromskilde vist sorti et batteri 103. Inverteren 102 omsætter jævtispændingen til vekselspændingen ved en frekvens svarende til signalet fra oseillatoren 104, hvilken frekvens bestemmes ved ud-gangssignalet fra forstærkeren 98.The output signal of amplifier 98 is fed to a motor supply circuit 90 to change the frequency of its output signal, and thus the orbital speed of the induction motor 56 is controlled. the DC voltage to the AC voltage at a frequency corresponding to the signal from the oscillator 104, which frequency is determined by the output of the amplifier 98.
Som hidtil beskrevet vil motorstyrekredsene drive motoren 56 og dermed den akustiske sender 54 med faselâsning, sâledes at takt-impulseme d er faseforskudt 180° i forhold til impulseme e fra impulsgeneratoren 58a. Ved denne form er den positive spænding T1 fra holdekredsen 96 i amplitude lig med den négative spænding Y^, og motorhastigheden bliver bestemt ved spændingen Y2. En ændring i motorens hastighed vil ændre faseforholdet mellem impulseme d og e og atter variere amplituden for spændingen V-j. Ændringen i spændingen Y^ er et afvigelsessignal, der vil virke til at omsty-re systemet og bringe motoren tilbage til dens rigtige hastighed Og valgte fase.As previously described, the motor control circuits will drive the motor 56 and thus the acoustic transmitter 54 with phase locking, so that the clock pulses d are phase shifted 180 ° relative to the pulses e from pulse generator 58a. In this form, the positive voltage T1 from the holding circuit 96 in amplitude is equal to the negative voltage Y1, and the motor speed is determined by the voltage Y2. A change in motor speed will change the phase relationship between pulses d and e and again vary the amplitude of voltage V-j. The change in voltage Y ^ is a deviation signal that will act to steer the system and bring the motor back to its proper speed And selected phase.
Derefter skal beskrives funktionen i sendeanlægget ved tilvejebrin-gelse af faseomskiftning af det akustiske signal. Erekvensen for signalet a, der fores til multiplexeren 80 fra tælleren 87, et én impuls pr. elleve sekunder. Yed tilforsel af signalimpulsen a vil multiplexeren gâ frem fra en kanal til den næste og fore en valgt analog værdi til omsætteren 82. Prekvensen for signalet b til denne kreds er ogsâ en impuls pr. elleve sekunder. Dette signal er forsinket lidt i forhold til signalet a til optagelse afThen, the function of the transmitting system must be described in providing phase switching of the acoustic signal. The frequency of the signal a fed to multiplexer 80 from counter 87 is one pulse per second. eleven seconds. By supplying the signal pulse a, the multiplexer proceeds from one channel to the next and transmits a selected analog value to the converter 82. The frequency of the signal b to this circuit is also one pulse per second. eleven seconds. This signal is slightly delayed relative to the signal a for recording
12 DK 157213 B12 DK 157213 B
fremrykningstiden for multiplexeren og omsætningstiden for omsæt-teren. Omsætteren 82 omsætter den analoge værdi til et binært ord med ti bit repræsenterende den tilforte analoge værdi. Frekven-sen for signalet c, der fores til koderen 84, er en impuls pr. se-kund, og dette signal ligger ogsâ faseforskudt i forhold til signalet b for at give en passende forsinkelse. Koderen reagerer for hver tilfort impuls ved at frembringe et kommandosignal j, enten et ”1" eller et ”0M. Motorstyreenheden 85 reagerer for hvert "1"-signal ved at omskifte fasen for det akustiske signal, og ved hvert "0"-signal med at fortsætte det akustiske signal i den samme fase.the advance time of the multiplexer and the turnover time of the transducer. Converter 82 converts the analog value into a ten-bit binary word representing the input analog value. The frequency of signal c supplied to encoder 84 is one pulse per second. customer, and this signal is also phase-shifted relative to signal b to provide a suitable delay. The encoder responds to each pulse transmitted by generating a command signal j, either a "1" or a "0M. The motor controller 85 responds to each" 1 "signal by switching the phase of the acoustic signal and at each" 0 "signal. with continuing the acoustic signal in the same phase.
Bitintervallet A er en "1n-bit. Koderen 84 vil derfor reagere ved at frembringe impulsen j-j, der fores til en generator 100, fig. 3, der frembringer en firkantspænding k.j. Udgangssignalet fra summe-ringsforstærkeren 98 vokser nu og virker tiï over kredsen 90 at foroge hastigheden af motoren 56 til fremrykning af fasen for det akustiske signal. Motorhastigheden og det tilsvarende akustiske signal er vist ved kurveme 1 ogii fig. 4. Som vist tiltager motorhastigbeden i hovedsagen lineært, nâr spændingen fra forstær-keren 98 tiltager. Nâr spændingen k-j pludselig nedsættes, vil motoren decelerere, indtil den vender tilbage til den normale hastig-hed, svarende til bærefrekvensen 25 hertz. Ved dette punkt er signalet omtrent 180° faseforskudt i forhold til den foregâende fasetilstand, og motorstyrekredsen vil virke i afhængighed af til-bageforingssignalet fra impulsgeneratoren 58 til tilve 3 ebringelse af en nojagtig faselâst tilstand.The bit interval A is a "1n bit. The encoder 84 will therefore respond by producing the pulse jj fed to a generator 100, FIG. 3 generating a square voltage k1. The output of the summing amplifier 98 now grows and operates across the circuit 90 increasing the speed of the motor 56 to advance the phase of the acoustic signal.The motor speed and the corresponding acoustic signal are shown by the curves 1 and iii of Figure 4. As shown, the motor speed bed substantially increases linearly as the voltage of the amplifier 98 increases. k is suddenly slowed down, the motor will decelerate until it returns to normal speed, corresponding to the carrier frequency of 25 hertz. At this point, the signal is approximately 180 ° phase shifted relative to the previous phase state, and the motor control circuit will operate depending on the current. the backing signal from the pulse generator 58 to provide an accurate phase-locked state.
Amplituden af firkantbolgeme k er gjort stor i sammenligning med defcmaksimale udgangssignal fra integratoren 94,og dette vil éliminer e virkningen af den tilbagekoblingsstyring, der fâs ved impul-seme e, sâledes at motoren 56 kan lobe op og ændre fase. Genera-toren 100 kan her betragtes som en del af motorstyrekredsen 85, selv om den er vist uden for dennes ramme af streglinier. Selv om udgangssignalet fra generatoren 100 blev vist og beskrevet som en firkantbolge, vil den kunne være af enhver form, der er egnet til at ændre hastigbeden for motoren 56.The amplitude of the square bolts k is large in comparison with the defmaximum output of the integrator 94, and this will eliminate the effect of the feedback control obtained by the impulse e so that the motor 56 can run up and change phase. Generator 100 may here be considered as part of the motor control circuit 85, although it is shown outside its line of dashed lines. Although the output of generator 100 was shown and described as a square bolt, it could be of any shape suitable for changing the speed of the motor 56.
Nâr bitværdien som vist i intervallet B er "0", vil kommandosignalet fra koderen 84 blot være en manglende impuls, og den akustiske generator vil fortsætte med at frembringe et akustisk signal med 13When the bit value as shown in interval B is "0", the command signal from encoder 84 will simply be a missing pulse and the acoustic generator will continue to produce an acoustic signal of 13
DK 157213 BDK 157213 B
den samme fasetilstand som i det foregâende bitinterval A. Bit-værdien i intervallet C er "1", hvorfor koderen 84 atter reagerer for impulsen c til frembringelse af impuls jjg, ^er modtages i généra toren 100. Ber frembringes et udgangssignal kg, og motoren 56 bliver atter aceelereret og decelereret som vist til omskiftning af fasen af det akustiske signal.the same phase state as in the previous bit interval A. The bit value in the interval C is "1", so the encoder 84 responds to the pulse c to produce pulse j1, is received in the generator 100. An output signal kg is generated, and motor 56 is again accelerated and decelerated as shown to switch the phase of the acoustic signal.
Bet format, efter hvilket dataene ordnes til overforing fra sende-apparaturet til overfladen til deteketering, er vist i fig. 5. ïïver blok begynder med et synkroniseringsord, efterfulgt af data-ord nr. 1 til nr. N. Ved den ber beskrevne udforelsesform er der femten dataord: N = 15. I de forskellige dataord er der vist eksempler pâ, at værdien af paritetsbit* en kan enten være "0” som i dataord nr. 1 eller "1" som i dataord nr. 2, sâledes at hvert dataord vil indeholde et ulige antal af M1"-bit. Figuren viser endvidere impulseme a og b ved begyndelsen af hvert ord.Bet format, according to which the data is arranged for transmission from the transmitting apparatus to the surface for detection, is shown in FIG. 5. Each block begins with a synchronization word, followed by data words No. 1 to No. N. In the embodiment described above, there are fifteen data words: N = 15. In the various data words, examples show that the value of the parity bit * one can be either "0" as in data word # 1 or "1" as in data word # 2, so that each data word will contain an odd number of M1 bits. The figure further shows the impulses a and b at the beginning of each word.
Impulsen g kommer imidlertid kun én gang for hver blok og anven-des til at styre synkroniseringsordene og endvidere til styring af de fomodne âbningskredslob til foring af synkroniseringsor-det til koderen 84. Styreimpulsen g frembringes af tælleren 87 og fores til generatoren 74. Impulsen fores samtidigt til en generator 77, der kan hâve form af en monostabil multivibrator, der som udgangssignal vil give et âbningssignal h samt et ikke vist âbningssignal h’, der er komplementet til signalet h. Signalet h fores til âbningskredslobet 76 til âbning af dette, medens signalet h1 fores til âbningskredslobet 75 til lukning af dette. Nâr âbningskredslobet 76 er âbent (ledende) og âbningskredslobet 75 lukket (spærrende), fores udgangssignalet fra generatoren 74 direkte til koderen 84, 0<3 udgangssignalet fra omsætteren 82 er spærret fra koderen. Efter et tidsinterval, der er fastlagt svarende til læng-den af ét ord, vender generatoren 77 tilbage til stabil tilstand, og signalet h ændres i negativ retning til spærring af âbningskredslobet 76, medens det komplementære signal h’, der bevœger sig i positiv retning, virker til at gore âbningskredslobet 75 ledende.However, the pulse g arrives only once for each block and is used to control the synchronization words and, furthermore, to control the forward-opening aperture circuits for feeding the synchronization word to the encoder 84. The control pulse g is generated by the counter 87 and fed to the generator 74. simultaneously to a generator 77 which can take the form of a monostable multivibrator which will output as an output signal h as well as an aperture signal h 'not shown, which is complementary to signal h. The signal h is fed to the aperture circuit 76 to open it, while signal h1 is applied to aperture circuit 75 to close it. When the opening circuit 76 is open (conductive) and the opening circuit 75 is closed (blocking), the output of the generator 74 is fed directly to the encoder 84, 0 <3 the output of the converter 82 is blocked from the encoder. After a time interval determined corresponding to the length of one word, generator 77 returns to steady state and signal h is changed in negative direction to block opening circuit 76, while complementary signal h 'moving in positive direction , seems to make the opening circuit 75 conductive.
Et andet træk ved det foreliggende System er anvendelsen af to synkroniseringsord, der er indbyrdes komplementære. Bisse synkroniseringsord bliver frembragt vekselvis af synkroniseringsgenerato-ren 74. Bet forste synkroniseringsord bliver med andre ord an-Another feature of the present System is the use of two mutually complementary synchronization words. Bit synchronization words are generated alternately by the synchronization generator 74. In other words, the first synchronization word is used.
ΤΤΛίΛ Λ 4* λΙα 4·ηνΊ /»1^1«»A A λ·Μ Vn«i «t ΜΛ 4ΑΜΜΜΛ Λ Λ *4“ 1>*AW>T\I AΤΤΛίΛ Λ 4 * λΙα 4 · ηνΊ / »1 ^ 1« »A A λ · Μ Vn« i «t ΜΛ 4ΑΜΜΜΛ Λ Λ * 4“ 1> * AW> T \ I A
1414
DK 157213 BDK 157213 B
nummer. Synkr oniseringsordet er vist i fig. 5 inden for blok 1, og dets Complément er vist ved begyndelsen af blok 2.number. The synchronization word is shown in FIG. 5 within block 1 and its Complément is shown at the beginning of block 2.
Baud-længden for hver bit fcan varieres ved indstilling af tælleren 87j f0eks. ved drejning af en knap 87a, fig. 3, til forbojelse eller nedsættelse af det antal perioder, der repræsenterer bver bito Nâr signal-stoj-forboldet er bojt, hvilket kan forekomme under den indledende del af boreprogrammet, vil bitlængden kunne være et sekund eller mindre. Efterbânden som borebullet bliver dybere s vil signal-stoj-forboldet aftage, og det vil være onskeligt at foroge antallet af perioder for bver bit eller med andre ord at foroge baud-længden. En ændring i baud-lœngden vil naturligvis nodvendiggore ændring af frekvenseme for de forskellige impulser, sâsom impulseme a, b, c osv., i overensstemmelse med de foran an-givne ligninger.The baud length for each bit fcan is varied by setting the counter 87j for example. by turning a knob 87a, FIG. 3, for offsetting or reducing the number of periods representing bver bit When the signal-to-noise bit is bent, which may occur during the initial part of the drilling program, the bit length may be one second or less. As the borehole becomes deeper, the signal-to-noise ratio decreases, and it will be desirable to increase the number of periods for each bit or in other words to increase the baud length. A change in the baud length will, of course, necessitate changing the frequencies of the different pulses, such as pulses a, b, c, etc., in accordance with the equations given above.
Som tidligere omtalt bliver det overfsrte akustiske signal modtaget ved overfladen af en transor 38, der virker til at omsætte det akustiske signal til én form, der er egnet til demodulerîng. Tran-soren 38 vil kunne være af enbver egnet type, der reagerer for det akustiske signal til frembringelse af et udgangssignal, der repræsenterer fasen af det akustiske signal. ïransoren 58 kan for eks— empel være en piezoelektrisk krystal, der frembringer et vekselspæn-dingssignal med samme frekvens som det akustiske signal.As previously discussed, the transmitted acoustic signal is received at the surface of a transducer 38 which acts to convert the acoustic signal into one form suitable for demodulation. The transistor 38 may be of any suitable type responsive to the acoustic signal to produce an output signal representing the phase of the acoustic signal. The transducer 58 may, for example, be a piezoelectric crystal which produces an alternating voltage signal at the same frequency as the acoustic signal.
üdgangssignalet fra transoren 38 fores til et modtageanlæg, der ud fra udgangssignalet frembringer et styresignal, der forbliver i synkronisme med den ene fasetilstand af det modtagne akustiske signal. Det modtagne signal bliver demoduleret, idet det sammenlig-nes med styresignalet til detektering af faseændringer i det modtagne signal, og der bliver frembragt tilsvarende aflæsefunktio-ner, der svarer til forskellige faseforbold mellem det modtagne signal og styrejsignalet.The output signal from transducer 38 is fed to a receiving system which produces, from the output signal, a control signal that remains in synchronism with the one phase state of the received acoustic signal. The received signal is demodulated, compared to the control signal to detect phase changes in the received signal, and corresponding readout functions are produced corresponding to different phase differences between the received signal and the control signal.
Eig. 6 viser et blokskema for en foretrukken udforelsesform for det ved den foreliggende opfindelse anvendte modtageSystem. De i forbindelse- med dettes drift optrædende signaler er vist i fig. 7 og 8 forsynet med betegnelser, der svarer til de punkter i fig. 6, hvor de forskellige signaler forekommer. Ved dette System forud-sættes for simpelheds skyld de samme parametrebetingelser, somEig. 6 shows a block diagram of a preferred embodiment of the receiving system used in the present invention. The signals appearing in connection with its operation are shown in FIG. 7 and 8 are labeled with the corresponding points in FIG. 6, where the various signals occur. For the sake of simplicity this system assumes the same parameter conditions as
15 DK 157213 BDK 157213 B
blev forudsat ved det ovenfor beskrevne sendeSystem. Bærefre-kvensen for det modtagne akustiske signal er sâledes 25 Hertz, og der anvendes en signalform med binære signaler uden tilbageven-den til nul. Det mâ dog forstâs, at modtageren vil kunne anvendes ogsâ med andre passende transmissionsformer.was provided by the above described SendSystem. Thus, the carrier frequency of the received acoustic signal is 25 Hertz, and a signal form with binary signals without return to zero is used. However, it is to be understood that the receiver can be used with other suitable modes of transmission as well.
Det modtagne signal fores fra transoren 38 til en forstærker 110 med lav stoj for at undgâ, at der indfores stojforvrængning i signalet.The received signal is fed from transducer 38 to a low noise amplifier 110 to prevent noise distortion from being introduced into the signal.
Det forstærkede signal fra forstærkeren 110 fores til et filter 112, hvis pasbând er den reciprok^e værdi af den anvendte baud-længde med henblik pâ at dæmpe stoj uden for det anvendte frekvens-bând, Nâr baud-længden er et sekund, vil pasbândet være en période, for eksempel mellem 24,5 og 25,5 hertz. Bra filteret 112 fores signalet gennem en ACG—forstærker 114 til eliminering af storre amplitudeudsving i signalet og til frembringelse af et signal med forholdsvis ensartet amplitude p.The amplified signal from amplifier 110 is fed to a filter 112 whose passband is the reciprocal value of the baud length used to attenuate noise outside the frequency band used, when the baud length is one second, the passband will be a period, for example, between 24.5 and 25.5 hertz. The good filter 112 passes the signal through an ACG amplifier 114 to eliminate larger amplitude fluctuations in the signal and to produce a signal of relatively uniform amplitude p.
Signalet p fra forstærkeren 114 fores bâde til en synkron fasede-tektor 116 og til en faselâsningskreds 117, i hvilken der afledes et styresignal z til detektoren 116 som beskrevet i det folgende. Basedetektoren 116 virker til at sammenligne fasen af signalet p med styresignalet z til frembringelse af et signal r, der repræ-senterer faseforholdet mellem de to signaler. Basedetektoren 116 kan for eksempel være en enhed af omkoblingstypen, i hvilken styresignalet z vil virke til at omskifte signalet p mellem positif og négative indgange til detektoren. Under de positivt rettede udsving af styresignalet bliver udgangssignalet r fra fasedetekto-ren omskiftet i polaritet i forhold til signalet p. Under négative udsving af styresignalet z har udgangssignalet fra detektoren 116 samme polaritet som signalet p. Nâr sâledes signalet p og signalet z er ude af fase som antydet i fig. 7 ved afsnit i den del, der er betegnet fase I, vil udgangssignalet r fra detektoren 116 være po-sitiv. Nâr signalet p og styresignalet z er indbyrdes i fase som vist i den del, der er betegnet fase II, vil udgangssignalet fra enheden 116 være et signal med négative balvbolger som antydet ved afsnittet r2.The signal p from the amplifier 114 is fed both to a synchronous phase detector 116 and to a phase locking circuit 117, in which a control signal z is derived to the detector 116 as described below. The base detector 116 acts to compare the phase of the signal p with the control signal z to produce a signal r representing the phase relationship between the two signals. For example, the base detector 116 may be a switching type unit in which the control signal z will act to switch the signal p between positive and negative inputs to the detector. During the positive directional fluctuations of the control signal, the output signal r of the phase detector is switched to polarity relative to the signal p. During negative fluctuations of the control signal z, the output signal of the detector 116 has the same polarity as the signal p. phase as indicated in FIG. 7 at sections of the portion designated phase I, the output signal r from detector 116 will be positive. When the signal p and the control signal z are mutually in phase as shown in the part designated phase II, the output of the unit 116 will be a signal with negative balloon bulbs as indicated by section r2.
I faselâsningskredsen 117 bliver styresignalet z til detektoren 116 indledet i en spændingsstyret oscillator 120. Denne oscil-lator bliver fra begyndelsen indstillet ved tilforsel af passendeIn the phase-locking circuit 117, the control signal z for the detector 116 is input to a voltage controlled oscillator 120. This oscillator is initially adjusted by supplying appropriate
DK 157213 BDK 157213 B
1 fi spændingsværdier til frembringelse af impulser t ved en impuls-frekvens fire gange impulsen for det modtagne akustiske signal p. Yed den beskrevne udforelsesform har impulseme t en impulsfre-kvens pâ 100 hertz.1 f voltage values for generating pulses t at a pulse frequency four times the pulse of the received acoustic signal p. In the embodiment described, the pulses t have a pulse frequency of 100 hertz.
Tilbagekoblingsstyring af oscillatoren 120 afledes fra signalet p. Dette signal fores til en frekvensmultiplikator, i hvilken frekvensen fordobles til frembringelse af et signal s med 50 hertz.. Ved fordobling af frekvensen vil fasetilstanden af signalet s forblive den samme uanset faseomskiftninger, der mâtte forekomme i signalet p.Feedback control of the oscillator 120 is derived from the signal p. This signal is fed to a frequency multiplier in which the frequency is doubled to produce a signal s of 50 hertz. In doubling the frequency, the phase state of the signal s will remain the same regardless of the phase switching that might occur. signal p.
Signalet t fra oscillatoren 120 fores til en firkantbolgegenerator 121, der vil kunne være en bistabil multivibrator, til frembringelse af et impulstog med samme frekvens som signalet s. Signaleme u og s fores ti-l· en synkron fasedetektor 126, der virker pâ samme mâde som den ovenfor beskrevne fasedetektor 116. ïïdgangssignalet fra detektoren 126 er et bolgetog v, hvis gennemsnitlige jævnspæn-dingskomposant vil være nul, nâr kredsen 117 er i faselâsning. ïïnder disse omstasadigheder vil impulseme u være faseforskudt 90° i forhold til signalet s.The signal t from oscillator 120 is fed to a square wave generator 121, which may be a bi-stable multivibrator, to produce a pulse train of the same frequency as signal s. Signals u and s are fed to a synchronous phase detector 126 operating in the same manner as the above described phase detector 116. The exit signal from detector 126 is a bolt train v, whose average DC component will be zero when circuit 117 is in phase lock. During these conditions, the pulses will be phase shifted 90 ° relative to the signal s.
Signalet v anvendes til at styre frekvensen og fasen for oscillatoren 120. Signalet fores over en forstærker 150 og et filter 152 til oscillatoren. korstærkeren 150 har en fast forstærkning, der er indstillet i overensstemmelse med parametrene for kredsen 117 til tilve jebringelse af den fomodne styr-ing fra signalet v. 3?il-teret 152 har en lang tidskonstant, sâledes at i hovedsagen jævn-spændingskomposanten i signalet v, afvigelsessignalet w, fores til oscillatoren 120. Dette tilbagekoblingsarrangement vil sikre, at udgangssignalet u fra génératoren 121 vil blive holdt i en for-ud fastlagt fasestilling i forhold til signalet s, dvs. at det vil være 90° faseforskudt i forhold til signalet s.The signal v is used to control the frequency and phase of the oscillator 120. The signal is fed over an amplifier 150 and a filter 152 to the oscillator. the cross amplifier 150 has a fixed gain which is set according to the parameters of the circuit 117 to provide the current control from the signal v. 3, the filter 152 has a long time constant, so that the substantially the voltage component of the signal v, the deviation signal w is fed to the oscillator 120. This feedback arrangement will ensure that the output signal u from the generator 121 will be held in a predetermined phase position relative to the signal s, i.e. that it will be 90 ° phase shifted relative to the signal s.
Virkemâden af "tilbagekoblingsstyringen er vist i fige 7 ved en indledende afvigelse og en ændring af fasen i signalet p. Sâfremt der mellem signaleme s og u er en faseforskel forskellig fra 90°, vil der blive frembragt en negativ komposant som vist ved kurven w. l’or tydelighedens skyld er afvigelsen stærkt overdrevet i figuren. Nâr det négative signal w fores til oscillatoren 120,The operation of the "feedback control" is shown in Fig. 7 by an initial deviation and a change in the phase of the signal p. If there is a phase difference different from 90 ° between signals s and u, a negative component will be produced as shown by curve w. For the sake of clarity, the deviation is greatly exaggerated in the figure. When the negative signal w is fed to the oscillator 120,
17 DK 157213 B17 DK 157213 B
vil det korrigere udgangssignalet sâledes, at signaleme s og u bliver bragt i âen onskede faserelation* Nâr generatoren i bore-bulle t ændrer fase, bliver der atter udviklet et afvigelsessignal, der forst gâr i negativ retning og derpâ i positiv retning* Om-kring det tidspunkt, da faseændringen for signalet p er afsluttet, vil signaleme s og u atter bave den snskede faseforskel.it will correct the output signal so that the signals s and u are brought into the desired phase relation * When the generator in the drill bit t changes phase, a deviation signal is first developed which goes first in the negative direction and then in the positive direction * Around at the time when the phase change for signal p is completed, the signals will again and again bounce the decreased phase difference.
Impulstoget u fsres til en impulsgenerator 155 9 der kun vil reage-re pâ forkanten af impulserne u til frembringelse af impulser x. Frekvensen for impulserne x er det dobbelte af frekvensen for signalet p, i dette tilfælde 50 Hz.The pulse train is transmitted to a pulse generator 155 9 that will only respond to the leading edge of the pulses u to produce pulses x. The frequency of the pulses x is twice the frequency of the signal p, in this case 50 Hz.
Eftersom formâlet med kredslobet er at frembringe signaler z, bvis fasetilstand vil være konstant og svare til en af fasetilstan-dene for signalet p, vil det være nodvendigt at skifte fasen forSince the purpose of the circuit is to produce signals z, if the phase state will be constant and correspond to one of the phase states of the signal p, it will be necessary to change the phase for
. «HD. 'HD
impulserne x. Den faktisk indferte faseændring vil være sâledes, at den omskiftede impuls vil fremkomme pâ et tidspunkt, der svarer til nulgennemgangen for signalet p. Omskiftningen indfares ved en forsinkelseskreds 156, bvis udgangssignal er en række impulser y.the impulses x. The actual input phase change will be such that the switched pulse will appear at a time corresponding to the zero throughput of the signal p. The switching is applied by a delay circuit 156, if the output signal is a series of pulses γ.
Impulserne y bliver fort til en firkantbolgegenerator 158, en bi-stabil multivibrator, til frembringelse af firkantimpulser z. Impulstoget z bliver fort til fasedetektoren 116, og pâ den foran beskrevne mâde vil der blive frembragt summationssignalet r, det detekterede udgangssignal, i bvilket en fase med en tilstand i signalet p vil blive repræsenteret ved postivt rettede signaler r, og en fase af en anden tilstand i signalet p vil blive repræsenteret ved negativt rettede signaler r.The pulses γ are rapidly transformed into a square bulb generator 158, a bi-stable multivibrator, to generate square pulses z. The impulse train z is advanced to the phase detector 116, and in the manner described above, the summation signal r, the detected output signal, is generated, in which one phase with a state in the signal p will be represented by positively directed signals r, and one phase of another state in signal p will be represented by negatively directed signals r.
Eorstærkeren 150 bar som nævnt fast forstærkning. For at sikre den rette funktion i kredsen 117 bliver amplituden af det signal p, der fores til kredsen, boldt i bovedsagen konstant» Amplitudere-guleringen tilvejebringes ved forstærkeren 114 og en tilhorende kreds til automatisk forstærkningsregulering. De detekterede signaler r bliver helbolgeensrettet i en ensretter 140 og bliver filtreret i et lavpasfilter 142 til frembringelse af en repræsen-tation af amplituden af signalet p. Denne funktion, der vil kunne overvâges pâ et mâleinstrument 144, fores til en differensforstær-ker 146, der sammenligner værdien af funktionen med værdien af en neferennesnîpnd-injo· ¥ fra en s-nswn rH n o-elril Λ e 1ÆR. Ændï’inffeT* iAs mentioned, the 150 amp earphone has fixed gain. In order to ensure the proper functioning of the circuit 117, the amplitude of the signal p fed to the circuit is essentially biased constantly »The amplitude adjustment is provided by the amplifier 114 and an associated circuit for automatic gain control. The detected signals r are whole-wave rectified in a rectifier 140 and are filtered in a low-pass filter 142 to produce a representation of the amplitude of the signal p. This function, which can be monitored on a measuring instrument 144, is fed to a differential amplifier 146. which compares the value of the function with the value of a neferennesnîpnd-injo · ¥ from a s-nswn rH n o-elril Λ e 1Æ. Change in *
DK 157213BDK 157213B
18 funktionens værdi omkring værdien af f0res til forstærkeren 114 til styring af dennes forstærkning 0g til at holde amplituden af signalet p i hovedsagen konstant. X>et amplitudeniveau, ved hvilket signalet p holdes, bestemmes ved indstilling af spæn-dingen ved hjælp af en indstillingsknap 149 ved spændings-kilden 148.18 the value of the function about the value of is applied to the amplifier 114 to control its gain 0g to keep the amplitude of the signal p substantially constant. X> an amplitude level at which the signal p is maintained is determined by setting the voltage by means of a setting button 149 at the voltage source 148.
Pâ dette stadium bliver der frembragt brugbare data i form af signaler r. Dette signal skal blot afkodes under anvendelse af det prin-eip, at en ændring i fase (polaritet) er en bit "1", og ingen sen-dring i fase (polaritet) er en bit "O”. Signalet r vil kunne re-gistreres i synlig form pâ et ikke vist registreringsinstrument og afkodes af en operatsr. Portrinsvis anvendes dog automatisk maskinel afkodning, navnlig til et format, der kan aflæses maski-nelt. Til dette formâl anvendes et bit-synkroniseringssystem.At this stage, usable data is generated in the form of signals r. This signal should only be decoded using the principle that a change in phase (polarity) is a bit "1" and no change in phase ( polarity) is a bit "0". The signal r may be recorded in visible form on a recording instrument not shown and decoded by an operating number. However, in automatic mode, automatic decoding is used, in particular for a format that can be read mechanically. for this purpose, a bit synchronization system is used.
Som et fzrste trin til bitdetektering bliver signalet z med en fre-kvens f (frekvensen af signalet p) fort til en delekreds 150, der frembringer et impulstog aa med en impulsfrekvens lig med bitfre-kvensen. Ved det foreliggende System er bitperioden et sekund, og længden af ttver af impulseme aa er en balv période eller 1/2 sekund. Begyndelsen af impulseme aa mâ falde sammen med begyndel-sen af hver bitperiode. Eftersom impulseme z er uafhængige af bitperioden og dens begyndelse, serges der for at tilpasse indled-ningen af impulseme aa sâledes, at den falder sammen med indled-ningen af hver bitperiode. Denne tilpasning tilvejebringes ved en stilbar forsinkelseskreds 152, hvis udgangssignal er et impulstog bb, der som vist i fig. 8 er faseforskudt 180° i forhold til impulseme aa, og hvis begyndelser falder sammen med begyndelsen af bitperioder, vist som signalet r.As a first step for bit detection, the signal z with a frequency f (the frequency of the signal p) is fed to a sub-circuit 150 which produces an impulse train aa with an impulse frequency equal to the bit frequency. In the present system, the bit period is one second and the length of the transverse pulse aa is a balv period or 1/2 second. The onset of the pulses must coincide with the beginning of each bit period. Since the pulses z are independent of the bit period and its beginning, it is serged to adjust the initiation of the pulses aa to coincide with the beginning of each bit period. This adaptation is provided by an adjustable delay circuit 152, the output of which is an impulse train bb which, as shown in FIG. 8 is phase-shifted 180 ° with respect to the pulses aa and whose beginnings coincide with the beginning of bit periods, shown as the signal r.
Nâr impulseme bb er rigtigt tilpasset, vil bitdetektering kunne gennemfsres ved start af integrering af signalet r ved et tids-punkt svarende til begyndelsen af hver impuls bb og afslutning af integreringen ved et tidspunkt, der svarer til enden af hver bitperiode. Den eksemplerede værdi af hver intégration vil angive værdien af bitsignalet r, og sâledes vil hver bit blive korrekt identificeret.When the pulses bb are properly matched, bit detection can be performed by starting the integration of the signal r at a time corresponding to the beginning of each pulse bb and terminating the integration at a time corresponding to the end of each bit period. The exemplary value of each integration will indicate the value of the bit signal r, and thus each bit will be correctly identified.
Til udfsrelse af integrationsdetekteringen anvendes impulstoget bb til at trigge en impulsgenerator 154* der reagerer for den positivtTo perform the integration detection, the impulse train bb is used to trigger a pulse generator 154 * which responds to the positive
19 DK 157213 B19 DK 157213 B
gâende del af hver impuls b til frembringelse af et tog af kortvari-ge impulser ce. Impulseme cc bliver fort til en integrator 156, ogsâ betegnet som en i-fase-integrator, der bliver tilbagestillet i afhængighed af bagkanten af hver impuls cc* En holdekreds 158 reagerer for forkanten af hver impuls cc til eksemplering af ud-gangssignalet fra integratoren 156. Dette udgangssignal er den integrerede værdi σc af det signal r, der fores til indgangen til integratoren* Udgangssignalet fra holdekredsen 158 er vist ved fearven ff.going part of each pulse b to produce a train of short-lived pulses ce. The pulses cc are rapidly transformed into an integrator 156, also referred to as an in-phase integrator, which is reset depending on the trailing edge of each pulse cc * A holding circuit 158 responds to the leading edge of each pulse cc to sample the output of the integrator 156 This output signal is the integrated value σc of the signal r fed to the input of the integrator * The output of the holding circuit 158 is shown by the fearven ff.
En bit "1W représenteras ved hver nulgennemgang for kurven ff. Sâfremt der, som lier, anvendes en nulgennemgangsdetektor til at frembringe bit’ene "1" og "O", ber kurven ff modificeres sâledes, at den har ensartede maksimumsværdier og minimumsværdier, da der ellers vil kunne komme falske signaler fra nulgennemgangsdetektoren. Signalet ff bliver derfor fort til en detektor 160 for bitpolaritet, en mætningsforstærker, der drives til mætning for hver positive eller négative værdi af signalet ffe Resultatet er det ved kurven gg viste signal, der fores til en bitværdi-generator 162, en nulgennemgangsdetektor, hvis udgangssignal er et impulstog mm bestâ-ende af !l 1”eref repræsenteret ved impulser og "0"lere, repræsente-ret ved manglende impulser.'A bit "1W is represented at each zero throughput of the curve ff. If, as lying, a zero throughput detector is used to generate the bits" 1 "and" O ", then the curve ff is modified to have uniform maximum values and minimum values, since the signal ff then becomes a bit polarity detector 160, a saturation amplifier driven to saturation for each positive or negative value of the signal ffe The result is the signal shown by the curve gg a bit value generator 162, a zero-through detector whose output signal is an impulse train, etc. consisting of! 1 "is represented by pulses and" 0 "is represented by missing pulses."
Impulstoget mm fores til et udnyttelsesapparat 165, der vil kunne være et registreringsinstrument eller en digital datamat, enten med trâdet program eller af den almindelige programmerbare type, I begge tilfælde er det onskeligt at tilvejebringe information om, nâr informationen i impulstoget mm skal aflæses, nemlig information om de tidspunkter, da man skal se efter en bit "O" eller en bit "1”, Derme information tilve jebringes ved impulser fra en aflæsegenerator 164. Denne generator er en enhed, til hvilken impulstoget cc fores. Disse impulser er forsinket et forud fastlagt tidsrum, sâledes at de indtræffer under de forventede tider for bitimpulseme mm, og resultatet er det viste impulstog nn.The impulse train etc. is fed to a utilization apparatus 165 which could be a recording instrument or a digital computer, either with the wired program or of the ordinary programmable type. In both cases it is desirable to provide information when the information in the impulse train etc. is to be read, namely information on the times when to look for a bit "O" or a bit "1", This information is provided by pulses from a readout generator 164. This generator is a device to which the pulse train cc is fed. predetermined time periods so that they occur during the expected times of the bit pulses, etc., and the result is the pulse train nn.
Al den nodvendige information tilvejebringes ved impulstogene mm og nn til afkodning af dataene og angive mâlevserdier for tilstanden i borehullet. Ved anvendelse af en programmerbar data-maskine kan der tilvejebringes det fomodne programmel til identi-ficering af synkroniseringsordene, til at angive starten af hver 20All the necessary information is provided by the pulse trains mm and nn for decoding the data and specifying measurement values for the borehole condition. Using a programmable data machine, the state-of-the-art software for identifying the synchronization words may be provided to indicate the start of each 20
DK 157213 BDK 157213 B
Den forsinkelse, der skal indfores over for impulseme aa, sâle-des at integratoren 156 vil integrere signaler r repræsenterende In bit adgangen, og sâledes at der undgâs overlapning over den foregâende eller efterfelgenee bitinformation, bestemmes ved et arrangement, der anvender en ude-af-fase-integrator 170. Integratoren 170 modtager ved sin indgang bitinformationen som repræ-senteret ved signalet r og har et udgangssignal, nâr systemet er rigtigt indstillet, som repræsenteret ved den indledende del af belgetoget hh. Integratoren 170 begynder sin funktion ved et tids-punkt omtrent 90° senere end integratoren 156. Integratoren 170 indstilles til at integrere over en période pâ In bit længde.The delay to be applied to the pulses aa is such that the integrator 156 will integrate signals representing the In bit access and thus avoiding duplication of the preceding or subsequent bit information is determined by an arrangement using an out of phase integrator 170. At its input, the integrator 170 receives the bit information as represented by the signal r and has an output signal when the system is properly set, as represented by the initial portion of the bellows train hh. The integrator 170 begins its function at a time approximately 90 ° later than the integrator 156. The integrator 170 is set to integrate over a period of in bit length.
Bens udgangssignal ved enden af en integreringsperiode skal der-for være nul. Forsinkelsesenheden 152 bliver derfor indstillet, indtil udgangssignalet fra integratoren 170 er nul ved enden af hver integrationsperiode. Indstillingen foretages ved at fore impulseme bb til indgangen af en impulsgenerator 172, der reage-rer for de negativt rettede udslag eller bagkanten af impulseme bb til frembringelse af en række kortvarige impulser dd. Integratoren 170 bliver tilbagestillet ved den bageste del eller den negativt rettede del af hver impuls dd og begynder integreringen af indgangssignalet r til frembringelse af belgetoget hh. Belgetoget hh bliver tilsammen med bitinformationen, belgetoget gg, fort til en synkron fasedetektor 174, der arbejjder pâ sanme mâde som de foran beskrevne fasedetektorer 116 og 126, og som frembringer et udgangssignal i form af et belgetog ii. Belgetoget ii fores gen-nem en normalt ïedende âbningskreds 176 til en holdekreds 178, der reagerer pâ forkanten af impulseme dd ved momentant at eksemplere og derefter fastholde signalet ii, pâ et tidspunkt svarende til af-slutningen af integrationsperioden i integratoren 170. Nâr systemet er rigtigt indstillet, vil holdekredsen 178 aflæse hver gang, belgetoget ii bliver eksempleret, og dens udgangssignal kan repræ-senteres som vist ved signalet 11. Sâfremt systemet ikke arbejder eller sporer rigtigt, vil der ved udgangen fra holdekredsen 178 dannes et fejlsignal, der vil blive detekteret af mâleinstrumentet 180. Bette instrument vil vise sterrelsen og retningen for en fejl, der kan korrigeres, ved indstilling af forsinkelsesenheden 152 ved hjælp af en indstillingsknap 152a.Therefore, the output of the leg at the end of an integration period must be zero. The delay unit 152 is therefore set until the output of the integrator 170 is zero at the end of each integration period. The adjustment is made by passing the pulses bb to the input of a pulse generator 172 which responds to the negatively directed impact or the trailing edge of the pulses bb to produce a series of short duration pulses dd. The integrator 170 is reset at the rear portion or the negative portion of each pulse dd and begins the integration of the input signal r to produce the bellows train hh. The pavement train hh, together with the bit information, pavilion train gg, passes to a synchronous phase detector 174 which operates in the same manner as the phase detectors 116 and 126 described above, and which produces an output signal in the form of a pavement train ii. The belay train ii is guided through a normally conductive opening circuit 176 to a holding circuit 178 which responds to the leading edge of the pulses dd by momentarily sampling and then holding the signal ii at a time corresponding to the end of the integration period in the integrator 170. When the system is correctly set, the holding circuit 178 will read each time the bellows train ii is exemplified and its output signal can be represented as shown by signal 11. If the system does not work or track properly, at the output of the holding circuit 178 an error signal will be generated which will be detected by the measuring instrument 180. Bette instrument will show the magnitude and direction of an error that can be corrected by setting the delay unit 152 by means of a setting button 152a.
Ved undersegelse af kurven r, fig. 8, vil det ses, at der er for-hold, under hvilke udgangssignalet hh fra integratoren 170 vil 21In examining the curve r, fig. 8, it will be seen that there are conditions under which the output signal hh from integrator 170 will
DK 157213 BDK 157213 B
være forskelligt fra nul pâ det tidspunkt, det skal eksempleres, selv om systemet er rigtigt indstillet, Disse forhold foreligger, nâr der sendes og modtages nOw-bit. Derme tilstand er vist ved, at kurven hh antager fuld negativ værdi , sâ snart der forekommer en eller en række af sâdanne, En operater, der foretager indstillingeme under iagttagelse af mâleinstrumentet 180, vil konstatere, at store udsving pâ instrumentet skal ignoreres, idet de blot repræsenterer tilstedeværelsen af en "O”-bit, I praksis vil den maksimale fejl, der kan ventes, eller soin kan aflæses pâ instrumentet 180, være cirka halvdelen af den fulde integrerede værdi af en modtaget bit, Enhver aflæsning pâ instrumentet 180 med en værdi mindre end halvdelen af den integrerede værdi af en bit ber behandles som en fejl, medens udslag sterre end halwærdien kan ignoreres, * 3be different from zero at the time it is to be exemplified, even if the system is set correctly, These conditions exist when sending and receiving nOw bits. This condition is shown by the curve hh assuming full negative value as soon as one or a number of such occurs. An operator who makes the settings while observing the measuring instrument 180 will find that large fluctuations of the instrument must be ignored as they simply represents the presence of an "O" bit. In practice, the maximum error expected or readable on the instrument 180 will be approximately half of the full integral value of a received bit. Any reading on the instrument 180 with a value less than half of the integral value of a bit is treated as an error, while outputs more than half the value can be ignored, * 3
Den ovenfor omtalte logik ved fortolkning af aflæsningen af instrumentet 180 vil kunne udferes med EDB-komponenter, hvorved indstillingeme kan foretages automatisk. Dette iværksæt-tes ved hjælp af en diskriminator 182, der ved sin ene indgang mod-tager referencespænding ?0 med en amplitude lig med halvdelen af den integrerede bitværdi, Belgetoget ii fores til den anden indgang til diskriminatoren. Sâ snart amplituden af signalet ii over-skrider halwærdien, vil diskriminatoren afgive en styreimpuls, der vil spærre âbningskredslobet 176, Slutresultatet vil blive det viste belgetog kk, hvor en spærring af âbningskredslobet er re-præsenteret ved dele af belgetoget kk mellem de afsnit, der er af-grænset ved smâ pile, hvor signalet kk er blevet reduceret til nul* Nâr diskriminatoren virker som ovenfor beskrevet, vil holdekredsen 178 omfatte et nulsignal ved hvert eksempleringsinterval, med mindre systemet i realiteten er ude af indstilling. Det kan anta-ges, at impulstoget dd er blevet forsinket et tidsrum σ. I dette tilfælde vil funktionen i holdekredsen 178 blive forsinket, og den vil opfatte et udgangssignal fra integratoren. Dette udgangs-signal, ved kurven 11 betegnet 190, vil over et lavpasfilter 192 blive fart til forsinkelsesenheden 152 til ændring af impedanser i denne for at bevirke den fomodne korrektion af den forsinkelse, der indfores i impulstoget aa, Sâfremt fejlen er i den anden ret-ning, som vist ved at en af impulseme d er fremrykket et tidsrum -a, vil holdekredsen 178 atter opfatte et udgangssignal fra integratoren 170, Dette udgangssignal, der er vist som en negativt rettetThe logic mentioned above in interpreting the reading of the instrument 180 can be performed with computer components, whereby the settings can be made automatically. This is implemented by means of a discriminator 182 which at its one input receives the reference voltage? 0 with an amplitude equal to half of the integrated bit value, the Belge train ii is fed to the other input to the discriminator. As soon as the amplitude of the signal ii exceeds the half-value, the discriminator will output a control pulse which will block the opening circuit 176, the end result will be the belge train kk, where a blocking of the opening circuit is represented by portions of the belay train kk is delimited by small arrows where the signal k k has been reduced to zero * When the discriminator operates as described above, the holding circuit 178 will include a zero signal at each sample interval unless the system is in fact out of setting. It can be assumed that the impulse train dd has been delayed for a period of time σ. In this case, the function of the holding circuit 178 will be delayed and it will perceive an output signal from the integrator. This output signal, denoted by curve 11, denoted 190, will be fed over a low-pass filter 192 to the delay unit 152 for changing impedances therein to effect the later correction of the delay introduced in the pulse train aa, if the error is in the other right. as shown by one of the pulses d being advanced for a period of time -a, the holding circuit 178 will again receive an output signal from the integrator 170, this output signal shown as a negative rectifier.
22 DK 157213 B22 DK 157213 B
kurve 194, vil ligeledes over filteret 192 bevirke de fomedne korrektioner i forsinkelsesenheden 152,curve 194, will also effect the corrections in filter unit 152 over filter 192,
Den ovenstâende beskrivelse af automatisk tilbagekobling til iværk-sættelse og opretboldelse af bitfasesynkronisering er baseret pâ et analogt tilbagekoblingssignal, der i amplitude er proportionalt med fasefejlen σ, og soin ved sit fortegn viser retningen af fase-fe^len. Der vil kunne anvendes andre tilbagekoblingsmekanismer.The above description of automatic feedback for initiating and maintaining bit phase synchronization is based on an analog feedback signal which is in amplitude proportional to the phase error σ, and so by its sign shows the direction of the phase error. Other feedback mechanisms may be used.
S’or eksempel vil et rent digitalt System med indsætning af ekstra impulser eller udeladelse af impulser ved indgangen til delekredsen 150 virke til at skifte fasen for bitintegratoreme. Forsinkel-seskredsen 152 anvendes ved denne udfarelsesform til den indleden-de indstilling af kredsene for at give nsjjagtige faseforhold.For example, a purely digital system with the insertion of extra pulses or the omission of pulses at the input of the circuit 150 will work to shift the phase of the bit integrators. In this embodiment, the delay circuit 152 is used for the initial setting of the circuits to give exact phase conditions.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21306171A | 1971-12-28 | 1971-12-28 | |
US21306171 | 1971-12-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
DK157213B true DK157213B (en) | 1989-11-20 |
DK157213C DK157213C (en) | 1990-04-23 |
Family
ID=22793597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK647472A DK157213C (en) | 1971-12-28 | 1972-12-27 | PROCEDURE AND APPARATUS FOR TRANSFER OF MEASUREMENT VALUES FROM A BOREHOLE TO THE EARTH SURFACE |
Country Status (10)
Country | Link |
---|---|
US (1) | US3789355A (en) |
AU (1) | AU473372B2 (en) |
CA (1) | CA968883A (en) |
DK (1) | DK157213C (en) |
GB (1) | GB1404620A (en) |
IE (1) | IE37814B1 (en) |
MY (1) | MY7600056A (en) |
NL (1) | NL173875C (en) |
NO (1) | NO135296C (en) |
OA (1) | OA04307A (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3982224A (en) * | 1973-08-23 | 1976-09-21 | Mobil Oil Corporation | Method and apparatus for transmitting downhole information from a well |
US3997867A (en) * | 1973-09-17 | 1976-12-14 | Schlumberger Technology Corporation | Well bore data-transmission apparatus |
US4001775A (en) * | 1973-10-03 | 1977-01-04 | Mobil Oil Corporation | Automatic bit synchronization method and apparatus for a logging-while-drilling receiver |
US3983948A (en) * | 1974-07-01 | 1976-10-05 | Texas Dynamatics, Inc. | Method and apparatus for indicating the orientation of a down hole drilling assembly |
US4021773A (en) * | 1974-10-29 | 1977-05-03 | Sun Oil Company Of Pennsylvania | Acoustical pick-up for reception of signals from a drill pipe |
US4078620A (en) * | 1975-03-10 | 1978-03-14 | Westlake John H | Method of and apparatus for telemetering information from a point in a well borehole to the earth's surface |
US4147223A (en) * | 1976-03-29 | 1979-04-03 | Mobil Oil Corporation | Logging-while-drilling apparatus |
US4100528A (en) * | 1976-09-29 | 1978-07-11 | Schlumberger Technology Corporation | Measuring-while-drilling method and system having a digital motor control |
US4103281A (en) * | 1976-09-29 | 1978-07-25 | Schlumberger Technology Corporation | Measuring-while-drilling system having motor speed detection during encoding |
US4167000A (en) * | 1976-09-29 | 1979-09-04 | Schlumberger Technology Corporation | Measuring-while drilling system and method having encoder with feedback compensation |
US4215427A (en) * | 1978-02-27 | 1980-07-29 | Sangamo Weston, Inc. | Carrier tracking apparatus and method for a logging-while-drilling system |
US4215425A (en) * | 1978-02-27 | 1980-07-29 | Sangamo Weston, Inc. | Apparatus and method for filtering signals in a logging-while-drilling system |
US4216536A (en) * | 1978-10-10 | 1980-08-05 | Exploration Logging, Inc. | Transmitting well logging data |
US4733232A (en) * | 1983-06-23 | 1988-03-22 | Teleco Oilfield Services Inc. | Method and apparatus for borehole fluid influx detection |
US4733233A (en) * | 1983-06-23 | 1988-03-22 | Teleco Oilfield Services Inc. | Method and apparatus for borehole fluid influx detection |
US5220963A (en) * | 1989-12-22 | 1993-06-22 | Patton Consulting, Inc. | System for controlled drilling of boreholes along planned profile |
US5154078A (en) * | 1990-06-29 | 1992-10-13 | Anadrill, Inc. | Kick detection during drilling |
US5275040A (en) * | 1990-06-29 | 1994-01-04 | Anadrill, Inc. | Method of and apparatus for detecting an influx into a well while drilling |
US5375098A (en) * | 1992-08-21 | 1994-12-20 | Schlumberger Technology Corporation | Logging while drilling tools, systems, and methods capable of transmitting data at a plurality of different frequencies |
US5249161A (en) * | 1992-08-21 | 1993-09-28 | Schlumberger Technology Corporation | Methods and apparatus for preventing jamming of encoder of logging while drilling tool |
US5237540A (en) * | 1992-08-21 | 1993-08-17 | Schlumberger Technology Corporation | Logging while drilling tools utilizing magnetic positioner assisted phase shifts |
US5293937A (en) * | 1992-11-13 | 1994-03-15 | Halliburton Company | Acoustic system and method for performing operations in a well |
NO305219B1 (en) * | 1994-03-16 | 1999-04-19 | Aker Eng As | Method and transmitter / receiver for transmitting signals via a medium in tubes or hoses |
US5490121A (en) * | 1994-08-17 | 1996-02-06 | Halliburton Company | Nonlinear equalizer for measurement while drilling telemetry system |
US5668457A (en) * | 1995-06-30 | 1997-09-16 | Martin Marietta Corporation | Variable-frequency AC induction motor controller |
GB9607297D0 (en) * | 1996-04-09 | 1996-06-12 | Anadrill Int Sa | Noise detection and suppression system for wellbore telemetry |
US5864772A (en) * | 1996-12-23 | 1999-01-26 | Schlumberger Technology Corporation | Apparatus, system and method to transmit and display acquired well data in near real time at a remote location |
US6360823B1 (en) * | 2000-07-20 | 2002-03-26 | Intevep, S.A. | Apparatus and method for performing downhole measurements |
GB2405725B (en) * | 2003-09-05 | 2006-11-01 | Schlumberger Holdings | Borehole telemetry system |
US6998724B2 (en) * | 2004-02-18 | 2006-02-14 | Fmc Technologies, Inc. | Power generation system |
US7348893B2 (en) * | 2004-12-22 | 2008-03-25 | Schlumberger Technology Corporation | Borehole communication and measurement system |
WO2007076039A2 (en) * | 2005-12-20 | 2007-07-05 | Massachusetts Institute Of Technology | Communications and power harvesting system for in-pipe wireless sensor networks |
US20090038804A1 (en) * | 2007-08-09 | 2009-02-12 | Going Iii Walter S | Subsurface Safety Valve for Electric Subsea Tree |
US8151905B2 (en) * | 2008-05-19 | 2012-04-10 | Hs International, L.L.C. | Downhole telemetry system and method |
CA2733451A1 (en) * | 2008-08-23 | 2010-03-04 | Herman Collette | Method of communication using improved multi frequency hydraulic oscillator |
US8302685B2 (en) * | 2009-01-30 | 2012-11-06 | Schlumberger Technology Corporation | Mud pulse telemetry data modulation technique |
BE1019411A4 (en) * | 2010-07-09 | 2012-07-03 | Ion Beam Applic Sa | MEANS FOR MODIFYING THE MAGNETIC FIELD PROFILE IN A CYCLOTRON. |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3309656A (en) * | 1964-06-10 | 1967-03-14 | Mobil Oil Corp | Logging-while-drilling system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2700131A (en) * | 1951-07-20 | 1955-01-18 | Lane Wells Co | Measurement system |
US3015801A (en) * | 1959-06-16 | 1962-01-02 | David C Kalbfell | Drill pipe module data collection and transmission system |
US3622971A (en) * | 1969-06-30 | 1971-11-23 | Arps Corp | Method and apparatus for surveying the direction and inclination of a borehole |
-
1971
- 1971-12-28 US US00213061A patent/US3789355A/en not_active Expired - Lifetime
-
1972
- 1972-11-15 NO NO4152/72A patent/NO135296C/no unknown
- 1972-11-23 AU AU49183/72A patent/AU473372B2/en not_active Expired
- 1972-11-27 IE IE1647/72A patent/IE37814B1/en unknown
- 1972-11-29 GB GB5513472A patent/GB1404620A/en not_active Expired
- 1972-12-19 CA CA159,440A patent/CA968883A/en not_active Expired
- 1972-12-26 OA OA54798A patent/OA04307A/en unknown
- 1972-12-27 DK DK647472A patent/DK157213C/en not_active IP Right Cessation
- 1972-12-28 NL NLAANVRAGE7217775,A patent/NL173875C/en not_active IP Right Cessation
-
1976
- 1976-12-30 MY MY56/76A patent/MY7600056A/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3309656A (en) * | 1964-06-10 | 1967-03-14 | Mobil Oil Corp | Logging-while-drilling system |
Also Published As
Publication number | Publication date |
---|---|
AU473372B2 (en) | 1976-06-17 |
IE37814L (en) | 1973-06-28 |
MY7600056A (en) | 1976-12-31 |
US3789355A (en) | 1974-01-29 |
DK157213C (en) | 1990-04-23 |
NL7217775A (en) | 1973-07-02 |
AU4918372A (en) | 1974-05-23 |
NL173875C (en) | 1984-03-16 |
CA968883A (en) | 1975-06-03 |
GB1404620A (en) | 1975-09-03 |
NO135296B (en) | 1976-12-06 |
NO135296C (en) | 1977-03-16 |
IE37814B1 (en) | 1977-10-26 |
OA04307A (en) | 1980-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK157213B (en) | PROCEDURE AND APPARATUS FOR TRANSFER OF MEASUREMENT VALUES FROM A BOREHOLE TO THE EARTH SURFACE | |
US3863203A (en) | Method and apparatus for controlling the data rate of a downhole acoustic transmitter in a logging-while-drilling system | |
SU1087082A3 (en) | Data transmission system for oil wells | |
US3991611A (en) | Digital telemetering system for subsurface instrumentation | |
US3309656A (en) | Logging-while-drilling system | |
JP2637044B2 (en) | Telemeter system that can measure during drilling | |
US4513403A (en) | Data encoding and synchronization for pulse telemetry | |
US4100528A (en) | Measuring-while-drilling method and system having a digital motor control | |
US3821696A (en) | Downhole data generator for logging while drilling system | |
US20060215491A1 (en) | System and method for transmitting information through a fluid medium | |
US3820063A (en) | Logging-while-drilling encoder | |
US8433533B2 (en) | High resolution sensor with scalable sample rate | |
US9784097B2 (en) | Compressed telemetry for time series downhole data using variable scaling and grouped words | |
US3997867A (en) | Well bore data-transmission apparatus | |
US4038590A (en) | Pulse code modulation radio control system | |
US4692911A (en) | Methods and apparatus for reducing interfering effects in measurement while drilling operations | |
US4215427A (en) | Carrier tracking apparatus and method for a logging-while-drilling system | |
Patton et al. | Development and successful testing of a continuous-wave, logging-while-drilling telemetry system | |
GB2087177A (en) | Method and apparatus for stabilizing a carrier tracking loop | |
GB2352150A (en) | Telemetry system in which data signals are modulated on power signals | |
US2985829A (en) | Method and apparatus for determining drill bit speed | |
CA1147840A (en) | Method and apparatus for demodulating signals in a logging while drilling system | |
US3886495A (en) | Uphole receiver for logging-while-drilling system | |
CN204045014U (en) | A kind of down-hole information acquisition system | |
JPS5886295A (en) | Pump noise filter for measuring device among bored well in oil well |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUP | Patent expired |