DK154190B - PROCEDURE FOR THE MANUFACTURE OF METAL POWDER - Google Patents

PROCEDURE FOR THE MANUFACTURE OF METAL POWDER Download PDF

Info

Publication number
DK154190B
DK154190B DK327877A DK327877A DK154190B DK 154190 B DK154190 B DK 154190B DK 327877 A DK327877 A DK 327877A DK 327877 A DK327877 A DK 327877A DK 154190 B DK154190 B DK 154190B
Authority
DK
Denmark
Prior art keywords
powder
gas
oil
chamber
microns
Prior art date
Application number
DK327877A
Other languages
Danish (da)
Other versions
DK327877A (en
DK154190C (en
Inventor
Ulf Rutger Larson
Original Assignee
Rutger Larson Konsult Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rutger Larson Konsult Ab filed Critical Rutger Larson Konsult Ab
Priority to DK327877A priority Critical patent/DK154190C/en
Publication of DK327877A publication Critical patent/DK327877A/en
Publication of DK154190B publication Critical patent/DK154190B/en
Application granted granted Critical
Publication of DK154190C publication Critical patent/DK154190C/en

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af metalpulver ved forstøvning af en støbestråle af flydende metal, der strømmer ud i en gasatmosfære i et oxygenfrit, lukket granulationskammer, ved hjælp af et under højt tryk stående, nod støbestrålen rettet reducerende forstøvningsmiddel, og opsamling af pulveret i et opsamlingsmiddel i bunden af granulationskammeret.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for preparing metal powders by atomizing a liquid metal casting jet flowing into a gas atmosphere in an oxygen-free, closed granulation chamber by means of a high-pressure, node casting directed reducing atomizer and collecting the powder in a collection agent at the bottom of the granulation chamber.

Findeling af metalsmelter med under tryk stående forstøvningsmidler såsom trykluft, nitrogen, argon, vanddamp eller vand er kendt. Herved tilføres metalsmelten fra en over et eller flere mundstykker anbragt og med bundaftapning forsynet støbebeholder i form af en støbestråle, som møder det med stor hastighed udstrømmende forstøvningsmedium, hvorved støbestrålen sønderdeles til fine dråber. Herved har det vist sig, at det således fremstillede metalpulver ved fremstillingen optager oxygen fra forstøvningsmediet, hovedsagelig overfladeoxygen bundet til let oxiderende legeringselementer.Comminution of metal melts with pressurized atomizers such as compressed air, nitrogen, argon, water vapor or water is known. Hereby, the metal melt is supplied from a casting container placed over one or more nozzles in the form of a casting jet, which meets the high-speed atomizing medium, which disintegrates the casting into fine droplets. Hereby, it has been found that the metal powder thus produced absorbs oxygen from the atomization medium, mainly surface oxygen bonded to light oxidizing alloying elements.

For hos f.eks. legeret stål at nedbringe oxygenindholdet til et acceptabelt niveau har man også tidligere grebet til en pulverisering med nitrogen eller argon i stedet for den mere sædvanlige pulverisering med vand eller vanddamp, Dette betyder, at man således har anvendt et forstøvningsmedium (en gas), som er betydeligt dyrere og har betydeligt dårligere sønderdelingsevne henholdsvis køleevne. Til visse formål, f.eks. til fremstilling af rundt pulver, foretrækkes dog ofte gasforstøvning, således at pulverkornene har en mulighed for at trække sig sammen til sfærisk form.For at e.g. alloy steel to reduce the oxygen content to an acceptable level has also previously been used for a powder or nitrogen argon instead of the more usual water or vapor powder. This means that an atomizing medium (a gas) which is significantly more expensive and have significantly poorer decomposition capacity and cooling capacity respectively. For certain purposes, e.g. However, for the preparation of round powder, gas atomization is often preferred, so that the powder grains have an opportunity to contract into spherical shape.

. Ved fremstilling af især legerede pulvere med lavt oxygenindhold foreligger der et problem, fordi der ønskes et finkornet produkt. Hertil kræves nemlig en større gasmængde, og derved kommer en betydelig større mængde oxygen fra de indifferente gasarters oxygenrester i berøring med den smeltede'støbestråle, hvilket resulterer i højere oxygenindhold i det dannede pulver. En fremstilling med oxiderende forstøvningsmedium som vand giver det omvendte forhold, d.v.s. en forøgelse af vandmængden på grund af den hurtigere afkøling giver en nedsættelse af oxygenindholdet i pulveret. Det er imidlertid ikke muligt at opnå så lave indhold som ved forstøvning med nitrogengas eller argon,. In the manufacture of especially low oxygen alloying powders, there is a problem because a fine-grained product is desired. For this, a larger amount of gas is required, and thus a significantly higher amount of oxygen from the oxygen residues of the inert gas species comes into contact with the molten casting ray, which results in higher oxygen content in the powder formed. A preparation with oxidizing atomizing medium such as water gives the inverse ratio, i.e. an increase in the amount of water due to the faster cooling gives a reduction in the oxygen content of the powder. However, it is not possible to obtain as low a content as by atomization with nitrogen gas or argon,

Ved en fremgangsmåde, som ifølge DE fremlæggelsesskrift nr. 2.144.220, opsamles pulveret af et opsamlingsmiddel i bunden af kammeret, som er et fluidiseret leje af sand eller metalpulver. En sådan fremgangsmåde kræver stadig tilførsel af mekanisk energi i form af en hurtigt strømmende gasmasse, hvilket gør det anvendte apparatur kompliceret og dyrt med blæsere, kompressorer, filtre og reguleringsudstyr, og endvidere er afkøling i et fluidiseret leje ikke særlig effektiv.In a method, as according to DE Publication No. 2,144,220, the powder is collected by a collecting agent at the bottom of the chamber, which is a fluidized bed of sand or metal powder. Such a method still requires the supply of mechanical energy in the form of a rapidly flowing gas mass, which makes the apparatus used complicated and expensive with fans, compressors, filters and control equipment, and furthermore cooling in a fluidized bed is not very effective.

Det har nu vist sig muligt at fjerne ovennævnte ulemper og at skabe en fremgangsmåde til fremstilling af forstøvet metalpulver med meget lave oxygenindhold, og som muliggør en kontrolleret optagelse af carbon i metallet og en hurtig afkøling i kammerets bund.It has now been found possible to remove the above-mentioned drawbacks and to create a process for producing atomized metal powders with very low oxygen content, which allows for controlled absorption of carbon in the metal and rapid cooling at the bottom of the chamber.

Dette opnås ifølge opfindelsen ved, at der som forstøvningsmiddel, gasatmosfære og opsamlingsmiddel anvendes hydrocarboner såsom gasolie og benzen.This is achieved according to the invention in that hydrocarbons such as gas oil and benzene are used as atomizing agent, gas atmosphere and collecting agent.

Ved fremgangsmåden ifølge opfindelsen udsættes således en støbestråle for et reducerende forstøvningsmedium, fortrinsvis luftformig eller flydende hydrocarbon eller en blanding deraf, f.eks. petroleumsprodukter såsom gasolie, olie, benzen eller lignende. For at beskytte pulveret mod oxidation udføres selve pulveriseringen i et lukket granuleringskammer, som er delvis fyldt med flydende medium og står under overtryk af gasformigt reducerende medium. Herved undgås også eventuelle eksplosionsfarer. En fordel ved fremgangsmåden ifølge opfindelsen består også i, at man gennem regulering af mængden af forstøvningsmedium, f.eks. olie, i forhold til metalmængden kan regulere kulstofindholdet i dét færdige pulver.Thus, in the process of the invention, a casting jet is subjected to a reducing atomizing medium, preferably gaseous or liquid hydrocarbon or a mixture thereof, e.g. petroleum products such as gas oil, oil, benzene or the like. To protect the powder from oxidation, the powder itself is carried out in a closed granulation chamber which is partially filled with liquid medium and is pressurized by gaseous reducing medium. This also avoids any explosion hazards. An advantage of the method according to the invention also consists in that by controlling the amount of spraying medium, e.g. oil, in relation to the amount of metal, can regulate the carbon content of the finished powder.

Opfindelsen beskrives i det følgende nærmere under henvisning til tegningerne, hvor fig. 1-3 viser forskellige apparater, hvori fremgangsmåden ifølge opfindelsen kan udføres og fig. 4 og 5 viser forskellige diagrammer.The invention will now be described in more detail with reference to the drawings, in which: FIG. 1-3 show various apparatus in which the method according to the invention can be carried out and fig. 4 and 5 show different diagrams.

På fig. 1 betegnes et granuleringskammer generelt med 1, Med 2 betegnes en i kammeret værende reducerende væske , f. eks. olie, hensigtsmæssigt fyringsolie indeholdende 86,8% kulstof, 12,5% hydrogen, 0,58% svovl og i øvrigt 0,12% aske. Kammeret 1 står via en bundaftapning 12 i forbindelse med et støbekar 11 indeholdende en metalsmelte 10. I kammeret l's øvre del findes et indløb 3 til reducerende gas og endvidere mundstykker 14 for tilførsel af et reducerende forstøvningsmedium 15. I de på fig. 1 og 2 viste udførelsesformer findes en væskelås 9 indbefattende et via en ventil 7 med kammeret 1 kommunicerende rør 6, som udmunder under væskeniveauet af en væske 8 i låsen 9. Det på fig. 1 og 2 viste apparat fungerer på følgende måde:In FIG. 1, a granulation chamber is generally denoted by 1, 2 is denoted by a reducing fluid contained in the chamber, e.g., oil, suitably heating oil containing 86.8% carbon, 12.5% hydrogen, 0.58% sulfur and, moreover, 0.12 % ash. The chamber 1 communicates via a bottom drain 12 in connection with a molding vessel 11 containing a metal melt 10. In the upper part of the chamber 1 there is an inlet 3 for reducing gas and further nozzles 14 for supplying a reducing atomizing medium 15. In the embodiment shown in FIG. 1 and 2 there is a fluid lock 9 including a tube 6 communicating with the chamber 1 communicating with the chamber 1 which opens below the liquid level of a liquid 8 in the lock 9. The embodiment shown in FIG. 1 and 2 operate as follows:

Apparatet ordnes på følgende måde. Før pulveriseringen lukkes ventilen 7 og bundventilen 5, hvorefter granuleringskammeret 1 fyldes med en reducerende væske op til bundaftapningen 12. Når hele granuleringskammeret er fyldt, tilføres en reducerende gas gennem røret 3, samtidigt med at væskeniveauet sænkes til det for den kommende pulverisering ønskede niveau. Derefter åbnes ventilen 7, hvorved den reducerende gas 4 i granuleringskammeret l's øvre del får et overtryk svarende til den højde, som røret 6 dykker ned i væsken 8 i væskelåsen 9, Nu kan pulveriseringen udføres, idet metalsmelte 10 fra støbekarret 11 løber ned gennem terninghullet 12 i form af en metal stråle 13, som rammes af det fra mundstykkerne 14 udstrømmende reducerende forstøvningsmedium 15.The device is arranged as follows. Prior to the pulverization, valve 7 and bottom valve 5 are closed, after which the granulation chamber 1 is filled with a reducing liquid up to the bottom drain 12. When the entire granulation chamber is filled, a reducing gas is fed through the pipe 3, at the same time that the liquid level is lowered to the level desired for the future pulverization. Then the valve 7 is opened, whereby the reducing gas 4 in the upper part of the granulation chamber 1 receives an overpressure corresponding to the height that the pipe 6 dives into the liquid 8 in the liquid lock 9. Now the pulverization can be carried out, as metal melt 10 from the molding vessel 11 runs down through the cube hole. 12 in the form of a metal beam 13 which is struck by the reducing atomizing medium 15 flowing from the nozzles 14.

På fig. 3 er vist en alternativ udførelsesform af anlægget, hvor væskelåsfunktionen bevirkes ved, at granuleringskammeret er delt i en nedre del 1 og en øvre del 16, hvilke dele er forskydelige i forhold til hinanden. Ved væskepåfyldningen af kammeret før selve gaspåfyldningen løftes underdelen 1,eller alternativ kan overdelen 16 sænkes, idet dens nedre del virker som væskelåsens rør 6 ifølge fig. 1 og 2. Fordelen ved den i fig. 3.viste alternative udførelsesform er, at væskelåsen får en stor dimension og dermed en sikrere funktion.In FIG. 3, an alternative embodiment of the system is shown in which the liquid lock function is effected by the granulation chamber being divided into a lower part 1 and an upper part 16, which parts are displaceable relative to each other. In the liquid filling of the chamber before the gas filling itself, the lower part 1 is lifted, or alternatively the upper part 16 can be lowered, its lower part acting as the liquid lock tube 6 according to FIG. 1 and 2. The advantage of the embodiment shown in FIG. 3. shown alternative embodiment is that the fluid lock has a large dimension and thus a safer function.

EksempelExample

Ved støbning af ca. 10 kg stål fik stålet lov at strømme fra en tud til en grafitdigel med en udløbsåbning med en diameter på 6,5 mm.When casting approx. 10 kg of steel was allowed to flow from a spout to a graphite crucible with an outlet opening with a diameter of 6.5 mm.

Den smeltede støbestråle forstøvedes til pulver ved hjælp af olie (fyringsolie 1) fra fire skråt nedadrettede over for hinanden anbragte mundstykker, og som beskyttelsesgas blev anvendt argon, men naturligvis kunne også andre gasarter som f,eks. nitrogen anvendes.The molten casting jet was atomized to powder by means of oil (heating oil 1) from four obliquely downwardly disposed nozzles and used as argon gas, but of course other gases such as e.g. nitrogen is used.

Den anvendte oliemængde var i dette eksempel op til 500 liter/minut og trykket op til 5,5 kg/cm . Åf eksemplet fremgår, at den ifølge opfindelsen udførte forstøvning med olie resulterer i særligt lave oxygenindhold i pulveret og også en vis opkulningsvirkning. Det fremT-stillede pulver viste sig at bestå af forskelligt f o mede partikler, cigarformede, kartoffelformede og sfæriske, idet det kunne konstateres, at de finere partikler var overvejende sfæriske, og at de langstrakte korn hovedsagelig findes i de grovere fraktioner.In this example, the amount of oil used was up to 500 liters / minute and the pressure up to 5.5 kg / cm. According to the example, the spraying carried out according to the invention results in particularly low oxygen content in the powder and also some cooling effect. The powder produced was found to consist of different particulate, cigar-shaped, potato-shaped and spherical, as it was found that the finer particles were predominantly spherical and that the elongated grains were found mainly in the coarser fractions.

Det fremstillede pulvers sigteanalyse gav følgende resultat maskevidde % pulver 3360 mikron 0,37 1680 mikron 2,03 841 mikron 18,36 595 mikron 23,80 42o mikron 24,85 210 mikron 24,66 149 mikron 4,24 105 mikron 1,30 74 mikron 0,23 53 mikron 0,12 findel - 53 mikron 0,02The screened powder preparation produced the following result mesh size% powder 3360 microns 0.37 1680 microns 2.03 841 microns 18.36 595 microns 23.80 42o microns 24.85 210 microns 24.66 149 microns 4.24 105 microns 1.30 74 microns 0.23 53 microns 0.12 fines - 53 microns 0.02

Det totale oxygenindhold i de forskellige kornstørrelser fremgår af fig. 4, og kulstofindholdet i de forskellige kornstørrelser fremgår af fig. 5. Med hensyn til oxygenindholdet skal til sammenligning nævnes, at på sædvanlig måde fremstillet jernpulver af denne grove type med 1,2% Mn har et oxygenindhold på 0,76-1% (dvs 7600-10.000 ppm).The total oxygen content in the various grain sizes is shown in FIG. 4, and the carbon content of the various grain sizes is shown in FIG. 5. As regards the oxygen content, it should be mentioned by comparison that in the usual way iron powder of this coarse type with 1.2% Mn has an oxygen content of 0.76-1% (ie 7600-10.000 ppm).

Stålets øvrige kemiske analyse er følgende %The other chemical analysis of the steel is the following%

Si 0,57Si 0.57

Mn 1,30 P 0,017Mn 1.30 P 0.017

Claims (1)

s 0,021 Cr 0,16 Ni 0,03 Mo 0,03 i Cu 0,05 V 0,01 Ti 0,01 Al 0,007 Oxygenindholdet i stålet var 86 ppm. i Som forstøvningsmedium anvendes ifølge opfindelsen hydrocarboner, især olie og gasolie, også benzen, og metan kan anvendes. Patentkrav. Fremgangsmåde til fremstilling af metalpulver ved forstøvning af en støbestråle af flydende metal, der strømmer ud i en gasatmosfære i et oxygenfrit, lukket granulationskammer, ved hjælp af et under højt tryk stående, mod støbestrålen rettet reducerende forstøvningsmiddel, og opsamling af pulveret i et opsamlingsmiddel i bunden af granulationskammeret, kendetegnet ved, at der som forstøvningsmiddel, gasatmosfære og opsamlingsmiddel anvendes hydrocarboner såsom gasolie og benzen.s 0.021 Cr 0.16 Ni 0.03 Mo 0.03 in Cu 0.05 V 0.01 Ti 0.01 Al 0.007 The oxygen content of the steel was 86 ppm. According to the invention, hydrocarbons, especially oil and gas oil, are also used as nebulizing medium, also benzene, and methane can be used. Claims. Process for the preparation of metal powder by atomizing a liquid metal casting jet flowing into a gas atmosphere in an oxygen-free, closed granulation chamber, by means of a high-pressure, anti-casting reducing spraying agent, and collecting the powder in a collecting agent in a the bottom of the granulation chamber, characterized in that hydrocarbons such as gas oil and benzene are used as a nebulizer, gas atmosphere and collecting agent.
DK327877A 1977-07-19 1977-07-19 PROCEDURE FOR THE MANUFACTURE OF METAL POWDER DK154190C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK327877A DK154190C (en) 1977-07-19 1977-07-19 PROCEDURE FOR THE MANUFACTURE OF METAL POWDER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK327877 1977-07-19
DK327877A DK154190C (en) 1977-07-19 1977-07-19 PROCEDURE FOR THE MANUFACTURE OF METAL POWDER

Publications (3)

Publication Number Publication Date
DK327877A DK327877A (en) 1979-01-20
DK154190B true DK154190B (en) 1988-10-24
DK154190C DK154190C (en) 1989-04-03

Family

ID=8121112

Family Applications (1)

Application Number Title Priority Date Filing Date
DK327877A DK154190C (en) 1977-07-19 1977-07-19 PROCEDURE FOR THE MANUFACTURE OF METAL POWDER

Country Status (1)

Country Link
DK (1) DK154190C (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2460993A (en) * 1946-02-06 1949-02-08 Federal Mogul Corp Apparatus for atomizing metal
DE2144220A1 (en) * 1971-08-31 1973-03-15 Mannesmann Ag PROCESS FOR MANUFACTURING LOW OXYGEN METAL POWDERS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2460993A (en) * 1946-02-06 1949-02-08 Federal Mogul Corp Apparatus for atomizing metal
DE2144220A1 (en) * 1971-08-31 1973-03-15 Mannesmann Ag PROCESS FOR MANUFACTURING LOW OXYGEN METAL POWDERS

Also Published As

Publication number Publication date
DK327877A (en) 1979-01-20
DK154190C (en) 1989-04-03

Similar Documents

Publication Publication Date Title
US4124377A (en) Method and apparatus for producing atomized metal powder
CN110181069B (en) Method for preparing high-nitrogen steel powder by adopting gas atomization method
US3695795A (en) Production of powdered metal
CA1112010A (en) Water atomizer for low oxygen metal powders
US2892215A (en) Process for the production of metal powder
NO873364L (en) POWDER METAL SURGICAL PROCEDURE FOR THE PREPARATION OF A GREEN PRESSURE BODY WITH HIGH FASTNESS AND LOW RELATIVE DENSITY OF A HEAT-RESISTANT ALUMINUM ALLOY.
DE3730147A1 (en) METHOD FOR PRODUCING POWDER FROM MOLTEN SUBSTANCES
US3093315A (en) Atomization apparatus
SU1563584A3 (en) Method of obtaining iron-base alloy powder and device for effecting same
Gummeson Modern atomizing techniques
CA1112822A (en) Making iron powder
DE1254129B (en) Process for the production of solid particles for blackwood
AU677823B2 (en) Method and apparatus for production of metal granules
US3533136A (en) Apparatus for producing metal powder
DK154190B (en) PROCEDURE FOR THE MANUFACTURE OF METAL POWDER
DE1583200A1 (en) Method and device for the formation of cinder cones
EP0149027B1 (en) Process and apparatus for manufacturing spheroidal metal particles
Watkinson Atomization of metal and alloy powders
CA1118563A (en) Atomization into a chamber held at reduced pressure
DE4019563C2 (en)
JPS63230806A (en) Gas atomizing apparatus for producing metal powder
FI62237B (en) FOER FARING FOR METAL POWDER GENOM FOERSTOFTNING
GB1563438A (en) Method and apparatus for producing atomized metal powder
CA1094272A (en) Method and apparatus for producing atomized metal powder
JPS6112966B2 (en)