DK153223B - METHOD AND APPARATUS FOR MANUFACTURING SILICON RODS WITH uniform cross-section - Google Patents
METHOD AND APPARATUS FOR MANUFACTURING SILICON RODS WITH uniform cross-section Download PDFInfo
- Publication number
- DK153223B DK153223B DK092178AA DK92178A DK153223B DK 153223 B DK153223 B DK 153223B DK 092178A A DK092178A A DK 092178AA DK 92178 A DK92178 A DK 92178A DK 153223 B DK153223 B DK 153223B
- Authority
- DK
- Denmark
- Prior art keywords
- silicon
- bodies
- rods
- pyrolysis
- ultra
- Prior art date
Links
- 229910052710 silicon Inorganic materials 0.000 title claims description 38
- 239000010703 silicon Substances 0.000 title claims description 38
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 37
- 238000000034 method Methods 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title description 4
- 238000000197 pyrolysis Methods 0.000 claims description 21
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 20
- 239000012212 insulator Substances 0.000 claims description 16
- 230000008021 deposition Effects 0.000 claims description 5
- 239000002210 silicon-based material Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- -1 for example Chemical class 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
- C01B33/027—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
- C01B33/035—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4418—Methods for making free-standing articles
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Description
- i -- i -
DK 153223 BDK 153223 B
Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af siliciumstave med ensartet tværsnit og af den i krav l's indledning angivne art samt et apparat til brug ved udøvelse af denne fremgangsmåde.The present invention relates to a method for producing silicon rods of uniform cross-section and of the kind specified in the preamble of claim 1, and to an apparatus for use in the practice of this method.
5 Det er kendt at fremstille halvledende, ultrarene siliciumstave ved pyrolyse eller reduktion med hydrogen af en luftformig siliciumforbindelse såsom eksempelvis monosilan, siliciumtetraklorid eller triklorsilan på et stavformet rødglødende bærelegeme af silicium eller metal 10 med højt smeltepunkt og god elektronisk ledningsevne, såsom eksempelvis tantal. Kendte fremgangsmåder og apparater er bl.a. beskrevet i US-PS 3.099.534, 3.011.877 og 3.147.141, ifølge hvilke den luftformige siliciumforbindelse indføres fra bunden henholdsvis toppen af pyrolyse-15 beholderen. Dette medfører, at de ved pyrolysen frembragte stave får størst diameter ved bunden henholdsvis toppen af beholderen, og denne tendens forstærkes med den ved stadig afsætning af silicium voksende diameter. Det samme er tilfældet, når den siliciumholdige forbindelse tilføres 20 gennem flere, langs bærelegemerne fordelte tilførselsmundinger (DE-AS 12 92 640).It is known to produce semi-conductive, ultra-pure silicon rods by pyrolysis or reduction with hydrogen of an gaseous silicon compound such as, for example, monosilane, silicon tetrachloride or trichlorosilane on a rod-shaped red-hot silicon or metal support body having a high melting point and good electronic conductivity number. Known methods and apparatus include disclosed in U.S. Patents 3,099,534, 3,011,877 and 3,147,141, according to which the gaseous silicon compound is introduced from the bottom and the top of the pyrolysis vessel, respectively. This causes the rods produced by the pyrolysis to have the greatest diameter at the bottom and the top of the container, respectively, and this tendency is reinforced by the increasing diameter of silicon growing. The same is true when the silicon-containing compound is supplied through several feed orifices distributed along the support bodies (DE-AS 12 92 640).
Inden de frembragte stave benyttes til suspensionseller flydezonefusion, sikres det, at de har ensartet diameter eller tilnærmelsesvis perfekt cirkulær cylinderform, 25 ved at overskydende materiale skrabes af.Before using the generated rods for suspension or flow zone fusion, they are ensured that they are of uniform diameter or approximately perfectly circular cylinder shape by scraping off excess material.
Formålet med opfindelsen er at anvise en fremgangsmåde til fremstilling af ultrarene siliciumstave ved pyrolyse af monosilan på en sådan måde, at stavene får ensartede tværsnit.The object of the invention is to provide a process for the production of ultra-pure silicon rods by pyrolysis of monosilane in such a way that the rods are of uniform cross-section.
30 Dette opnås ifølge opfindelsen ved den i krav 1 anvi ste fremgangsmåde henholdsvis ved hjælp af det i krav 2 anviste apparat.This is achieved according to the invention by the method according to claim 1 and by the apparatus according to claim 2, respectively.
Ifølge opfindelsen regulerer man altså den forholdsmæssige andel af indført monosilan i forskellige niveauer 35 i beholderen. I hvert niveau drager man naturligvis om sorg for, at de pågældende tilførselsmundinger afgiver ensartede monosilanmængder. Efterhånden som stavdiameteren forøges, fordi der afsættes silicium ved pyrolysen,Thus, according to the invention, the proportional proportion of monosilane introduced at various levels is regulated in the container. Naturally, at each level, the supply mouths in question produce uniform monosilane quantities. As the rod diameter increases because silicon is deposited by the pyrolysis,
DK 153223BDK 153223B
- 2 - øges denne forholdsmæssige andel med voksende niveau i beholderen. Herved kan opnås, at de frembragte stave får samme diameter over hele stavlængden.- 2 - this proportion increases with increasing level in the container. Hereby it can be achieved that the generated rods are given the same diameter over the entire length of the rod.
Opfindelsen skal i det følgende beskrives nærmere i 5 forbindelse med tegningen, hvor fig. 1 viser et lodret snit gennem et apparat til brug ved udøvelse af fremgangsmåden ifølge opfindelsen, fig. 2 et snit langs linien II-II i fig. 1, og 10 fig. 3 skematisk placeringen i apparatet af tilførselsmundinger.The invention will now be described in more detail with reference to the drawing, in which: 1 is a vertical section through an apparatus for use in the practice of the invention; FIG. 2 is a section along line II-II of FIG. 1 and 10 in FIG. 3 shows schematically the location in the device of supply mouths.
Det på tegningen viste apparat omfatter en beholder 3 og en bund 4. Beholdervæggen er hul, således at den kan køles ved hjælp af et gennem en tilgangsstuds 11 og en af-15 gangsstuds 12 strømmende kølemedium. Foroven er beholderen 3 forsynet med en afgangsstuds 7 for udslipning af luftarter, der frembringes ved termisk dekomposition i beholderens indre. Endvidere er beholdervæggen forsynet med vinduer 21, gennem hvilke den proces, der finder sted i 20 beholderens indre, kan følges.The apparatus shown in the drawing comprises a container 3 and a bottom 4. The container wall is hollow, so that it can be cooled by a cooling medium flowing through an inlet nozzle 11 and an outlet nozzle 12. At the top, the container 3 is provided with an outlet nozzle 7 for release of gases produced by thermal decomposition in the interior of the container. Furthermore, the container wall is provided with windows 21 through which the process which takes place in the interior of the container 20 can be followed.
Også bunden 4 er udformet med hulrum, således at et kølemedium tilledes gennem bunden via en tilgangs- og en afgangsstuds 13 henholdsvis 14.Also the bottom 4 is formed with voids so that a cooling medium is fed through the bottom via an inlet and outlet nozzle 13 and 14 respectively.
Fire kobberelektroder 8 er ved hjælp af termiske iso-25 latorer 9 fastgjort stående over bunden 4 symmetrisk om dennes centrum. Hver elektrode 8 er via en terminal 10 forbundet til en ikke vist spændingskilde, og den nederste del af elektroden gennemstrømmes af et kølemedium via et tilgangs- og et afgangsrør 18 henholdsvis 19. Via en tantal-30 skive 20 er hver elektrode 8 øverst i forbindelse med en lodret stav 1 af ultrarent silicium.Four copper electrodes 8 are fixed vertically above the bottom 4 by means of thermal insulators 9 symmetrically about the center thereof. Each electrode 8 is connected via a terminal 10 to a voltage source not shown, and the lower part of the electrode is flowed through a cooling medium via an inlet and outlet pipe 18 and 19. Via a tantalum disc 20, each electrode 8 is connected at the top with a vertical rod 1 of ultra pure silicon.
Siliciumstavene 1 er to og to ved deres øverste ende indbyrdes forbundet ved hjælp af en ultraren siliciumstav 2. Stavene 1 er endvidere to og to indbyrdes adskilt af 35 en termisk isolator 5 med i det væsentlige korsformet tværsnit. Isolatoren 5 er anbragt centralt i beholderen og har et indre hulrum, der gennemstrømmes af et kølemediumThe silicon rods 1 are two and two at their upper end interconnected by an ultrasonic silicon rod 2. The rods 1 are furthermore two and two separated by a thermal insulator 5 of substantially cross-sectional cross-section. The insulator 5 is located centrally in the container and has an internal cavity flowing through a refrigerant
DK 153223BDK 153223B
- 3 - via indgangs- og afgangsrør 15 henholdsvis 16. I den termiske isolator 5 findes også et føderør 17 for monosilan.- 3 - via inlet and outlet pipes 15 and 16. In the thermal insulator 5 there is also a feeder tube 17 for monosilane.
I tre niveauer udgår fra føderøret 17 fire afgreningsrør, hvis udmundinger 6 er beliggende i isolatorens 5 fire yder-5 punkter i det pågældende niveau.In three levels, from the feed tube 17, four branch pipes are provided, the outlets 6 of which are located in the four outer 5 points of the insulator 5 at that level.
Gennem bunden 4 er endvidere ført et rør 22, gennem hvilket en forvarmende hed luftstrøm kan ledes ind i beholderen.A tube 22 is also passed through the bottom 4 through which a preheating hot air stream can be fed into the container.
Som det fremgår af fig. 3, er føderøret 17 afgrenet i 10 et øvre, et mellemste og et nedre niveau. For hvert niveau findes en strømningsregulator C. Med disse regulatorer kan monosilantilstrømningen i hvert niveau og den forholdsmæssige andel af monosilan, der tilføres i det øvre niveau forøges med siliciumstavenes, ved siliciumafsætningen vok-15 sende diameter. Ved hjælp af en strømningsdeler S i hvert niveau sikres det, at tilførselsmundingerne 6 i det pågældende niveau afgiver ensartede monosilanmængder. Afvigelser skal foretrukket være mindre end nogle få procent.As shown in FIG. 3, the feeder tube 17 is branched into an upper, an intermediate and a lower level 10. For each level there is a flow regulator C. With these regulators, the monosilane influx at each level and the proportional proportion of monosilane supplied at the upper level can be increased with the growing diameter of the silicon rods at the silicon deposition. By means of a flow divider S in each level, it is ensured that the supply orifices 6 at that level deliver uniform amounts of monosilane. Deviations should preferably be less than a few percent.
Opfindelsen skal i det følgende belyses nærmere ved 20 et eksempel.The invention will now be further illustrated by an example.
I et apparat som det i fig. 1 og 2 viste blev bærelegemerne opvarmet til en temperatur på 8-900°C og mængden af tilført monosilan således indstillet, at afsætningshastigheden for ultrarent silicium på bærelegemerne var 25 4-8 |im. Omstående tabel viser resultater opnået under for skellige forudsætninger:In an apparatus such as that shown in FIG. 1 and 2, the support bodies were heated to a temperature of 8-900 ° C and the amount of monosilane supplied was adjusted such that the ultra-silicon deposition rate on the support bodies was 4-8 µm. The following table shows results obtained under different conditions:
DK 153223BDK 153223B
- 4 -- 4 -
TabelTable
Prøve Stav- Fordeling af monosilan- Fordeling af stavdia-nr. dia- tilførslen mellem meter meter øvre mellem- neder- øverst midtpå nederst (mm) ste ste på frembragt stav niveau 5 (1) 50 1 00 1,10 1,05 1,00 (2) 50 0 0 1 1,00 1,20 1,30 (3) 100 1 0 0 1,30 1,10 1,00 (4) 50 1 11 1,00 1,03 1,07 (5) 100 1 1 1 1,00 1,08 1,20 10 (6) 30 1,03 1 0,97 1,00 1,00 1,00 (7) 50 1,1 1 0,9 1,02 1,00 1,01 (8) 70 1,2 1 0,8 1,02 1,00 1,02 I tabellen er prøverne nr. 1-3 fremstillet ved sædvanlig metode med tilførsel af monosilan alene foroven eller ^ forneden i beholderen. Prøverne nr. 4 og 5 er fremstillet ved tilførsel af lige store monosilanmængder i de tre niveauer, medens prøverne nr. 6-9 er fremstillet ved fremgangsmåden ifølge den foreliggende opfindelse.Sample Rod- Distribution of monosilane- Distribution of rod slide no. The diaphragm supply between meters meter upper middle bottom upper middle bottom (mm) stepped on produced rod level 5 (1) 50 1 00 1.10 1.05 1.00 (2) 50 0 0 1 1.00 1 , 20 1.30 (3) 100 1 0 0 1.30 1.10 1.00 (4) 50 1 11 1.00 1.03 1.07 (5) 100 1 1 1 1.00 1.08 1 , 10 10 (6) 30 1.03 1 0.97 1.00 1.00 1.00 (7) 50 1.1 1 0.9 1.02 1.00 1.01 (8) 70 1.2 1 0.8 1.02 1.00 1.02 In the table, samples Nos. 1-3 are prepared by the usual method with the addition of monosilane alone at the top or bottom of the container. Samples Nos. 4 and 5 are prepared by applying equal amounts of monosilane at the three levels, while Nos. 6-9 are prepared by the method of the present invention.
Det fremgår tydeligt af tabellen, at man ved opfindel- 20 sen opnar fremstilling af siliciumstave, hvis diametervariation i stavenes længde er ganske små. Stavene kan umiddelbart benyttes i en zonesmelteproces.It is clear from the table that the invention provides for the manufacture of silicon rods whose diameter variation in the length of the rods is quite small. The rods can be used immediately in a zone melting process.
Det kan yderligere bemærkes, at der ved fremgangsmåden ifølge opfindelsen ikke forekommer amorfe siliciumfor-25 ureninger som følge af homogene reaktioner i gasfasen.It should be further noted that in the process of the invention, amorphous silicon contaminants do not occur due to homogeneous reactions in the gas phase.
I det følgende skal anvendelsen af det beskrevne apparat forklares.In the following, the use of the apparatus described will be explained.
Når de ultrarene siliciumstave 1, der skal tjene som 30 bærelegemer, er anbragt på kobberelektroderne 8 eller rettere på tantalskiverne 20 og foroven indbyrdes forbundet ved hjælp af de tværgående stave 2, anbringes beholderen 3 over bunden 4, og afgangsstudsen 7 forbindes til en ventil i et ikke vist udsugningsaggregat, som kan evakuere behol-35 deren. Herefter udsuges luften i beholderen, til der er opnået et forudbestemt undertryk i beholderen. DerefterWhen the ultra-clean silicon rods 1, which serve as 30 supporting bodies, are placed on the copper electrodes 8 or rather on the tantalum discs 20 and connected above each other by the transverse rods 2, the container 3 is placed over the bottom 4 and the outlet socket 7 is connected to a valve in a suction assembly not shown which can evacuate the container. The air is then extracted into the container until a predetermined negative pressure is obtained in the container. then
DK 153223BDK 153223B
- 5 - lukkes udsugningsaggregatets ventil, og en hed luftstrøm indblæses i beholderen gennem røret 22, således at siliciumstavene 1 opvarmes. Når et positivt tryk er opbygget i beholderen 3, åbnes ventilen igen, og stavene 1 opvarmes, 5 til den forudbestemte temperatur nås. Samtidig er kølemedium ledet gennem beholdervæggen, bunden og den termiske isolator.- 5 - the suction unit valve is closed and a hot air stream is blown into the container through the tube 22 so that the silicon rods 1 are heated. When a positive pressure is built up in the container 3, the valve is opened again and the rods 1 are heated, 5 until the predetermined temperature is reached. At the same time, refrigerant is passed through the container wall, the bottom and the thermal insulator.
Når siliciumstavene 1 af luftstrømmen er bragt op på den forudbestemte temperatur, påtrykkes de via kobberelek-10 troderne 8 en elektrisk strøm, således at stavenes 1 temperatur ved modstandsopvarmning bringes op over 800°C. Herefter afbrydes den hede luftstrøm, og monosilan indføres gennem røret 17. Den indførte monosilans strømningshastighed styres ved hjælp af passende regulatorer, og det påses, 15 at ensartede mængder strømmer ud gennem de fire udmundinger 6 i hvert niveau. Den i beholderen indførte monosilan udsættes for pyrolyse på de rødglødende, ultrarene siliciumstave 1, hvorved der på disse stave afsættes ultrarent silicium.When the silicon rods 1 of the air stream are brought up to the predetermined temperature, they are applied via the copper electrodes 8 to an electric current, so that the temperature of the rods 1 is raised by resistance heating above 800 ° C. Thereafter, the hot air flow is interrupted and monosilane is introduced through the pipe 17. The flow rate of the introduced monosilane is controlled by appropriate regulators and it is ensured that uniform quantities flow out through the four orifices 6 in each level. The monosilane introduced into the container is subjected to pyrolysis on the red-hot, ultra-pure silicon rods 1, thereby depositing ultra-pure silicon on these rods.
20 På grund af den termiske isolators 5 udformning vil de ultrarene siliciumstave 1 ikke, selv om deres diameter efterhånden vokser med afsætningen af yderligere materiale, blive udsat for strålevarme fra en eller flere af de øvrige stave 1, og stavene påvirkes derfor ikke af de homogene 25 reaktioner i gasfasen. Den voksende diameter af stavene forbliver derfor ensartet i alle snit gennem stavene.Due to the design of the thermal insulator 5, the ultra-clean silicon rods 1, although their diameter eventually grows with the deposition of additional material, will not be exposed to radiant heat from one or more of the other rods 1, and the rods are therefore not affected by the homogeneous rods. 25 reactions in the gas phase. The growing diameter of the rods therefore remains uniform in all sections through the rods.
Da endvidere den homogene reaktion i gassen kan styres, kan man opnå forøget produktivitet og udbytte med højere kvalitet.Furthermore, since the homogeneous reaction in the gas can be controlled, increased productivity and yield of higher quality can be achieved.
30 I det følgende skal opfindelsen belyses nærmere ve'd nogle eksempler.In the following, the invention is illustrated in more detail by some examples.
Eksempel 1Example 1
Fire bærelegemer i form af ultrarene siliciumstave, hver med en diameter på 5 mm og en længde på 1200 mm blev 35 placeret lodret og adskilt fra hinanden og en fælles symmetriakse i en pyrolysebeholder. De øverste ender af bærelegemerne blev to og to forbundet indbyrdes ved hjælp af ultrarene siliciumstave med en diameter på 5 mm og en - 6 -Four support bodies in the form of ultra-clean silicon rods, each with a diameter of 5 mm and a length of 1200 mm, were placed vertically and spaced apart and a common axis of symmetry in a pyrolysis vessel. The upper ends of the support members were connected two by two by means of ultra-clean silicon rods 5 mm in diameter and a - 6 -
DK 153223 BDK 153223 B
længde på 300 mm. Forbindelsesstavene havde en resistans på 50 SI cm. En termisk isolator som den på tegningen viste blev placeret mellem bærelegemerne. Efter forvarmning ved hjælp af en varm luftstrøm fastholdes bærelegemerne på 5 en temperatur på omkring 850°C, og monosilan ledes ind i beholderen gennem de øvre, mellemste og nedre udmundinger 6. Monosilanen udsættes for pyrolyse på de rødglødende bærelegemer, og hastigheden, hvormed silicium afsættes på legemerne, fastlægges til 4-8 pm/min, som ved hidtil 10 kendte processer af denne art, til diameteren af hver siliciumstav når 60 mm. Den tid, der medgår, til stavdiameteren når 60 mm, kan nedsættes omkring 10% i forhold til kendte fremgangsmåder.length of 300 mm. The connecting rods had a resistance of 50 SI cm. A thermal insulator such as that shown in the drawing was placed between the support bodies. After preheating by means of a hot air stream, the support bodies are maintained at a temperature of about 850 ° C and the monosilane is passed into the container through the upper, middle and lower mouths 6. The monosilane is subjected to pyrolysis on the red-hot support bodies and the rate at which silicon deposited on the bodies is determined at 4-8 µm / min, as in the prior art processes of this kind, until the diameter of each silicon rod reaches 60 mm. The time taken for the rod diameter to reach 60 mm can be reduced by about 10% compared to known methods.
De således fremstillede polykrystallinske silicium-15 stave .udsættes for en suspensionszonefusionsproces, og monokrystallisationen af disse stave blev forbedret med omkring 30%.The polycrystalline silicon rods thus produced are subjected to a suspension zone fusion process and the monocrystallization of these rods was improved by about 30%.
Eksempel 2 Når ultrarene siliciumstave, hver med en diameter på 20 60 mm, fremstilles ved en pyrolysetemperatur på omkring 900°C og en afsætningshastighed på omkring 25% mere end anført i eksempel 1, kan den til pyrolysen forbrugte tid afkortes med omkring 23%. Monokrystallisationen foregår i det væsentlige som anført i eksempel 1.Example 2 When ultra-pure silicon rods, each with a diameter of 20 mm, are produced at a pyrolysis temperature of about 900 ° C and a deposition rate of about 25% more than indicated in Example 1, the time spent in pyrolysis can be shortened by about 23%. The monocrystallization is essentially as described in Example 1.
25 Eksempel 3Example 3
Ved fremstilling under de i eksempel 1 anførte betingelser af ultrarene siliciumstave med en diameter på 100 mm kan den til pyrolysen medgåede tid nedsættes omkring 25%. Der sker ikke, som ved kendte fremgangsmåder, nogen 30 forurening med pulverformet silicium dannet ved homogen reaktion i gasfasen.When prepared under the conditions of Example 1 of ultra-pure silicon rods with a diameter of 100 mm, the time taken for pyrolysis can be reduced by about 25%. As is known in the art, there is no contamination with powdered silicon formed by homogeneous reaction in the gas phase.
Eksempel 4Example 4
Ultrarent silicium blev fremstillet i stave med en diameter på 60 mm, idet tolv bærelegemer blev udsat sam-35 tidig for pyrolyse. Bærelegemerne var opdelt i fire grupper af en termisk isolator. En af grupperne - omfattende tre bærelegemer - var anbragt i separate rum i pyrolyse-Ultra-pure silicon was made in rods with a diameter of 60 mm, with twelve support members exposed to pyrolysis at the same time. The supporting bodies were divided into four groups by a thermal insulator. One of the groups - comprising three supporting bodies - was placed in separate compartments in pyrolysis.
DK 153223BDK 153223B
- 7 - beholderen. Det viste sig, at pyrolysetiden ved anvendelse af en termisk isolator kunne nedsættes omkring 6%, medens produktudbyttet øges omkring 4%.- 7 - container. It was found that by using a thermal insulator the pyrolysis time could be reduced by about 6%, while the product yield increased by about 4%.
Ifølge opfindelsen anbringes altså en kølet termisk 5 isolator mellem de rødglødende bærelegemer, således at intet bærelegeme udsættes for strålevarme fra et andet bærelegeme. Den termiske isolator kan fremstilles af samme materiale som den beholder, hvori pyrolysen finder sted, og køles på samme måde som denne ved hjælp af vand eller 10 et andet kølemedium, hvis temperatur kan reguleres. Den termiske isolator skal hensigtsmæssigt have en ftilstrækkelig højde til, at størstedelen af siliciumbærdlegemerne afskærmes indbyrdes og foretrukket placeres således, at pyrolysebeholderen opdeles i ensartede rum. Hvor beholde-15 ren indeholder et større antal bærelegemer, kan det være tilstrækkeligt, at grupper af bærelegemer er indbyrdes termisk isoleret, altså uden at hvert legeme er adskilt fra alle de øvrige.Thus, according to the invention, a cooled thermal insulator is arranged between the red-hot supporting bodies so that no supporting body is exposed to radiant heat from another supporting body. The thermal insulator can be made of the same material as the container in which the pyrolysis takes place and cooled in the same way as it is by water or another refrigerant whose temperature can be controlled. Conveniently, the thermal insulator should have a sufficient height for the majority of the silicon support bodies to be shielded from each other and preferably positioned so that the pyrolysis vessel is divided into uniform compartments. Where the container contains a greater number of carriers, it may be sufficient that groups of carriers be thermally insulated from one another, that is, without each body being separated from all the others.
Tilførslen af monosilan bør ske ensartet i flere ni-20 veauer i beholderen.The administration of monosilane should be applied uniformly over several nine levels in the container.
Ved opfindelsen kan den homogene reaktion, der sædvanligvis følger pyrolyse på rødglødende siliciumstave af monosilan, hindres eller hæmmes. Derfor kan diameteren af de voksende ultrarene siliciumstave blive ensartet, og 25 mængden af afsat silicium pr. tidsenhed forøges.. Da mængden af pulverformet silicium, der kunne iblandes stavene,, reduceres væsentligt,, bliver de fremstillede stave af højere kvalitet.In the invention, the homogeneous reaction that usually follows pyrolysis on monosilane red-hot silicon rods can be prevented or inhibited. Therefore, the diameter of the growing ultra-pure silicon rods may be uniform and the amount of silicon deposited per unit of time is increased .. As the amount of powdered silicon that could be incorporated into the rods is substantially reduced, the rods produced are of higher quality.
Claims (2)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2221277 | 1977-03-03 | ||
JP2221277A JPS53108029A (en) | 1977-03-03 | 1977-03-03 | Method of making high purity silicon having uniform shape |
Publications (3)
Publication Number | Publication Date |
---|---|
DK92178A DK92178A (en) | 1978-09-04 |
DK153223B true DK153223B (en) | 1988-06-27 |
DK153223C DK153223C (en) | 1988-11-07 |
Family
ID=12076485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK092178A DK153223C (en) | 1977-03-03 | 1978-03-01 | METHOD AND APPARATUS FOR MANUFACTURING SILICON RODS WITH uniform cross-section |
Country Status (5)
Country | Link |
---|---|
US (1) | US4147814A (en) |
JP (1) | JPS53108029A (en) |
CA (1) | CA1098011A (en) |
DE (1) | DE2808461C2 (en) |
DK (1) | DK153223C (en) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4259278A (en) * | 1979-07-09 | 1981-03-31 | Ultra Carbon Corporation | Method of reshaping warped graphite enclosures and the like |
US4309241A (en) * | 1980-07-28 | 1982-01-05 | Monsanto Company | Gas curtain continuous chemical vapor deposition production of semiconductor bodies |
US4464222A (en) * | 1980-07-28 | 1984-08-07 | Monsanto Company | Process for increasing silicon thermal decomposition deposition rates from silicon halide-hydrogen reaction gases |
US4559219A (en) * | 1984-04-02 | 1985-12-17 | General Electric Company | Reducing powder formation in the production of high-purity silicon |
FR2572312B1 (en) * | 1984-10-30 | 1989-01-20 | Rhone Poulenc Spec Chim | PROCESS FOR MANUFACTURING ULTRA-PUR SILICON BARS |
US4724160A (en) * | 1986-07-28 | 1988-02-09 | Dow Corning Corporation | Process for the production of semiconductor materials |
US4826668A (en) * | 1987-06-11 | 1989-05-02 | Union Carbide Corporation | Process for the production of ultra high purity polycrystalline silicon |
US4805556A (en) * | 1988-01-15 | 1989-02-21 | Union Carbide Corporation | Reactor system and method for forming uniformly large-diameter polycrystalline rods by the pyrolysis of silane |
KR950013069B1 (en) * | 1989-12-26 | 1995-10-24 | 어드밴스드 실리콘 머티어리얼즈 인코포레이티드 | Graphite chuck having a hydrogen imprevious outer coating layer |
US5382419A (en) * | 1992-09-28 | 1995-01-17 | Advanced Silicon Materials, Inc. | Production of high-purity polycrystalline silicon rod for semiconductor applications |
US5478396A (en) * | 1992-09-28 | 1995-12-26 | Advanced Silicon Materials, Inc. | Production of high-purity polycrystalline silicon rod for semiconductor applications |
US5894887A (en) * | 1995-11-30 | 1999-04-20 | Applied Materials, Inc. | Ceramic dome temperature control using heat pipe structure and method |
DE19608885B4 (en) * | 1996-03-07 | 2006-11-16 | Wacker Chemie Ag | Method and device for heating carrier bodies |
US6544333B2 (en) * | 1997-12-15 | 2003-04-08 | Advanced Silicon Materials Llc | Chemical vapor deposition system for polycrystalline silicon rod production |
US6221155B1 (en) | 1997-12-15 | 2001-04-24 | Advanced Silicon Materials, Llc | Chemical vapor deposition system for polycrystalline silicon rod production |
US6623801B2 (en) | 2001-07-30 | 2003-09-23 | Komatsu Ltd. | Method of producing high-purity polycrystalline silicon |
US6503563B1 (en) * | 2001-10-09 | 2003-01-07 | Komatsu Ltd. | Method of producing polycrystalline silicon for semiconductors from saline gas |
CN100423856C (en) * | 2003-08-20 | 2008-10-08 | 中国第一汽车集团公司 | Method for improving binding strength of coating on internal multiple keys |
CN100387362C (en) * | 2006-06-28 | 2008-05-14 | 蔡国华 | Method of spraying polyether ether hetone powder on surface of metal product |
JP5119856B2 (en) * | 2006-11-29 | 2013-01-16 | 三菱マテリアル株式会社 | Trichlorosilane production equipment |
US8961689B2 (en) * | 2008-03-26 | 2015-02-24 | Gtat Corporation | Systems and methods for distributing gas in a chemical vapor deposition reactor |
EP2266368B1 (en) * | 2008-04-14 | 2018-03-28 | Hemlock Semiconductor Operations LLC | Manufacturing apparatus for depositing a material on an electrode for use therein |
AU2009236679B2 (en) * | 2008-04-14 | 2014-02-27 | Hemlock Semiconductor Corporation | Manufacturing apparatus for depositing a material and an electrode for use therein |
CA2721192A1 (en) * | 2008-04-14 | 2009-10-22 | Hemlock Semiconductor Corporation | Manufacturing apparatus for depositing a material and an electrode for use therein |
CN101476153B (en) * | 2008-12-25 | 2011-12-07 | 青岛科技大学 | Reduction production process for polysilicon and reducing furnace for production thereof |
DE102009003368B3 (en) * | 2009-01-22 | 2010-03-25 | G+R Polysilicon Gmbh | Reactor for the production of polycrystalline silicon after the monosilane process |
CN102300808B (en) * | 2009-02-27 | 2013-08-21 | 株式会社德山 | Polycrystalline silicon rod and device for producing same |
US8540818B2 (en) * | 2009-04-28 | 2013-09-24 | Mitsubishi Materials Corporation | Polycrystalline silicon reactor |
US8507051B2 (en) * | 2009-07-15 | 2013-08-13 | Mitsubishi Materials Corporation | Polycrystalline silicon producing method |
US20110229638A1 (en) * | 2010-03-19 | 2011-09-22 | Gt Solar Incorporated | System and method for polycrystalline silicon deposition |
US10494714B2 (en) | 2011-01-03 | 2019-12-03 | Oci Company Ltd. | Chuck for chemical vapor deposition systems and related methods therefor |
DE102011080866A1 (en) | 2011-08-12 | 2013-02-14 | Wacker Chemie Ag | Manufacturing monocrystalline rod made of silicon, comprises continuously melting a polycrystalline rod by coupling an induction coil, and introducing the molten material having a monocrystalline seed crystal and re-crystallizing |
DE102013204730A1 (en) * | 2013-03-18 | 2014-09-18 | Wacker Chemie Ag | Method of depositing polycrystalline silicon |
JP6345108B2 (en) | 2014-12-25 | 2018-06-20 | 信越化学工業株式会社 | Polycrystalline silicon rod, polycrystalline silicon rod processing method, polycrystalline silicon rod crystal evaluation method, and FZ single crystal silicon manufacturing method |
DE102015209008A1 (en) * | 2015-05-15 | 2016-11-17 | Schmid Silicon Technology Gmbh | Process and plant for the decomposition of monosilane |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1292640B (en) * | 1959-09-23 | 1969-04-17 | Siemens Ag | Device for depositing high-purity silicon from a high-purity reaction gas containing a silicon compound |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3011877A (en) * | 1956-06-25 | 1961-12-05 | Siemens Ag | Production of high-purity semiconductor materials for electrical purposes |
DE1061593B (en) * | 1956-06-25 | 1959-07-16 | Siemens Ag | Device for obtaining the purest semiconductor material for electrotechnical purposes |
NL251143A (en) * | 1959-05-04 | |||
NL256255A (en) * | 1959-11-02 | |||
US3941906A (en) * | 1973-03-01 | 1976-03-02 | Theodore Bostroem | Hot dip metallizing process |
-
1977
- 1977-03-03 JP JP2221277A patent/JPS53108029A/en active Granted
-
1978
- 1978-02-28 DE DE2808461A patent/DE2808461C2/en not_active Expired
- 1978-03-01 DK DK092178A patent/DK153223C/en not_active IP Right Cessation
- 1978-03-02 CA CA298,321A patent/CA1098011A/en not_active Expired
- 1978-03-02 US US05/882,819 patent/US4147814A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1292640B (en) * | 1959-09-23 | 1969-04-17 | Siemens Ag | Device for depositing high-purity silicon from a high-purity reaction gas containing a silicon compound |
Also Published As
Publication number | Publication date |
---|---|
CA1098011A (en) | 1981-03-24 |
JPS5645851B2 (en) | 1981-10-29 |
DK153223C (en) | 1988-11-07 |
US4147814A (en) | 1979-04-03 |
JPS53108029A (en) | 1978-09-20 |
DE2808461A1 (en) | 1978-09-07 |
DE2808461C2 (en) | 1982-05-06 |
DK92178A (en) | 1978-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK153223B (en) | METHOD AND APPARATUS FOR MANUFACTURING SILICON RODS WITH uniform cross-section | |
DK154028B (en) | Apparatus for the manufacture of silicon rods | |
KR930011998B1 (en) | Reactor system and method for forming uniformy large diameter polycrystalline rods by the pyrolysis of silane | |
US3146123A (en) | Method for producing pure silicon | |
US3200009A (en) | Method of producing hyperpure silicon | |
US20130295401A1 (en) | Polycrystalline silicon producing method, apparatus for producing polycrystalline silicon, and polycrystalline silicon | |
NL8001059A (en) | METHOD FOR SEPARATING PURE SEMICONDUCTOR MATERIAL, IN PARTICULAR SILICONE AND NOZZLE FOR CARRYING OUT THE METHOD | |
WO1999031013A1 (en) | Chemical vapor deposition system for polycrystalline silicon rod production | |
US4265859A (en) | Apparatus for producing semiconductor grade silicon and replenishing the melt of a crystal growth system | |
US6503563B1 (en) | Method of producing polycrystalline silicon for semiconductors from saline gas | |
US4715317A (en) | Method for producing of polycrystalline silicon and apparatus thereof | |
JP2003040612A (en) | Method for producing high purity polycrystal silicon | |
EP2759520A1 (en) | Device for producing polycrystal silicon and method for producing polycrystal silicon | |
GB1566949A (en) | Manufacture of supported silicon sheets | |
WO2012101969A1 (en) | Reactor for manufacturing polycrystalline silicon and method for manufacturing polycrystalline silicon | |
TW201431783A (en) | Polycrystalline silicon rod and method for producing same | |
JPS6156162B2 (en) | ||
CN210529053U (en) | HFCVD equipment for continuous preparation of diamond film | |
US3658680A (en) | Apparatus for forming silicon carbide filaments | |
US3523816A (en) | Method for producing pure silicon | |
US3635683A (en) | Method of crystal growth by vapor deposition | |
US3226248A (en) | Method of producing refractory monocrystalline boron structures | |
JP2710433B2 (en) | Single crystal pulling device | |
CN114007980B (en) | Method for producing polycrystalline silicon | |
Van Drunen et al. | The growth of Ni and Ni-Co single crystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUP | Patent expired |