DK153137B - METHOD OF PREPARING MONOHALOGENACYL HALOGENIDES - Google Patents

METHOD OF PREPARING MONOHALOGENACYL HALOGENIDES Download PDF

Info

Publication number
DK153137B
DK153137B DK483172AA DK483172A DK153137B DK 153137 B DK153137 B DK 153137B DK 483172A A DK483172A A DK 483172AA DK 483172 A DK483172 A DK 483172A DK 153137 B DK153137 B DK 153137B
Authority
DK
Denmark
Prior art keywords
solvent
chloride
carbonate
ketene
halogen
Prior art date
Application number
DK483172AA
Other languages
Danish (da)
Other versions
DK153137C (en
Inventor
Virgil Walter Gash
Donald Eugene Bissing
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00276280A external-priority patent/US3812183A/en
Application filed by Monsanto Co filed Critical Monsanto Co
Publication of DK153137B publication Critical patent/DK153137B/en
Application granted granted Critical
Publication of DK153137C publication Critical patent/DK153137C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/38Acyl halides
    • C07C53/46Acyl halides containing halogen outside the carbonyl halide group
    • C07C53/50Acyl halides containing halogen outside the carbonyl halide group of acids containing three or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/58Preparation of carboxylic acid halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/38Acyl halides
    • C07C53/40Acetyl halides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

DK 153137 BDK 153137 B

iin

Den foreliggende opfindelsen angår en særlig fremgangsmåde til fremstilling af monohalogenacylhalogenider ved omsætning af en keten med et halogen i nærværelse af en ester som opløsningsmiddel.The present invention relates to a particular process for the preparation of monohaloacyl halides by reacting a ketene with a halogen in the presence of an ester as a solvent.

Væskefasehalogenering af ketener er velkendt, men tidligere kendte metoder til udførelse af denne reaktion har resulteret i dannelse af monohalogenacylhalogenider, der er forurenet med en betragtelig mængde dihalogenacylhalo-genider og polyhalogenerede biprodukter. Disse tidligere metoder anvendte sådanne opløsningsmidler som chlorerede benzener, nitrobenzen, carbontetrachlor, chloracetylchlo-rid, acetylchlorid, 1,2-dichlorethan, acetonitrilbenzoni-tril og nitromethan. Ethvert af disse opløsningsmidler har den fælles ulempe, at de alle vil medføre dannelse af en betragtelig mængde dihalogenacylhalogenid sammen med det ønskede produkt, monohalogenacylhalogenid. I nogle af disse opløsningsmidler dannes også uønskede trihalogen-acylhalogenider. Dihalogenderivater har ingen kommerciel anvendelighed, og deres fremstilling ud fra monohalogen-derivater er dyr og tidskrævende. For eksempel har di-chloracetylchlorid et kogepunkt på ca. 107 °C, hvorimod monochloracetylchlorid har et kogepunkt på ca. 105 °C.Liquid phase halogenation of ketene is well known, but prior art methods for carrying out this reaction have resulted in the formation of monohaloacyl halides contaminated with a considerable amount of dihaloacyl halides and polyhalogenated by-products. These prior methods used such solvents as chlorinated benzenes, nitrobenzene, carbon tetrachloride, chloroacetyl chloride, acetyl chloride, 1,2-dichloroethane, acetonitrile benzonitrile and nitromethane. Each of these solvents has the common disadvantage that they will all result in the formation of a considerable amount of dihaloacyl halide together with the desired product, monohaloacyl halide. In some of these solvents, undesirable trihaloacyl halides are also formed. Dihalogen derivatives have no commercial utility and their preparation from monohalogen derivatives is expensive and time consuming. For example, dichloroacetyl chloride has a boiling point of approx. 107 ° C, whereas monochloroacetyl chloride has a boiling point of approx. 105 ° C.

Denne tætte beliggenhed af kogepunkterne af de to forbindelser gør deres adskillelse særdeles besværlig og føjer et dyrt og uøkonomisk trin til halogeneringsprocessen, når man anvender de hidtil kendte opløsningsmidler.;This close location of the boiling points of the two compounds makes their separation particularly troublesome and adds an expensive and uneconomical step to the halogenation process when using the known solvents;

Monohalogenacylhalogeniderne fremstillet ved fremgangsmåden ifølge opfindelsen er værdifulde mellemprodukter til fremstilling af herbicide α-halogenacetanilider og andre produkter. Derimod har de tilsvarende di- og trihalogen-acylhalogenider ingen kommerciel betydning. .De er med andre ord kun til stede som fortyndingsmidler, der nedsætter effektiviteten af de kommercielt værdifulde monohalogenacylhalogenider. Alvoren af prpblemet anskuelig-The monohaloacyl halides produced by the process of the invention are valuable intermediates for the preparation of herbicidal α-haloacetanilides and other products. In contrast, the corresponding di- and trihaloacyl halides have no commercial significance. In other words, they are present only as diluents which decrease the effectiveness of the commercially valuable monohaloacyl halides. The seriousness of the problem is evident-

DK 153137 BDK 153137 B

2 gøres ved det faktum, at alle kommercielt tilgængelige chloracetylchlorider er kontamineret med en betragtelig mængde dichloracetylchlorid, og i nogle tilfælde er indholdet af dichloracetylchlorid så stort som 6%.2 is made by the fact that all commercially available chloroacetyl chlorides are contaminated with a considerable amount of dichloroacetyl chloride, and in some cases the content of dichloroacetyl chloride is as large as 6%.

Ved anvendelse af fremgangsmåden ifølge opfindelsen overvinder man ulemperne ved anvendelsen af de kendte opløsningsmidler ved halogenering af en keten. Fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 1 anførte. Fremgangsmåden ifølge opfindelsen omfatter halogenering af keten, dvs. el ler substituerede ketener, såsom methylketen, dimethyl-keten, ethylketen, diethylketen, phenylketen og diphenyl-keten.By using the process of the invention, the disadvantages of using the known solvents in halogenating a ketene are overcome. The process according to the invention is characterized by the method of claim 1. The process of the invention comprises halogenating the chain, i.e. or substituted ketene, such as methyl chain, dimethyl chain, ethyl chain, diethyl chain, phenyl chain and diphenyl chain.

Ethylencarbonat og andre 1,2- og 1,3-alicycliske carbona-ter kan anvendes alene eller i indbyrdes blanding ifølge den foreliggende opfindelse. Egnede carbonater indbefatter f.eks.: 1,2-propylencarbonat, 1,2-butylencarbonat, 1.3- propylencarbonat, 1,3-butylencarbonat, 2,2-dimethy1- 1.3- propylencarbonat, 1,2-diethyl-l,3-propylencarbonat, 1,2-dimethylethylencarbonat, 1-chlormethylethylencarbo-nat og 1,2-diethylethylencarbonat. Alicycliske carbonater med 7 eller flere ringatomer, såsom 1,4-butylencarbonat og lignende, hvilke ligger uden for opfindelsen, kunne være gode opløsningsmidler ved fremgangsmåden, men er af lille praktisk værdi i sammenligning med 5- og 6-led-dede carbonater .Ethylene carbonate and other 1,2- and 1,3-alicyclic carbonates may be used alone or in admixture with the present invention. Suitable carbonates include, for example: 1,2-propylene carbonate, 1,2-butylene carbonate, 1,3-propylene carbonate, 1,3-butylene carbonate, 2,2-dimethyl-1,3-propylene carbonate, 1,2-diethyl-1,3- propylene carbonate, 1,2-dimethylethylene carbonate, 1-chloromethylethylene carbonate and 1,2-diethylethylene carbonate. Alicyclic carbonates having 7 or more ring atoms, such as 1,4-butylene carbonate and the like, which are outside the invention, could be good solvents in the process, but are of little practical value in comparison with 5- and 6-membered carbonates.

Ved udførelse af fremgangsmåden ifølge opfindelsen indføres en keten og et halogen i et opløsningsmiddelmedium, hvor de omsættes til dannelse af monohalogenacylhalogeni-der, der på kendt måde separeres fra reaktionsmediet, såsom ved destillation, fortrinsvis ved reduceret tryk. Fremgangsmåden kan udføres enten kontinuerligt eller dis-kontinuerligt. De driftsbetingelser, hvorunder reaktionen 3In carrying out the process of the invention, a ketene and a halogen are introduced into a solvent medium where they are reacted to form monohaloacyl halides which are known in the known manner from the reaction medium, such as by distillation, preferably at reduced pressure. The process can be performed either continuously or discontinuously. The operating conditions under which the reaction 3

DK 153137 BDK 153137 B

udføres, er ikke kritiske, men det foretrækkes at holde dem inden for de specificerede grænser for at maksimere udbyttet af monohalogenacylhalogenid. Det er blot væsentligt, at opløsningsmidlet er væskeformigt under reaktionsbetingelserne. Af praktiske årsager udføres reaktionen imidlertid normalt ved en temperatur på 50 til 150 °C ved et tryk på 50 mm Hg til ca. 2 atmosfærer. I de fleste tilfælde foretrækkes det at arbejde ved en temperatur på 0 - 110 °C og ved et tryk på 100 - 760 mm Hg. Reaktionen mellem halogen og keten vil skride frem til dannelse af i det væsentlige rent monohalogenacylhalogenid uanset molforholdet mellem reaktanterne. Fordelen ved fremgangsmåden ifølge den foreliggende opfindelse udnyttes imidlertid mere fuldkomment, når molforholdet mellem halogen og keten holdes mellem 0,8:1 og 2,0:1, og optimale resultater opnås, når molforholdet halogen:keten ligger mellem 1:1 og 1,3:1. Nærværelsen af et opløsningsmiddel ifølge opfindelsen i reaktionsmediet mininerer dannelsen af acylhalogenider og eliminerer i det væsentlige dannelsen af dihalogenacylhalogenider og andre poly-halogenerede biprodukter.performed are not critical, but it is preferred to keep them within the specified limits to maximize the yield of monohaloacyl halide. It is only essential that the solvent be liquid under the reaction conditions. However, for practical reasons, the reaction is usually carried out at a temperature of 50 to 150 ° C at a pressure of 50 mm Hg to approx. 2 atmospheres. In most cases, it is preferred to operate at a temperature of 0 - 110 ° C and at a pressure of 100 - 760 mm Hg. The reaction between halogen and the ketene will proceed to form substantially pure monohaloacyl halide regardless of the mole ratio of the reactants. However, the advantage of the process of the present invention is more fully utilized when the halogen-chain molar ratio is maintained between 0.8: 1 and 2.0: 1, and optimum results are obtained when the halogen: chain molar ratio is between 1: 1 and 1. 3: 1. The presence of a solvent of the invention in the reaction medium minimizes the formation of acyl halides and essentially eliminates the formation of dihaloacyl halides and other polyhalogenated by-products.

Ifølge den foreliggende opfindelse kan opløsningsmidlet udgøre i det væsentlige det hele eller blot en del af reaktionsmediet. Fordelene ved den foreliggende opfindelse er mest udtalt, når vægtforholdet af opløsningsmiddel er højt, men der opnås også væsentlige fordele, selv når opløsningsmidlet er til stede blot i små mængder, selv når reaktionsmediet indeholder en lille mængde opløsningsmiddel, og de elimineres fuldstændigt ved højere forhold. Vægtforholdet mellem opløsningsmiddel og summen af opløsningsmiddel og produkt, dvs. opløsningsmiddel-vægtforholdet, kan variere fra 0,05:1 til 0,99:1. Under det normale forløb af en diskontinuerlig reaktion mindskes opløsningsmiddelvægtforholdet naturligvis med dannelse af produktet, der bliver blandet med det opløs-According to the present invention, the solvent may comprise substantially all or only part of the reaction medium. The advantages of the present invention are most pronounced when the weight ratio of solvent is high, but significant benefits are also obtained even when the solvent is present only in small amounts even when the reaction medium contains a small amount of solvent and they are completely eliminated at higher ratios. . The weight ratio of solvent to the sum of solvent and product, ie. solvent to weight ratio can range from 0.05: 1 to 0.99: 1. Of course, during the normal course of a discontinuous reaction, the solvent weight ratio decreases with the formation of the product which is mixed with the solvent.

DK 153137 BDK 153137 B

4 ningsmidde1, der danner reaktionsmediet. Når man anvender kontinuerlige fremgangsmåder, kan opløsningsmiddelforholdet holdes konstant eller variere på ønsket måde. Fremgangsmåden ifølge opfindelsen illustreres nærmere ved de følgende eksempler. I eksemplerne er alle angivelser udtrykt i vægtdele, hvis intet andet er angivet.4, which forms the reaction medium. When continuous processes are used, the solvent ratio can be kept constant or varied as desired. The process of the invention is further illustrated by the following examples. In the examples, all particulars are expressed in parts by weight unless otherwise indicated.

EKSEMPEL 1EXAMPLE 1

Ca. 200 dele ethylencarbonat hældtes i en egnet reaktions-beholder, holdtes ved et absolut tryk på ca. 100 mm Hg og forsynedes med et gasafgangsrør, temperaturføleorganer og to gassprøjtekranse under carbonatniveauet. Reaktionsmediet holdtes ved en temperatur på ca. 40 - 50 °C, og ke-ten og chlor tilsattes igennem separate sprøjtekranse i en konstant og i det væsentlige ækvimolær mængde. Efter ca. 2 1/2 time var tilsætning af reaktanter tilendebragt.Ca. 200 parts of ethylene carbonate was poured into a suitable reaction vessel, kept at an absolute pressure of about 100 mm Hg and provided with a gas exhaust pipe, temperature sensing means and two gas syringes below the carbonate level. The reaction medium was maintained at a temperature of ca. 40-50 ° C and the ketene and chlorine were added through separate syringes in a constant and substantially equimolar amount. After approx. For 2 1/2 hours, the addition of reactants was complete.

Der. var tilsat 188 dele chlor og 85 dele keten. Ved slutningen af reaktionen var forholdet mellem opløsningsmiddel og summen af opløsningsmiddel og produkt 0,44. Reaktionsblandingen var i det væsentlige ethylencarbonat, chloracetyIchlorid med mindre mængder dichloracetyIchlo-rid og acetylchlorid. Ved destillation til adskillelse af ren chloracetylchlorid bestemtes molprocentudbyttet af chloracetyIchlorid til 96% sammen med 1,9% acetylchlorid og ca. 2% dichloracetylchlorid. Selv om reaktionsmediet i dette eksempel omrørtes, er omrøring ikke nødvendig ved halogeneringsprocessen ifølge opfindelsen. Når halogen er brom, foretrækkes det dog at omrøre reaktionsmediet, men der opnås også gode resultater uden omrøring. Ved at følge den generelle fremgangsmåde i eksempel 1, men ved at anvende de betingelser og materialer, der er angivet i tabel I, opnåedes de i tabel I angivne produkter.There. 188 parts of chlorine and 85 parts of the chain were added. At the end of the reaction, the ratio of solvent to the sum of solvent to product was 0.44. The reaction mixture was essentially ethylene carbonate, chloroacetyl chloride with smaller amounts of dichloroacetyl chloride and acetyl chloride. When distilled to separate pure chloroacetyl chloride, the mole percent yield of chloroacetyl chloride was determined to be 96% together with 1.9% acetyl chloride and ca. 2% dichloroacetyl chloride. Although the reaction medium in this example was stirred, stirring is not necessary in the halogenation process of the invention. However, when halogen is bromine, it is preferred to stir the reaction medium, but good results are obtained without stirring. Following the general procedure of Example 1, but using the conditions and materials listed in Table I, the products listed in Table I were obtained.

I eksemplerne 2, 3, 5 og 6 er udbyttet af halogenacetylhalo-genid højt, dvs. større end 95%, og mængden af dihalogen-In Examples 2, 3, 5 and 6, the yield of haloacetyl halide is high, i.e. greater than 95% and the amount of dihalogen-

DK 153137 BDK 153137 B

5 acetylhalogenid er minimeret, hvilket giver en halogen-acetylrenhed på mere end 98%. I eksempel 4 er udbyttet af bromacetylbromid over 85% med en renhed større end 99%.5 acetyl halide is minimized giving a halogen acetyl purity of more than 98%. In Example 4, the yield of bromoacetyl bromide is over 85% with a purity greater than 99%.

DK 153137 BDK 153137 B

6 I ή rM >* >> -*->6 I ή rM> * >> - * ->

SZ 0 ISZ 0 I

+J i 4_) O "O P I Ό 0 C CO P CO ·Η O i—I ·Η+ J i 4_) O "O P I Ό 0 C CO P CO · Η O i — I · Η

E 0 C LA O C P P Ή >» PE 0 C LA O C P P Ή> »P

LA P >-i O O CM Ή 0 O O CM OO -C-l->0LA P> -i O O CM Ή 0 O O CM OO -C-l-> 0

0 >»_0 O I £1 -P O Ή <t i—I —I O O i—I0> »_ 0 O I £ 1 -P O Ή <t i — I —I O O i — I

Η X (*) '—i O CJ CD Ή >-l x: -C Ή O -CΗ X (*) '—i O CJ CD Ή> -l x: -C Ή O -C

£ +J (0 CM IsC CJ O O CO O£ + J (0 CM IsC CJ O O CO O

ο ω oο ω o

i—I -Pi-I -P

1 jj Oli1 yr Oli

c co ϋ Ό E '—I "Dc co ϋ Ό E '—I "D

øc EC CO-HO>v-Hec EC CO-HO> v-H

t-HO O O O CD O CD CMEE P -P Ξt-HO O O O CD O CD CMEE P -P Ξ

<} >,_Q o <P P -P 1Λ i—I LA OO -Q 0 O<}>, _ Q o <P P -P 1Λ i — I LA OO -Q 0 O

SZ t-ι i—I CO 0 Ή CM P P 'rt CJ tiSZ t-ι i — I CO 0 Ή CM P P 'rt CJ ti

4JC0 CO -Π Ω 0 -O4JC0 CO -Π Ω 0 -O

LJ OLJ O

1—I1-I

_! I I_! I I

LJ C C C-iLJ C C C-i

CO (D CD IOICO (D CD IOI

C r—I -P 1—C 1 * ' 1 I— >,4J 0 I >- JZ >*C r-I -P 1 - C 1 * '1 I—>, 4J 0 I> - JZ> *

-PCO P .Y P C U CJ C U-PCO P .Y P C U CJ C U

3 q O 1—I O O *H -Η O Ή3 q O 1 — I O O * H -Η O Ή

ΙΑ _Q O O O i—C >n CD <f —I -Η P "Ο ·Ρ PΙΑ _Q O O O i — C> n CD <f —I -Η P "Ο · Ρ P

| _Q VO fA .C XI LA MD -C O- O 1 CL O| _Q VO fA .C XI LA MD -C O- O 1 CL O

rAt-i I— CJ -C-> CJ O —I CM O 1—IrAt-i I— CJ -C-> CJ O —I CM O 1 —I

0 I ti £ « h £0 I ti £ «h £

(—1 0 X CM Q. CJ CM O. O(—1 0 X CM Q. CJ CM O. O

II ή C-ι P ^II ή C-ι P ^

O CO +JO CO + J

—I O Øl SZ C 0*0 f-ι I Ό 0 0 CO Ή O Ή ·Η—I O Beer SZ C 0 * 0 f-ι I Ό 0 0 CO Ή O Ή · Η

CM 0 .-C -P P C P P i-H>>PCM 0.-C -P P C P P i-H >> P

ρ ;a 0 o o o 0 o o 00 £4J oρ; a 0 o o o 0 o o 00 £ 4J o

4J C lA ΓΛ i—I -p LA 1—l lA<—1 <—1 O 0 <—C4J C lA ΓΛ i — I -p LA 1 — l lA <—1 <—1 O 0 <—C

0 4-) O I—I _C 0 1—I Ή -C_C -h o x:0 4-) O I — I _ C 0 1 — I Ή -C_C -h o x:

1— 0 .Q CJ YC CJ O Ω 0 O1— 0 .Q CJ YC CJ O Ω 0 O

^ 0 0^ 0 0

H CJI I—I IH CJI I — I I

0 /-v c 000 / -v c 00

-Q CJ Ή Ό I—I I-Q CJ Ή Ό I — I I

-0 O C^"0V—'0 1—I-0 O C ^ "0V-'0 1 -I

. -H ^ w 0 0 “O -C ^. -H ^ w 0 0 “O -C ^

E 01 Si—I CH 0 *—I OE 01 Si-I CH 0 * -I O

0 0 IC p 1—I 0 C ~O 00 0 IC p 1 — I 0 C ~ O 0

øl 0 Q-Ό EB 01 0 CObeer 0 Q-Ό EB 01 0 CO

r—1 c E -p O — Ε C 0 0 ·Ηr — 1 c E -p O - Ε C 0 0 · Η

0 -H E 0 C C EBC CD C0 -H E 0 C C EBC CD C

QC --- PØ Øi—CØ'-'EØ 00 E 0 001CT30O10C 01Ό t—I ØlQC --- EE — CO - EE 00 E 0 001CT30O10C 01Ό t — I Beer

ØQ _Y 0.0 0 CPU O H 0 O-H ØOØQ _Y 0.0 0 CPU O H 0 O-H ØO

ø iH >, E —i -P C "O 1—10 *P 1—IC -C * Iø iH>, E-i -P C "O 1- 10 * P 1-IC-C * I

_y Q. p 0 0 0 83 -H 0 D 0 00 -HØ u o i-i-m^SEx —- y x σι ox_y Q. p 0 0 0 83 -H 0 D 0 00 -HØ u o i-i-m ^ SEx —- y x σι ox

DK 153137 BDK 153137 B

7 EKSEMPEL 6EXAMPLE 6

Til en reaktor forsynet med sprøjtekrans og temperatur-må leorganer sattes 235 dele 1,2-propylencarbonat. Chlor-keten sprøjtedes ind i reaktoren ved et tryk på 100 mm Hg med en temperatur på 20 - 25 °C i ca. 182 minutter. Der holdtes et lille overskud af chlor i forhold til keten i propylencarbonatopl.øsningen under reaktionsforløbet. Fraktionering og analyse af produkterne viste et chloracetyl-chloridudbyttet på 94,6¾ og et dichloracetylchloridud-bytte på 0,6¾. Acetylchloridudbyttet var 4,8¾. Chlorace-tylchloridrenheden var 99,2¾. Oprensning af opløsningsmidlet var i det væsentlige kvantitativ.To a reactor equipped with spray gun and temperature measuring means, 235 parts of 1,2-propylene carbonate were added. The chlorine chain was injected into the reactor at a pressure of 100 mm Hg at a temperature of 20-25 ° C for approx. 182 minutes. A small excess of chlorine was maintained relative to the ketene in the propylene carbonate solution during the course of the reaction. Fractionation and analysis of the products showed a chloroacetyl chloride yield of 94.6¾ and a dichloroacetyl chloride yield of 0.6¾. The acetyl chloride yield was 4.8¾. The chloracetyl chloride purity was 99.2¾. Purification of the solvent was essentially quantitative.

For nærmere at illustrere fordelene ved opløsningsmidlerne ifølge opfindelsen anvendtes proceduren i eksempel 1 med forskellige opløsningsmidler. De således opnåede procentvise udbytter sammen med resultaterne i eksempel 1 og 6 er angivet i tabel II.To further illustrate the advantages of the solvents of the invention, the procedure of Example 1 was used with various solvents. The percent yields thus obtained, together with the results of Examples 1 and 6, are given in Table II.

DK 153137 BDK 153137 B

88

TABEL IITABLE II

ChloracetyIchlorid Dichlor-Chloroacetyl Chloride Dichloro-

Acetyl- acetyl- Udvundet chlorid- chlorid- Opløsnings-Acetyl Acetyl Extracted Chloride Chloride Solution

Opløsnings- Udbytte Udbytte udbytte udbytte middel middel_%_%_%_%_%_Solution Yield Yield Yield Yield Average Medium _% _% _% _% _% _

Eksempel 1 96 98 1,9 2 95Example 1 96 98 1.9 2 95

Eksempel 7 94,6 99,2 4,8 0,6 >95Example 7 94.6 99.2 4.8 0.6> 95

Ethylacetat 92 96 5 3 78Ethyl acetate 92 96 5 3 78

Carbontetra- 42 69 „ 15 75 ethylenh^°r~ «Carbon tetra-42 69 "15 75 ethylene hydroxide"

Methylacetat 91 94 4 4 88Methyl acetate 91 94 4 4 88

Acetonitril 46 83 47 7 66Acetonitrile 46 83 47 7 66

Nitromethan 48 74 39 13 75 n-butylacetat 82 95 15 3 84 n-hexylacetat 81 95 15 4 83Nitromethane 48 74 39 13 75 n-butyl acetate 82 95 15 3 84 n-hexyl acetate 81 95 15 4 83

Benzonitril 87 94 9 4 92Benzonitrile 87 94 9 4 92

Ved sammenligning af samme fremgangsmåde under anvendelse af andre opløsningsmidler er det klart, at de opløsningsmidler, der anvendes ved fremgangsmåden ifølge opfindelsen, i det væsentlige undertrykker dannelse af polychlor-acetylchlorider og minimerer dannelse af acetylchlorid. Separation af ren chloracetylchlorid fra acetylchlorid og opløsningsmiddel ved fraktionering frembyder ikke noget problem, da der er stor forskel mellem kogepunkterne for disse forbindelser.By comparing the same process using other solvents, it is clear that the solvents used in the process of the invention substantially suppress formation of polychloroacetyl chlorides and minimize formation of acetyl chloride. Separation of pure chloroacetyl chloride from acetyl chloride and solvent by fractionation presents no problem as there is a large difference between the boiling points of these compounds.

De gunstige resultater ifølge opfindelsen opnås på lignende måde med andre af de her omhandlede opløsningsmidler sammen med andre af de førnævnte halogeneringsmidler.The favorable results of the invention are similarly obtained with other solvents of this invention together with other of the aforementioned halogenating agents.

Brom kan indføres i systemet som væske, kombineret med opløsningsmiddel i opløsningen, eller på gasform under reaktionsmediets overflade. I de fleste tilfælde foretræk-Bromine can be introduced into the system as a liquid, combined with solvent in the solution, or in gaseous form beneath the surface of the reaction medium. In most cases,

DK 153137 BDK 153137 B

9 kes det at udføre bromer ingen ifølge den fdréliggende opfindelse ved at anvende en opløsning af brom i et opløsningsmiddel .9, it is known to perform bromine none according to the present invention by using a solution of bromine in a solvent.

Claims (4)

1. Fremgangsmåde til fremstilling af monohalogenacyl-halogenider ved omsætning af en keten med et halogen i nærværelse af en ester som opløsningsmiddel, kendetegnet ved, at man som opløsningsmiddel anvender et alicyclisk carbonat med formlen CRR1-(CR2R3) -cr4r1 I n I 0 -c-o ti o 1 2 3 4 5 hvori R, R , R , R , R og R hver for sig kan betegne hydrogen, halogen, methyl, chlormethyl eller ethyl, og hvor n er O eller 1, eller en blanding af sådanne carbo-nater.A process for the preparation of monohaloacyl halides by reacting a ketene with a halogen in the presence of an ester as solvent, characterized in that an alicyclic carbonate of the formula CRR1- (CR2R3) -cr4r1 is used. wherein R, R, R, R, R and R can each independently represent hydrogen, halogen, methyl, chloromethyl or ethyl, and wherein n is 0 or 1, or a mixture of such carboxylic acids. carbonates. 2. Fremgangsmåde ifølge krav 1, kendetegnet 1 2 3 4 5 ved, at R, R , R , R , R og R er hydrogen.Process according to claim 1, characterized in that R, R, R, R, R, R and R are hydrogen. 3. Fremgangsmåde ifølge krav 1, kendetegnet ved, at n er O eller 1.Process according to claim 1, characterized in that n is 0 or 1. 4. Fremgangsmåde ifølge krav 1, kendetegnet ved, at carbonatet er ethylencarbonat. Fremgangsmåde ifølge krav 1, kendetegnet ved, at ketenen er usubstitueret keten, og halogenet er chlor.Process according to claim 1, characterized in that the carbonate is ethylene carbonate. Process according to claim 1, characterized in that the ketene is unsubstituted ketene and the halogen is chlorine.
DK483172A 1971-09-30 1972-09-29 METHOD OF PREPARING MONOHALOGENACYL HALOGENIDES DK153137C (en)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US18540271A 1971-09-30 1971-09-30
US18539671A 1971-09-30 1971-09-30
US18545071A 1971-09-30 1971-09-30
US18539671 1971-09-30
US18545071 1971-09-30
US18540271 1971-09-30
US19264771A 1971-10-26 1971-10-26
US19264771 1971-10-26
US27628272A 1972-07-31 1972-07-31
US27628172A 1972-07-31 1972-07-31
US27628172 1972-07-31
US00276280A US3812183A (en) 1971-09-30 1972-07-31 Preparation of monohaloacetyl halides
US27628072 1972-07-31
US27628272 1972-07-31
US27796172A 1972-08-04 1972-08-04
US27796172 1972-08-04

Publications (2)

Publication Number Publication Date
DK153137B true DK153137B (en) 1988-06-20
DK153137C DK153137C (en) 1988-12-19

Family

ID=27575105

Family Applications (1)

Application Number Title Priority Date Filing Date
DK483172A DK153137C (en) 1971-09-30 1972-09-29 METHOD OF PREPARING MONOHALOGENACYL HALOGENIDES

Country Status (9)

Country Link
JP (1) JPS4840712A (en)
BE (1) BE789467A (en)
CA (1) CA985705A (en)
CH (1) CH576412A5 (en)
DK (1) DK153137C (en)
EG (1) EG11089A (en)
GB (1) GB1374323A (en)
IL (1) IL40466A (en)
IT (1) IT968446B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK152647B (en) * 1973-07-16 1988-04-05 Monsanto Co METHOD OF PREPARING MONOHALOGENACYL HALOGENIDES

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831768Y2 (en) * 1977-09-06 1983-07-14 ゼネラルパッカ−株式会社 Automatic collection device for unopened or unfilled packaging bags in packaging equipment
JPS5442280A (en) * 1977-09-09 1979-04-04 Tenchi Kikai Kk Device for separating each predetermined quantity of linked wrapped articles in seal wrapping machine
JPS5460086A (en) * 1977-10-20 1979-05-15 Kunio Tousaka Method of preventing erroneous cutting of small bag continuous band
WO1998050339A1 (en) * 1997-05-07 1998-11-12 Idemitsu Petrochemical Co., Ltd. 1-ACETOXY-3-n-PROPOXYPROPANE AND ETHER ALCOHOL SOLVENTS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2862964A (en) * 1955-07-12 1958-12-02 Distillers Co Yeast Ltd Process for producing monochloro acetyl chloride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2862964A (en) * 1955-07-12 1958-12-02 Distillers Co Yeast Ltd Process for producing monochloro acetyl chloride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK152647B (en) * 1973-07-16 1988-04-05 Monsanto Co METHOD OF PREPARING MONOHALOGENACYL HALOGENIDES

Also Published As

Publication number Publication date
IL40466A (en) 1976-04-30
IT968446B (en) 1974-03-20
CA985705A (en) 1976-03-16
JPS4840712A (en) 1973-06-15
EG11089A (en) 1976-12-31
GB1374323A (en) 1974-11-20
CH576412A5 (en) 1976-06-15
DK153137C (en) 1988-12-19
BE789467A (en) 1973-03-29
IL40466A0 (en) 1972-11-28

Similar Documents

Publication Publication Date Title
US2410541A (en) Polyhalogenated olefins
Chen et al. Studies on fluoroalkylation and fluoroalkoxylation. Part 33. Direct trifluoromethylation of aryl halides with fluorosulphonyldifluoromethyl iodide in the presence of copper: an electron transfer induced process
DK153137B (en) METHOD OF PREPARING MONOHALOGENACYL HALOGENIDES
Fujisawa et al. Facile synthesis of (S)-β-hydroxy-β-trichloromethylated aromatic ketones by the regioselective ring cleavage of chiral β-trichloromethyl-β-propiolactone under the Friedel-Crafts conditions
CN109809959B (en) Preparation method of 1,1,1,2, 3-pentachloropropane
JPS5912093B2 (en) Process for producing cyclobutanone or cyclobutenone
SU1075972A3 (en) Process for preparing derivatives of beta-dihaloidvinylcyclopropane
Okazoe et al. A new route to perfluorinated vinyl ether monomers: synthesis of perfluoro (alkoxyalkanoyl) fluorides from non-fluorinated compounds
US3576860A (en) Preparation of chloroacetyl chloride
JPH0564131B2 (en)
DK153082B (en) METHOD OF PREPARING MONOHALOGENACYL HALOGENIDES
JP4467890B2 (en) Chloromethylation of thiophene
US4166075A (en) Method of preparing xylenes chlorinated in the nucleus
CA1090825A (en) 2-(2&#39;,2&#39;-dihalovinyl)-cyclobutanones and 2-(2&#39;,2&#39;,2&#39;- trihaloethyl)-cyclobutanones
JPS6312048B2 (en)
Knunyants et al. Perfluorinated α-oxides
US2862964A (en) Process for producing monochloro acetyl chloride
US4001307A (en) Preparation of haloesters from dienes
US4876404A (en) Preparation of dichlorotrifluoromethyltoluenes including novel isomers
JPS62129250A (en) Production of 2-substituted phenylpropionic acid or ester thereof
JPS59106438A (en) Manufacture of 1,3-diacetoxy-2-methylenepropane
US3882173A (en) Preparation of monohaloacyl halides
SU1004346A1 (en) Process for producing monocholoroacetic acid
JP2013189402A (en) Production method for polychloropropane
JPH06206835A (en) Preparation of halogenated aromatic compound

Legal Events

Date Code Title Description
PBP Patent lapsed