DK153134B - CRYSTALLIC BORN SILICATE TO USE AS A CATALYST OR CATALYST PRECURSOR FOR CONVERSION OF CARBON HYDROIDS AND PROCEDURE FOR SUCH CONVERSION - Google Patents

CRYSTALLIC BORN SILICATE TO USE AS A CATALYST OR CATALYST PRECURSOR FOR CONVERSION OF CARBON HYDROIDS AND PROCEDURE FOR SUCH CONVERSION Download PDF

Info

Publication number
DK153134B
DK153134B DK461477AA DK461477A DK153134B DK 153134 B DK153134 B DK 153134B DK 461477A A DK461477A A DK 461477AA DK 461477 A DK461477 A DK 461477A DK 153134 B DK153134 B DK 153134B
Authority
DK
Denmark
Prior art keywords
approx
range
crystalline
conversion
borosilicate
Prior art date
Application number
DK461477AA
Other languages
Danish (da)
Other versions
DK461477A (en
DK153134C (en
Inventor
Marvin Ray Klotz
Original Assignee
Amoco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amoco Corp filed Critical Amoco Corp
Priority claimed from KR7702403A external-priority patent/KR820000228B1/en
Publication of DK461477A publication Critical patent/DK461477A/en
Publication of DK153134B publication Critical patent/DK153134B/en
Application granted granted Critical
Publication of DK153134C publication Critical patent/DK153134C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/86Borosilicates; Aluminoborosilicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/1009Compounds containing boron and oxygen having molecular-sieve properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/2206Catalytic processes not covered by C07C5/23 - C07C5/31
    • C07C5/2213Catalytic processes not covered by C07C5/23 - C07C5/31 with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2729Changing the branching point of an open chain or the point of substitution on a ring
    • C07C5/2732Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2729Changing the branching point of an open chain or the point of substitution on a ring
    • C07C5/2732Catalytic processes
    • C07C5/2735Catalytic processes with metal oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/86Borosilicates; Aluminoborosilicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

DK 153134 BDK 153134 B

Opfindelsen angår et krystallinsk borsilicat til anvendelse som katalysator eller katalysatorpræcursor ved konvertering af car-bonhydrider samt en fremgangsmåde til konvertering af carbonhydrider under anvendelse af katalysatoren eller katalysatorpræcursoren. Udtrykt på en anden måde angår opfindelsen nye krystallinske molekylsigter af borsilicater med katalytiske egenskaber og forskellige konverteringsprocesser for carbonhydrider under anvendelse af sådanne krystallinske borsilicater. Relevante patenter kan findes i klasserne 423-326, 252-458 og 260-668 i USA-patentklassifikationen.The invention relates to a crystalline borosilicate for use as a catalyst or catalyst precursor in the conversion of hydrocarbons and a process for the conversion of hydrocarbons using the catalyst or catalyst precursor. In another way, the invention relates to novel crystalline molecular sieves of borosilicates having catalytic properties and various hydrocarbon conversion processes using such crystalline borosilicates. Relevant patents can be found in classes 423-326, 252-458 and 260-668 of the United States Patent Classification.

Det er kendt, at både naturlige og syntetiske zeolitmaterialerIt is known that both natural and synthetic zeolite materials

DK 153134 BDK 153134 B

2 har katalytisk aktivitet ved mange carbonhydridprocesser. Zeolitmaterialerne er ordnede porøse krystallinske aluminosilicater med en bestemt struktur med store og små hulrum, der er indbyrdes forbundet med kanaler. Hulrummene og kanalerne gennem det krystallinske materiale er i almindelighed ensartet i størrelse, hvilket muliggør selektiv separation af carbonhydrider. Som følge deraf er disse materialer i mange tilfælde klassificeret som molekyl-sigter og anvendes udover til de adsorptive, selektive processer på grund af visse katalytiske egenskaber. De katalytiske egenskaber af disse materialer påvirkes også i et vist omfang af størrelsen af de molekyler, som man selektivt lader trænge ind i den krystalstruktur, som antages at blive bragt i kontakt med aktive katalytiske positioner indenfor den ordnede struktur af disse materialer.2 has catalytic activity in many hydrocarbon processes. The zeolite materials are ordered porous crystalline aluminosilicates with a specific structure with large and small voids interconnected by channels. The voids and channels through the crystalline material are generally uniform in size, allowing selective separation of hydrocarbons. As a result, these materials are in many cases classified as molecular sieves and used in addition to the adsorptive selective processes due to certain catalytic properties. The catalytic properties of these materials are also affected to a certain extent by the size of the molecules which are selectively allowed to enter the crystal structure which is believed to be brought into contact with active catalytic positions within the ordered structure of these materials.

I almindelighed omfatter betegnelsen "molekylsigte" et bredt sortiment af krystallinske materialer, der indeholder positive ioner, hvorved disse materialer både kan være af naturlig og syntetisk art. De er almindeligvis karakteriseret som krystallinske aluminosilicater, skønt andre krystallinske materialer er omfattet af den brede definition. De krystallinske aluminosilicater er fremstillet af netværk af tetraedre af SiO^ og AlO^ dele, hvori silicium- og aluminiumatomerne er tværbundet ved at dele oxygenatomer. Elektrovalensen af aluminiumatomet er afbalanceret ved anvendelsen af en positiv ion, f.eks. alkalimetaller eller jord-alkalimetaller.In general, the term "molecular sieve" encompasses a wide range of crystalline materials containing positive ions, whereby these materials can be both natural and synthetic. They are generally characterized as crystalline aluminosilicates, although other crystalline materials are included in the broad definition. The crystalline aluminosilicates are made from networks of tetrahedrons of SiO₂ and AlO ^ moieties in which the silicon and aluminum atoms are cross-linked by dividing oxygen atoms. The electrovalence of the aluminum atom is balanced by the use of a positive ion, e.g. alkali metals or alkaline earth metals.

Kendte udviklinger har resulteret i dannelsen af mange syntetiske, krystallinske materialer. Krystallinske aluminosilicater er de mest udbredte og er i patentlitteraturen og i offentliggjorte tidsskrifter betegnet ved bogstaver eller andre hensigtsmæssige symboler. Eksempler på disse materialer er Zeolit A (U.S. patent 2.882.243), Zeolit X (U.S. patent 2.882.244), Zeolit Y (U.S. patent 3.130.007), Zeolit ZSM-5 (U.S. patent 3-702.886), Zeolit ZSM-11 (U.S. patent 3.709-979) og zeolit zsm-12 (U.S. patent 3.832.449).Known developments have resulted in the formation of many synthetic crystalline materials. Crystalline aluminosilicates are the most widespread and are denoted by letters or other appropriate symbols in patent literature and in published journals. Examples of these materials are Zeolite A (US Patent 2,882,243), Zeolite X (US Patent 2,882,244), Zeolite Y (US Patent 3,130,007), Zeolite ZSM-5 (US Patent 3-702,886), Zeolite ZSM 11 (US Patent 3,709-979) and Zeolite zsm-12 (US Patent 3,832,449).

Relevant, kendt teknik er det ovenfor angivne USA patent nr.Relevant prior art is the above-mentioned United States patent no.

DK 153134BDK 153134B

3 3.702.886, der angår den krystallinske aluminosilicat-zeolit ZSM-5 og fremgangsmåden til fremstilling deraf. Dette patent er begrænset til produktionen af en zeolit, hvori aluminiumeller galliumoxider er tilstede i den krystallinske struktur sammen med silicium- eller germaniumoxider. Man omsætter det sidst angivne med det først angivne i et specifikt forhold til fremstilling af en klasse af zeolitter betegnet ZSM-5, som er begrænset til krystallinske alumino- eller gallo-silicater eller -germanater, og som udviser et specificeret røntgenstrålediffraktionsmønster. De ovenfor angivne ZSM-11 og ZSM-12 patenter er ligeledes begrænset til krystallinske alumino- eller gallo-silicater eller -germanater, der også udviser specificerede røntgenstrålediffraktionsmønstre .No. 3,702,886, which relates to the crystalline aluminosilicate zeolite ZSM-5 and the process for its preparation. This patent is limited to the production of a zeolite in which aluminum or gallium oxides are present in the crystalline structure together with silicon or germanium oxides. The latter is reacted with the first stated in a specific relation to the preparation of a class of zeolites designated ZSM-5 which is limited to crystalline alumino or gallo silicates or germates and which exhibits a specified X-ray diffraction pattern. The above-mentioned ZSM-11 and ZSM-12 patents are also limited to crystalline alumino or gallo silicates or germates which also exhibit specified X-ray diffraction patterns.

Ved fremstillingen af ZSM materialerne gør man brug af et blandet basesystem, hvori man blander natriumaluminat og et silicium-holdigt materiale sammen med natriumhydroxid og en organisk base, såsom tetrapropylammoniumhydroxid eller tetrapropylammoniumbro-mid, under specificerede reaktionsbetingelser til dannelse af det ønskede krystallinske aluminosilicat.In the preparation of the ZSM materials, a mixed base system is used in which sodium aluminate and a silicon-containing material are mixed with sodium hydroxide and an organic base such as tetrapropylammonium hydroxide or tetrapropylammonium bromide under specified reaction conditions to form the desired crystalline aluminosilicate.

U.S. patent nr. 3.941.871 angår et organosilicat med meget lidt aluminium i sin krystallinske struktur og med et røntgenstrålediffraktionsmønster af lignende art som ZSM-5 materialets. Dette patent anses for at være relevant, kendt teknik.U.S. Patent No. 3,941,871 relates to an organosilicate having very little aluminum in its crystalline structure and having an X-ray diffraction pattern similar to that of the ZSM-5 material. This patent is considered to be relevant prior art.

Anden relevant kendt teknik omfatter USA patenterne 3-329.480 og 3.329-481, der har relation til henholdsvis "zircono-silicater" og "titano-silicater”.Other relevant prior art includes United States patents 3-329,480 and 3,329-481 relating to "zirconium silicates" and "titano silicates, respectively."

I relation til den ovenfor anførte kendte teknik kan det anføres, at der foreligger et behov for katalysatorer, hvis stabilitet ved høje temperaturer eller i nærværelse af andre normale inaktiveringsmidler gør dem mere velegnet end hidtil kendte katalysatorer ved katalytisk krakning og hydrokrakning.In relation to the prior art, it may be stated that there is a need for catalysts whose stability at high temperatures or in the presence of other normal inactivating agents makes them more suitable than prior art catalysts for catalytic cracking and hydrocracking.

Det krystallinske borsilicat ifølge opfindelsen er ejendommeligtThe crystalline borosilicate of the invention is peculiar

DK 153134 BDK 153134 B

4 ved det i den kendetegnende del af krav 1 angivne. Det har overraskende vist sig, at stabiliteten af disse borsilicater er bedre end svarende til kendt teknik, og at borsilicaterne ifølge opfindelsen derfor er mere velegnet som katalysatorer eller kataly-satorpræcursorer, især ved katalytisk krakning og hydrokrakning.4 in accordance with the characterizing part of claim 1. Surprisingly, it has been found that the stability of these borosilicates is better than prior art and that the borosilicates according to the invention are therefore more suitable as catalysts or catalyst precursors, especially in catalytic cracking and hydrocracking.

Fremgangsmåden ifølge opfindelsen til konvertering af carbonhy-drider er ejendommelig ved det i den kendetegnende del af krav 8 angivne.The process of the invention for the conversion of hydrocarbons is characterized by the method of claim 8.

Man foretrækker de udførelsesformer for opfindelsen, hvor W = 0.Preferred are the embodiments of the invention where W = 0.

Den foreliggende opfindelse relaterer således til en ny familie af stabile, syntetiske, krystallinske materialer, der er karakteriseret som borsilicater, der er betegnet som AMS-lB med et specificeret røntgenstrålediffraktionsmønster. De krævede AMS-lB krystallinske borsilicater dannes ved at omsætte et borsalt med et siliciumholdigt materiale i et basisk medium.Thus, the present invention relates to a new family of stable, synthetic crystalline materials characterized as borosilicates designated as AMS-1B with a specified X-ray diffraction pattern. The required AMS-1B crystalline borosilicates are formed by reacting a borosal with a silicon-containing material in a basic medium.

Ved en anden udførelsesform for opfindelsen har W en værdi mellem ca. 0,6 og ca. 0,9.In another embodiment of the invention, W has a value between ca. 0.6 and approx. 0.9.

Den foreliggende opfindelse angår således et nyt, syntetisk AMS-lB krystallinsk borsilicat. Denne familie af AMS-lB krystallinske borsilicater har et specificeret røntgenstrålediffraktionsmønster, som er vist i de følgende tabeller. De AMS-lB krystallinske borsilicater kan i almindelighed hvad angår molforholdet mellem oxiderne karakteriseres i henhold til følgende formel I: [0.9 + 0.23 M^O : B^ : YSiC>2 : ZH20.Thus, the present invention relates to a novel synthetic AMS-1B crystalline borosilicate. This family of AMS-1B crystalline borosilicates has a specified X-ray diffraction pattern, which is shown in the following tables. The AMS-1B crystalline borosilicates can generally be characterized in terms of the molar ratio of the oxides according to the following formula I: [0.9 + 0.23 M 2 O: B 2: YSiC> 2: ZH 2 O.

I et andet tilfælde kan det her omhandlede AMS-lB krystallinske borsilicat hvad angår molforholdet af oxider for det krystallinske materiale, der ikke endnu er aktiveret eller calcineret ved høje temperaturer, karakteriseres i henhold til den følgende formel: [0.9 + 0.2].(WR20 + (l-W)M2^n0) : B^ : YSi02 : ZH20In another case, the present AMS-1B crystalline borosilicate as regards the molar ratio of oxides to the crystalline material not yet activated or calcined at high temperatures can be characterized according to the following formula: [0.9 + 0.2]. (WR20 + (lW) M2 ^ n0): B ^: YSi02: ZH20

DK 153134 BDK 153134 B

5 hvor W er større end 0.5 where W is greater than 0.

Den oprindelige kation, "M”, i de ovenfor angivne formler kan i det mindste delvist i henhold til teknikker, der er kendt på området, erstattes med andre kationer ved hjælp af ionbyttere. Foretrukne erstattende kationer omfatter tetraalkylammonium-kat-ioner, metalioner, ammoniumioner, hydrogenioner og blandinger af disse. Særligt foretrukne kationer er de, der gør de AMS-1B krystallinske borosilicater katalytisk aktive, især til carbon-hydrid-konvertering. Disse materialer omfatter hydrogen, de sjældne jordarters metaller, aluminium, metaller fra gruppe IB, IIB og VIII af det periodiske system, ædle metaller, mangan, osv., og andre katalytisk aktive materialer og metaller, der er kendt på området. De katalytisk aktive komponenter kan være tilstede i enhver koncentration mellem ca. 0,05 og ca. 25 vægt-% af det AMS-1B krystallinske borosilicat.The original cation, "M", in the above formulas, can be replaced, at least partially, by other techniques known in the art by ion exchangers. Preferred replacement cations include tetraalkylammonium cations, metal ions, Particularly preferred cations are those which render the AMS-1B crystalline borosilicates catalytically active, especially for hydrocarbon conversion, which include hydrogen, the rare earth metals, aluminum, Group IB metals, IIB and VIII of the Periodic Table, Precious Metals, Manganese, etc., and other catalytically active materials and metals known in the art, The catalytically active components may be present in any concentration between about 0.05 and about 25 % by weight of the AMS-1B crystalline borosilicate.

Medlemmer af familien af AMS-lB krystallinske borsilicater udviser en specificeret og særpræget krystallinsk struktur. De rapporterede røntgenstrålediffraktionsmønstre, der frembringes af disse materialer, blev opnået under anvendelse af standardteknik i forbindelse med pulverdiffraktionsmønstre. Røntgenstrå-lediffraktometeret var et Phillips-instrument, der gjorde brug af kobber K alfa udstråling i forbindelse med et AMR focuserende mo-nochrometer og en theta kompenserende spalte, hvori åbningen deraf varierer med theta-vinklen.Members of the family of AMS-1B crystalline borosilicates exhibit a specified and distinctive crystalline structure. The reported X-ray diffraction patterns generated by these materials were obtained using standard technique in connection with powder diffraction patterns. The X-ray LED diffractometer was a Phillips instrument utilizing copper K alpha radiation in conjunction with an AMR focusing mono-chronometer and a theta compensating column, the aperture thereof varying with the theta angle.

Udgangssignalet fra diffraktometeret blev behandlet gennem en hardware/software enhed af Canberra-typen og rapporteret ved hjælp af et strimmelkort og tabulerede, trykte oversigter. Den kompenserende spalte og Canberra-enheden har tendens til at forøge forholdene top/baggrund, mens de reducerer toppens intensiteter ved lave theta-vinkler ,/høj d {k)J og forøger toppenes intensiteter ved høje theta-vinkler ,/Iav d (Å)/. Alle de røntgenstrålemønstre, der er rapporteret her, gjorde brug af den ovenfor an-The output of the diffractometer was processed through a Canberra-type hardware / software unit and reported using a strip chart and tabulated, printed outlines. The compensating gap and the Canberra unit tend to increase peak / background ratios while reducing peak intensities at low theta angles, / high d {k) J and increasing the intensities of peaks at high theta angles, / Iav d (Å ) /. All of the X-ray patterns reported here made use of the above

DK 153134 BDK 153134 B

6 givne analytiske teknik.6 given analytical technique.

De relative intensiteter, der er rapporteret, blev beregnet som (100 I/lQ), hvor I er intensiteten af den stærkest rapporterede top, og hvor I er den værdi, der faktisk aflæses for den særlige interplanare afstand.The relative intensities reported were calculated as (100 I / lQ), where you are the intensity of the strongest reported peak and where you are the value actually read for the particular interplanar distance.

For at lette rapporteringen tildelte man arbitrært de relative intensiteter de følgende værdier: I/I Tildelt styrkeTo facilitate reporting, the relative intensities were arbitrarily assigned the following values: I / I Assigned Strength

mindre end 10 = VWless than 10 = VW

10-19 = ¥10-19 = ¥

20-39 = M20-39 = M

40-70 = MS40-70 = MS

større end 70 = VSgreater than 70 = VS

Et typisk røntgenstrålediffraktionsmønster, der udviser de signifikante linjer, der har relative intensiteter på 11 eller derover for et AMS-1B krystallinsk borosilicat efter calcinering ved 535°C, er vist i den følgende tabel I.A typical X-ray diffraction pattern showing the significant lines having relative intensities of 11 or greater for an AMS-1B crystalline borosilicate after calcination at 535 ° C is shown in the following Table I.

Tabel ITable I

Interplanar afstand Relativ Tildelt d (Å) intensitet styrkeInterplanar Distance Relative Assigned d (Å) intensity strength

11.3 + 0.2 38 M11.3 + 0.2 38 M

10.1 + 0.2 30 m 6,01 + 0.07 14 w 4.35 + 0.05 11 w 4.26 + 0.05 14 w10.1 + 0.2 30 m 6.01 + 0.07 14 w 4.35 + 0.05 11 w 4.26 + 0.05 14 w

3.84 + 0.05 100 VS3.84 + 0.05 100 US

3.72 + 0.05 52 MS3.72 + 0.05 52 MS

3.65 + 0.05 31 M3.65 ± 0.05 31 M

3.44 + 0.05 14 Vj3.44 + 0.05 14 Vj

3.33+0.05 16 W3.33 + 0.05 16 W

3.04 + 0.05 16 W3.04 + 0.05 16 W

2.97 + 0.02 22 M2.97 + 0.02 22 M

2.48 + 0.02 11 w2.48 + 0.02 11 w

1.99 + 0.02 20 M1.99 ± 0.02 M

1.66 + 0.02 121.66 + 0.02 12

DK 153134 BDK 153134 B

77

Et AMS-1B borsilicat, der kun har været udsat for mild tørring ved 165°C (som produceret materiale) udviser et røntgenstrålediffraktionsmønster, der har følgende signifikante linier;An AMS-1B borosilicate which has only been subjected to mild drying at 165 ° C (as produced material) exhibits an X-ray diffraction pattern having the following significant lines;

Tabel IITable II

Interplanar afstand Relativ Tildelt d (Å) intensitet styrkeInterplanar Distance Relative Assigned d (Å) intensity strength

11.4 + 0.2 19 W11.4 + 0.2 19 W

10.1 + 0.2 17 W10.1 + 0.2 17 W

3.84 + 0.05 100 VS3.84 + 0.05 100 US

3.73 + 0.05 43 MS3.73 + 0.05 43 MS

3.66 + 0.05 26 M3.66 ± 0.05 26 M

3.45 + 0.05 11 W3.45 + 0.05 11 W

3.32 + 0.05 13 W3.32 + 0.05 13 W

3.05 + 0.05 12 W3.05 + 0.05 12 W

2.98 + 0.02 16 W2.98 ± 0.02 16 W

1.99 + 0.02 10 - V1.99 + 0.02 10 - V

1.66 + 0.02 20 M1.66 ± 0.02 M

De registreringer på strimmelkortet af det calcinerede borsilicat, som er rapporteret i tabel I, viste, at dette materiale udviste følgende røntgenstrålediffraktionslinier:The recordings on the strip map of the calcined borosilicate reported in Table I showed that this material exhibited the following X-ray diffraction lines:

DK 153134 BDK 153134 B

88

Tabel IIITable III

Interplanar afstand d (Å)Interplanar distance d (Å)

Forsøg 1 Forsøg 2XExperiment 1 Experiment 2X

11.3 11.2 10.2 10.0 7.49 7.37 . 6.70 6.70 6.41 6.36 6.02 5.98 5.71 5.67 5.60 5.57 5.01 5.34 4.62 5.01 4.37 4.62 4.27 4.35 4.00 4.25 3.85 4.00 3.72 3.85 3.64 3.70 3.48 3.64 3.44 3.46 3.30 3.42 3.14 3.30 3.04 3.25 2.98 3.12 2.86 3.04 2.71 2.97 2.60 2.86 2.48 2.71 2.39 2.32 2,22 2.00 1.99 1.95 1.91 1,86 1.75 1.66 x Dette forsøg afsluttedes ved 2.71 d (Å)11.3 11.2 10.2 10.0 7.49 7.37. 6.70 6.70 6.41 6.36 6.02 5.98 5.71 5.67 5.60 5.57 5.01 5.34 4.62 5.01 4.37 4.62 4.27 4.35 4.00 4.25 3.85 4.00 3.72 3.85 3.64 3.70 3.48 3.64 3.44 3.46 3.30 3.42 3.14 3.30 3.04 3.25 2.98 3.12 2.86 3.04 2.71 2.97 2.60 2.86 2.48 2.71 2.39 2.32 2.32 22 2.00 1.99 1.95 1.91 1.86 1.75 1.66 x This trial ended at 2.71 d (Å)

DK 153134BDK 153134B

99

De AMS-1B krystallinske borsilicater er anvendelige ved katalytiske kraknings- og hydrokrakningsprocesser. De synes at udvise relativt nyttige katalytiske egenskaber ved andre råolieraffineringsprocesser, såsom isomeriseringen af normale paraffiner og naphthener, reformeringen af visse udgangsmaterialer, isomeriseringen af aromater, især isomeriseringen af polyalkylsubstituerede aromater, såsom orto-xylen, disproportioneringen af aromater, såsom toluen, til dannelse af blandinger af andre mere værdifulde produkter, herunder benzen, xylen og andre højere methyl substituerede benzener, og hydrodealkylering. Når de anvendes som katalysator ved isomeriseringsprocesser med passende kationer anordnet på de ionudbyttelige positioner indeni det AMS-1B krystallinske borsilicat, opnås der rimeligt høje selektiviteter til fremstilling af ønskede isomere.The AMS-1B crystalline borosilicates are useful in catalytic cracking and hydrocracking processes. They appear to exhibit relatively useful catalytic properties of other crude oil refining processes, such as the isomerization of normal paraffins and naphthenes, the reforming of certain starting materials, the isomerization of aromatics, in particular the isomerization of polyalkyl substituted aromatics such as orthoxylene, the disproportionation of aromatics such as mixtures of other more valuable products including benzene, xylene and other higher methyl substituted benzenes, and hydrodealkylation. When used as a catalyst in isomerization processes with appropriate cations arranged at the ion-exchangeable positions within the AMS-1B crystalline borosilicate, reasonably high selectivities are obtained to produce desired isomers.

Aktiviteten af disse materialer, der skal være stabile ved høje temperaturer eller i nærværelse af andre deaktiverende midler, synes at gøre denne klasse af krystallinske materialer relativt værdifulde til drift ved høj temperatur, herunder de cykliske typer af fluidiseret katalytisk krakning eller andre behandlinger.The activity of these materials, which must be stable at high temperatures or in the presence of other deactivating agents, seems to make this class of crystalline materials relatively valuable for high temperature operation, including the cyclic types of fluidized catalytic cracking or other treatments.

De AMS-1B krystallinske borsilicater kan anvendes som katalysatorer eller som adsorbenter, uanset om de foreligger på alkali-metalform, på ammoniumform, hydrogenform eller enhver anden monovalent eller multivalent kationisk form. Man kan anvende blandinger af kationer. De AMS-1B krystallinske borsilicater kan også anvendes i grundig kombination med en hydrogenerende komponent, såsom wolfram, vanadin, molybdæn, rhenium, nikkel, cobalt, chrom, mangan eller et ædelt metal, såsom platin eller palladium eller sjældne jordarters metaller, hvor en hydrogenerings-dehydrogene-rings-funktion skal udøves. Sådanne komponenter kan udveksles i blandingen ved de kationiske positioner, der er repræsenteret ved betegnelsen "M" i de ovehfor angivne formler, imprægneres deri eller blandes grundigt fysisk dermed. I et eksempel kan platin indføres på borsilicatet med en ion, der indeholder metallisk platin.The AMS-1B crystalline borosilicates can be used as catalysts or as adsorbents, whether in alkali metal form, in ammonium form, hydrogen form or any other monovalent or multivalent cationic form. Mixtures of cations can be used. The AMS-1B crystalline borosilicates can also be used in thorough combination with a hydrogenating component such as tungsten, vanadium, molybdenum, rhenium, nickel, cobalt, chromium, manganese or a precious metal such as platinum or palladium or rare earth metals, where a hydrogenation -dehydrogenation function must be exercised. Such components may be exchanged in the mixture at the cationic positions represented by the term "M" in the above formulas, impregnated therein or thoroughly mixed therewith. In one example, platinum can be introduced onto the borosilicate with an ion containing metallic platinum.

Den organiske kation, der er associeret med det AMS-lB krystal- DK 1531348 10 linske borsilicat, kan erstattes, som anført i det foregående, med mange forskellige andre kationer i henhold til kendt teknik.The organic cation associated with the AMS-1B crystalline boric silicate can be replaced, as stated above, with many other other prior art cations.

Kendt ionbytningsteknik er beskrevet i mange patenter, herunder U.S. patent nr. 3.140.249, U.S. patent nr. 3.140.251 og U.S. patent nr. 3.140.253·Known ion exchange technique is described in many patents, including U.S. Pat. U.S. Patent No. 3,140,249, U.S. U.S. Patent No. 3,140,251 and U.S. Pat. Patent No. 3,140,253 ·

Efter ionbytning, imprægnering eller kontakt med et andet materiale til indføring af katalytisk aktive materialer inden i eller på borsilicatstrukturen kan materialet vaskes og derpå tørres ved temperaturer i intervallet mellem ca. 66 og 316°C. Det kan derpå kalcineres i luft eller nitrogen eller kombinationer af begge ved nøjagtigt regulerede temperaturer i intervallet mellem ca.After ion exchange, impregnation or contact with another material for introducing catalytically active materials within or on the borosilicate structure, the material can be washed and then dried at temperatures in the range of approx. 66 and 316 ° C. It can then be calcined in air or nitrogen or combinations of both at precisely regulated temperatures in the range of approx.

260 og ca. 816°C i forskellige tidsrum.260 and approx. 816 ° C for various periods.

Ionbytning indeni den kationiske position i det krystallinske materiale vil generelt have en relativt ubetydelig virkning på det totale røntgenstrålemønster, som det krystallinske borsili-catmateriale frembringer. Små variationer kan forekomme ved forskellige afstande på røntgenstrålemønsteret, men det totale mønster forbliver i det væsentlige det samme. Små ændringer i røntgenstrålediffraktionsmønsteret kan dog også være et resultat af behandlingsforskelle under fremstillingen af borsilicatet, idet materialet stadig vil falde indenfor den generiske klasse omfattende AMS-1B krystallinske borosilicater defineret ved deres røntgenstrålediffraktionsmønster som vist i tabel I, II og III eller i de følgende eksempler.Ion exchange within the cationic position in the crystalline material will generally have a relatively negligible effect on the overall X-ray pattern produced by the crystalline borosilicate material. Small variations may occur at different distances on the X-ray pattern, but the overall pattern remains essentially the same. However, small changes in the X-ray diffraction pattern may also result from processing differences during the preparation of the borosilicate, as the material will still fall within the generic class comprising AMS-1B crystalline borosilicates defined by their X-ray diffraction pattern as shown in Tables I, II and III or in the following Examples. .

Det her omhandlede krystallinske borsilicat kan være inkorporeret som rent borsilicat i en katalysator eller et adsorbent eller kan blandes med forskellige bindemidler eller baser i afhængighed af den tilstræbte anvendelse. I mange tilfælde kan det krystallinske borsilicat kombineres med aktive eller inaktive materialer, syntetiske eller naturligt forekommende zeolitter samt uorganiske eller organiske materialer, der ville være anvendelige til at binde borsilicatet. Andre velkendte materialer omfatter blandinger af silica, silica-alumina, alumina-soler, lerarter, såsom bentonit eller kaolin eller andre bindemidler, der er kendt påThe crystalline borosilicate of the present invention may be incorporated as pure borosilicate in a catalyst or adsorbent or may be mixed with various binders or bases, depending on the intended use. In many cases, the crystalline borosilicate can be combined with active or inactive materials, synthetic or naturally occurring zeolites as well as inorganic or organic materials which would be useful for bonding the borosilicate. Other well-known materials include mixtures of silica, silica-alumina, alumina sols, clays such as bentonite or kaolin or other binders known in the art.

DK 153134 BDK 153134 B

11 området. Det krystallinske borsilicat kan også blandes grundigt med porøse matrix-materialer, såsom silica-zirconia, silica-magnesia, silica-alumina, silica-thoria, silica-beryllia, silica-titania samt blandinger bestående af tre komponenter, som omfatter, men som ikke er begrænset til, silica-alumina-thoria, og mange andre materialer, der er kendt på området. Indholdet af krystallinsk borsilicat kan variere fra nogle få % op til 100% af det totale, færdige produkt.11 area. The crystalline borosilicate can also be thoroughly mixed with porous matrix materials such as silica zirconia, silica magnesia, silica-alumina, silica-thoria, silica-beryllia, silica-titania, and mixtures of three components comprising, but not is limited to silica-alumina-thoria, and many other materials known in the art. The content of crystalline borosilicate can range from a few% up to 100% of the total finished product.

Det AMS-1B krystallinske borsilicat kan i almindelighed fremstilles ved, at man i et vandigt medium blander oxider af bor, natrium eller ethvert andet alkalimetal og silicium, og en tetra-alkylammoniumforbindelse. De molære forhold mellem de forskellige reaktanter kan varieres betydeligt til fremstilling af de AMS-1B krystallinske borosilicater. Især kan reaktanternes molforhold udtrykt som de forskellige oxider til fremstilling af borsilica-tet variere som angivet i den følgende tabel IV.The AMS-1B crystalline borosilicate may generally be prepared by mixing in an aqueous medium oxides of boron, sodium or any other alkali metal and silicon, and a tetraalkylammonium compound. The molar ratios of the various reactants can be varied considerably to produce the AMS-1B crystalline borosilicates. In particular, the mole ratios of the reactants expressed as the various oxides for preparing the borosilicate may vary as given in the following Table IV.

Tabel IVTable IV

MolforholdMole ratio

SiC^/^O-j 5-600 (eller højere) R4N+/(R4N+ + Na+) 0,1-1 OH_/Si02 0,01-10 hvor R er alkyl og fortrinsvis propyl. De ovenfor angivne mængder og dermed koncentrationerne i det vandige medium kan varieres. Det foretrækkes i almindelighed, at molforholdet mellem vand og hydroxylionen varierer i intervallet mellem ca. 10 og ca. 500 eller derover.SiC ^ / ^O-j 5-600 (or higher) R4N + / (R4N + + Na +) 0.1-1 OH_ / SiO₂ 0.01-10 where R is alkyl and preferably propyl. The amounts indicated above and thus the concentrations in the aqueous medium may be varied. It is generally preferred that the molar ratio of water to the hydroxyl ion varies in the range of from 10 and approx. 500 or more.

Ved simpel regulering af mængden af bor (som B20^) i reaktionsblandingen er det muligt at variere det molære forhold i det sluttelige produkt i et interval fra ca. 40 til ca. 500 eller derover. I sådanne tilfælde, hvor der udøves en tilsigtet bestræbelse for at eliminere aluminium fra den krystallinskeBy simply controlling the amount of boron (such as B 2 O 3) in the reaction mixture, it is possible to vary the molar ratio of the final product in a range of approx. 40 to approx. 500 or more. In such cases where an intentional effort is made to eliminate aluminum from the crystalline

DK 153134 BDK 153134 B

12 borsilicatstruktur på grund af dens skadelige indflydelse på specielle konverteringsprocesser, kan de molære forhold SiO^/AlgO^ let overskrides 2000-3000. Dette forhold er i almindelighed kun begrænset ved tilgængeligheden af aluminiumfri råmaterialer.12 borosilicate structure due to its deleterious influence on special conversion processes, the molar ratios SiO ^ / AlgO ^ can easily be exceeded 2000-3000. This ratio is generally limited only by the availability of aluminum-free raw materials.

Molære forhold af SiC^/I^Og i det sluttelige krystallinske produkt kan variere fra ca. 4 til ca. 500 eller derover. Faktiske laboratoriepræparater under de generelle betingelser, der er beskrevet her, frembringer molære forhold Si02/B20^, der begynder omkring 40 eller derunder. Lavere forhold kan i almindelighed frembringes under anvendelse af produktionsmetoder, der stadig ligger indenfor omfanget af opfindelsen, sådan som den er beskrevet her.Molecular ratios of SiC2 / l2 and in the final crystalline product can range from about 4 to approx. 500 or more. Actual laboratory preparations under the general conditions described herein produce molar ratios of SiO 2 / B 2 O, beginning about 40 or less. Generally, lower ratios can be obtained using production methods that are still within the scope of the invention as described herein.

På basis af kendte egenskaber af morderit- og ferrierit-alumino-silicater vil de foreliggende krystallinske borsilicater have ca. 4,5 BO^-tetraedre per enhedscelle ved molære forhold SiC^/I^O^ på omkring 80. I betragtning heraf ser det ud til, at der foreligger et enkelt B0^ ved forhold omkring 500. Over det te forhold vil der foreligge mange enhedsceller, der ikke indeholder et BO4~tetraeder, og den resulterende krystallinske struktur behøver ikke nødvendigvis at kunne betragtes som et borsili-cat. Der foreligger ikke nogen etablerede kriterier for bedømmelsen af, ved hvilket molært forhold Si02/B20^ det krystallinske materiale hører op med at være et borsilicat. Det synes sikkert at antage, at indflydelsen af B0^ tetraedrene i den krystallinske struktur ved høje værdier for Si02/B20^ (over 1000 eller derover) i nogen grad reduceres, og at man ikke længere ville betegne det krystallinske materiale som et borsilicat.On the basis of known properties of killerite and ferrierite alumino silicates, the crystalline borosilicates present will have approx. 4.5 BO 2 tetrahedra per unit cell at molar ratios SiC₂ / I₂O ^ of about 80. Given this, there appears to be a single B00 at a ratio of about 500. Above that ratio, there will be many unit cells that do not contain a BO4 tetrahedron and the resulting crystalline structure need not necessarily be considered a borosilicate. There are no established criteria for assessing at what molar ratio SiO 2 / B 2 O the crystalline material ceases to be a borosilicate. It seems safe to assume that the influence of the B0 ^ tetrahedra in the crystalline structure at high values for SiO2 / B2 O2 (above 1000 or greater) is somewhat reduced and that the crystalline material would no longer be termed a borosilicate.

Under rimeligt kontrollerede betingelser under anvendelse af den ovenfor angivne information vil man fremstille det krævede AMS-1B krystallinske borsilicat. Typiske reaktionsbetingelser omfatter opvarmning af reaktanterne til en temperatur i intervallet mellem ca. 90 og ca. 250°C eller derover i et tidsrum mellem få timer og få uger eller derover. Foretrukne temperaturintervaller ligger mellem ca. 150 og ca. 180°C, i forbindelse med et tidsrum, der er nødvendigt til bundfældning af det AMS-1B krystallinske borsilicat. Særligt foretrukne betingelser omfatterUnder reasonably controlled conditions using the information given above, the required AMS-1B crystalline borosilicate will be prepared. Typical reaction conditions include heating the reactants to a temperature in the range of from 90 and approx. 250 ° C or more for a period of a few hours to a few weeks or more. Preferred temperature ranges are between approx. 150 and approx. 180 ° C, for a period of time necessary to precipitate the AMS-1B crystalline borosilicate. Particularly preferred conditions include

DK 153134BDK 153134B

13 en temperatur omkring 165°G i et tidsrum af ca. 7 dage.13 a temperature of about 165 ° G for a period of approx. 7 days.

Det således fremstillede materiale kan separeres og udvindes ved kendte metoder, såsom filtrering. Dette materiale kan tørres under milde betingelser i et tidsrum mellem få timer og få dage, ved varierende temperaturer, til dannelse af en tør kage, der kan knuses til et pulver eller til små partikler og extruderes, tabletteres eller omdannes til forme, der er velegnet til den tilstræbte anvendelse deraf. I et typisk tilfælde vil materialet fremstillet efter de milde tørringsbetingelser indeholde tetra-alkylammoniumionen inden i den faste masse, og en påfølgende aktivering eller calcinering er nødvendig, hvis det ønskes at fjerne dette materiale fra det formede produkt.The material thus prepared can be separated and recovered by known methods such as filtration. This material can be dried under mild conditions for a period of a few hours to a few days, at varying temperatures, to form a dry cake which can be crushed into a powder or into small particles and extruded, tabulated or converted into suitable molds. for the intended use thereof. In a typical case, the material prepared under the mild drying conditions will contain the tetra-alkylammonium ion within the solid mass and a subsequent activation or calcination is required if it is desired to remove this material from the molded product.

I et typisk tilfælde vil calcineringsbetingelserne ved den høje temperatur omfatte temperaturer, der ligger indenfor intervallet mellem ca. 427 og ca. 871°C eller derover. Extreme 'Calcinerings-temperaturer kan vise sig at være detrimentale for :krystalstruk-turen eller de kan totalt ødelægge den. Der foreligger i almindelighed ikke noget behov for at gå over ca. 927°C for at fjerne tetraalkylammonium-kationen fra det oprindeligt dannede krystallinske materiale.In a typical case, the high temperature calcination conditions will comprise temperatures which are within the range of ca. 427 and approx. 871 ° C or above. Extreme Calcination temperatures may prove detrimental to the crystal structure or they can completely destroy it. There is generally no need to exceed approx. 927 ° C to remove the tetraalkylammonium cation from the originally formed crystalline material.

Når det AMS-1B krystallinske borsilicat anvendes som hydrokraknings-katalysator, kan portioner af udgangsmateriale, der skal hydro-krakkes, passere over katalysatoren ved temperaturer mellem ca.When the AMS-1B crystalline borosilicate is used as a hydrocracking catalyst, portions of starting material to be hydrocracked can pass over the catalyst at temperatures between ca.

260 og ca. 454°C eller derover under anvendelse af kendte molære forhold mellem carbonhydrid og hydrogen og under anvendelse af n varierende tryk fra noget under 1 kg/cm og op til mange hundrede kg/cmz eller derover. Rumhastigheden af væsken og andre procesparametre kan varieres i overensstemmelse med kendt teknik. Rumhastigheden har dimensionen time ^ og kan være det volumen i liter af væske eller gas, som pr. time passerer gennem et givet katalysatorvolumen, divideret med katalysatorvoluminet i liter (VHSV) eller den mængde i kg af væske eller gas, som pr. time passerer gennem en given katalysatormasse, divideret med katalysatormassen i kg (WHSV).260 and approx. 454 ° C or higher using known hydrocarbon-hydrogen molar ratios and using n varying pressures from anything below 1 kg / cm and up to many hundreds of kg / cm 2 or more. The space velocity of the liquid and other process parameters can be varied according to prior art. The space velocity has the dimension hour ^ and may be the volume in liters of liquid or gas per unit volume. passing through a given catalyst volume, divided by the volume of catalyst in liters (VHSV) or the quantity in kg of liquid or gas per liter. hour passes through a given catalyst mass, divided by the catalyst mass in kg (WHSV).

DK 153134 BDK 153134 B

1414

Ved anvendelse af borsilicatet til fluidiseret katalytisk krakning kan man gøre brug af kendte driftsbetingelser, herunder temperaturer mellem ca. 260 og ca. 649°C i reaktionszonen og temperaturer mellem ca. 427 og ca. 704°C i regenerationszonen. Kontakttider, tilførte udgangsmaterialer og andre procesbetingelser er kendt på området.By using the borosilicate for fluidized catalytic cracking, known operating conditions, including temperatures between ca. 260 and approx. 649 ° C in the reaction zone and temperatures between ca. 427 and approx. 704 ° C in the regeneration zone. Contact times, starting materials and other process conditions are known in the art.

Det specificerede AMS-1B krystallinske borsilicat er også velegnet som reformeringskatalysator, der kan anvendes med de passende hydrogeneringskomponenter under velkendte reformeringsbetingelser, herunder temperaturer mellem ca. 260 og 566°C eller p derunder, manometertryk mellem noget under 1 kg/cm og op til p 21 til 70 kg/cm^ og rumhastigheder for væsken og molforhold carbonhydrid til hydrogen i overensstemmelse med dem, der er kendt på reformeringsområdet.The specified AMS-1B crystalline borosilicate is also suitable as a reforming catalyst which can be used with the appropriate hydrogenation components under well known reforming conditions, including temperatures between 260 and 566 ° C or below, gauge pressures between anything below 1 kg / cm and up to p 21 to 70 kg / cm 2, and fluid velocities and molar ratios of hydrocarbon to hydrogen according to those known in the art of reforming.

Den foreliggende blanding er også velegnet til isomerisering og disproportionering af carbonhydrider. Den er særligt anvendelig til isomerisering af xylener, og især isomeriseringen af blandede xylener til produkter, der fortrinsvis er para-xylen-produkter, i væske- eller dampfase. Isomeriseringsbetingelserne omfatter temperaturer mellem ca. 93 og 538°C, molforhold mellem hydrogen og carbonhydrid på mellem ca. 0 og ca. 20 og rumhastigheder for væsken i intervallet mellem ca. 0,01 og ca. 90 time-1. Valget af de katalytisk aktive metaller, der kan indføres i det AMS-1B krystallinske borsilicat, kan udvælges blandt enhver af de kendte på området. Nikkel synes at være særligt velegnet til isomerisering af aromater.The present mixture is also suitable for isomerization and disproportionation of hydrocarbons. It is particularly useful for the isomerization of xylenes, and in particular the isomerization of mixed xylenes into products which are preferably para-xylene products in the liquid or vapor phase. The isomerization conditions include temperatures between ca. 93 to 538 ° C, hydrogen to hydrocarbon molar ratio of about 0 and approx. 20 and space velocities for the liquid in the range of approx. 0.01 and approx. 90 hour-1. The choice of the catalytically active metals which can be introduced into the AMS-1B crystalline borosilicate can be selected from any of the known in the art. Nickel appears to be particularly well suited for the isomerization of aromatics.

De krævede AMS-1B krystallinske borsilicater kan også anvendes som adsorbenter til selektiv adsorption af specifikke isomere eller carbonhydrider i almindelighed fra en væske- eller dampstrøm .The required AMS-1B crystalline borosilicates can also be used as adsorbents for the selective adsorption of specific isomers or hydrocarbons generally from a liquid or vapor stream.

De følgende eksempler er specifikke udførelsesformer for opfindelsen.The following examples are specific embodiments of the invention.

DK 153134 BDK 153134 B

1515

Eksempel 1Example 1

Et AMS-1B krystallinsk borsilicat fremstilledes ved at opløse 0,25 g HgBO^ og 1,6 g NaOI i 60 g destilleret E^O. Derpå tilsattes 9,4 g tetra-n-propylammoniumbromid (TPABr), ©g der opløses igen. 12,7 g Ludox-AS (30% tørstoffer) blev slutteligt tilsat under kraftig omrøring. Ludox-AS er en kommercielt rekvirerbar opløsning af 70% vand og 30% Si02· Ludox er et varemærke. Ved tilsætning af Ludox fremkom der en blød gelatinøs, mælkeagtig opløsning. Denne opløsning blev anbragt i en reaktionsbombe og forseglet. Bomben blev anbragt i en 165 °C ovn og efterladt der i 7 dage. Ved slutningen af dette tidsrum blev den åbnet, og dens indhold blev filtreret. Det udvundne, krystallinske materiale blev vasket med rigelige mængder af H20, og det blev derpå tørret ved 165 °C i en ovn med forceret luft. Det tørrede materiale blev identificeret ved røntgenstrålediffraktion som æt krystallinsk materiale med det typiske AMS-1B mønster med 100% krystallinitet. Udbyttet var ca. 2 g.An AMS-1B crystalline borosilicate was prepared by dissolving 0.25 g of HgBO ^ and 1.6 g of NaOI in 60 g of distilled E₂O. Then 9.4 g of tetra-n-propylammonium bromide (TPABr) was added, and g dissolved again. Finally, 12.7 g of Ludox-AS (30% solids) was added with vigorous stirring. Ludox-AS is a commercially available solution of 70% water and 30% SiO2 · Ludox is a trademark. Upon the addition of Ludox, a soft gelatinous, milky solution was obtained. This solution was placed in a reaction bomb and sealed. The bomb was placed in a 165 ° C furnace and left there for 7 days. At the end of this time, it was opened and its contents filtered. The recovered crystalline material was washed with copious amounts of H 2 O and then dried at 165 ° C in a forced air oven. The dried material was identified by X-ray diffraction as etched crystalline material with the typical AMS-1B pattern with 100% crystallinity. The yield was approx. 2 g.

Eksempel IIExample II

I dette eksempel anvendte man det ASM-lB krystallinske borsilicat i eksempel 1 til fremstilling af en katalysator med isomeri-seringskapacitet.In this example, the ASM-1B crystalline borosilicate of Example 1 was used to prepare a catalyst with isomerization capacity.

Materialet fra eksempel I blev kalcineret ved 535 °c i luft i 4 timer for at fjerne den organiske base. Den calcinerede molekyl-sigte blev udvekslet en gang med en opløsning af 20 g NH^NO^ i 200 ml H20 og derpå endnu en gang med 20 g NH^OAc (ammoniumacetat) i 200 ml H2<j ved 88 °C i 2 timer. Det udvekslede borsilicat blev tørret og calcineret i luft ved at opvarme det til 482 °C i 4 timer ved at holde borsilicatet på 482 °C i 4 timer og ved derpå at afkøle til 38 °C i 4 timer. Det calcinerede materiale blev udvekslet med 100 ml af en opløsning af 5%The material of Example I was calcined at 535 ° C in air for 4 hours to remove the organic base. The calcined molecular sieve was exchanged once with a solution of 20 g of NH 2 NO 2 in 200 ml of H2 O and then again with 20 g of NH 2 OAc (ammonium acetate) in 200 ml of H 2 <j at 88 ° C for 2 hours. . The exchanged borosilicate was dried and calcined in air by heating it to 482 ° C for 4 hours by holding the borosilicate at 482 ° C for 4 hours and then cooling to 38 ° C for 4 hours. The calcined material was exchanged with 100 ml of a solution of 5%

Ni(NO^)2.6H^O i 2 timer ved 88 °C. Molekylsigten blev vasket med H20, og Ni+ blev fuldstændigt vasket ud af molekylsigten. Molekylsigten blev derpå tørret og calcineret igen under anvendelse af den ovenfor angivne metode. Ca. 2 g af borsilicatet blev disperge-Ni (NO 2) 2.6 H 2 O for 2 hours at 88 ° C. The molecular sieve was washed with H2 O and Ni + completely washed out of the molecular sieve. The molecular sieve was then dried and calcined again using the above method. Ca. 2 g of the borosilicate was dispersed.

DK 153134 BDK 153134 B

16 ret i 16,9 g PHF-A^O^ hydrosol (8,9$ tørstoffer) og blandet grundigt.'1 milliliter destilleret E^O og 1 ml kone. NH^OH blev blandet og tilført til opslemningen under intensiv omrøring. AMS-1B-ΑΙ^Ο^ blandingen blev anbragt i en tørreovn ved 165°C i 4 timer. Det tørrede materiale blev igen calcineret under anvendelse af den før angivne metode. Den calcinerede katalysator blev knust til 30-50 mesh og imprægneret med 2 ml 5% NiiNO^^· 6H2° ^ ^e" stilleret H20. Katalysatoren blev igen tørret og aktiveret ved en fjerde, programmeret kalcinering.16 dish in 16.9 g of PHF-A ^ O ^ hydrosol ($ 8.9 dry solids) and mix thoroughly.'1 milliliters of distilled E ^ O and 1 ml of wife. NH 2 OH was mixed and added to the slurry under intense stirring. The AMS-1B-ΑΙ ^ Ο ^ mixture was placed in a drying oven at 165 ° C for 4 hours. The dried material was again calcined using the aforementioned method. The calcined catalyst was crushed to 30-50 mesh and impregnated with 2 ml of 5% NiiNO 4 · 6H2 ° C e. Stilled H2 O. The catalyst was again dried and activated by a fourth programmed calcination.

Den calcinerede katalysator indeholdt 65 vægt-% borsilicat og 35 vægt-% amorft alumina med ca. 0,5 vægt-% af det totale tørstof som nikkel.The calcined catalyst contained 65% by weight borosilicate and 35% by weight amorphous alumina with approx. 0.5% by weight of the total dry matter as nickel.

1 g af den sigtede og aktiverede katalysator blev indført i mikro-reaktoren og sulfideret med H2S i 20 minutter ved stuetemperatur. Katalysatoren blev derpå placeret under H2 tryk og opvarmet til 316°C. Efter 1 times forløb førte man udgangsmateriale gennem mikroreaktoren under følgende betingelser svarende til en enkelt gennemgang;1 g of the sieved and activated catalyst was introduced into the micro-reactor and sulfided with H 2 S for 20 minutes at room temperature. The catalyst was then placed under H2 pressure and heated to 316 ° C. After 1 hour, starting material was passed through the microreactor under the following conditions corresponding to a single pass;

Temperatur 427°CTemperature 427 ° C

Tryk 10,5 kg/cm2Pressure 10.5 kg / cm2

HtfHSV 6,28 h-1 H/HC, molforhold 7HtfHSV 6.28 h-1 H / HC, molar ratio 7

Det væskeformede udgangsmateriale og de udgående strømme i forbindelse med denne operation er vist i det følgende. På grund af udstyrsbegrænsningerne på sigteenheden udførte og rapporterede man kun analyser på væskestrømme. Produktionen i den lette ende over denne katalysator var lav på basis af den gaschromatografi-ske analyse, der blev udført på strømmen af afgående gas fra enheden. Voluminet af afgående gas blev bestemt til ikke i væsentlig grad at reducere de totale væskeudbytter over katalysatoren.The liquid starting material and the outflows associated with this operation are shown below. Due to the equipment limitations on the sieve unit, only fluid flow analyzes were performed and reported. The light end production over this catalyst was low on the basis of the gas chromatographic analysis performed on the stream of exhaust gas from the unit. The volume of the exhaust gas was determined not to significantly reduce the total liquid yields over the catalyst.

DK 153134BDK 153134B

1717

Flydende udgangsmateriale, Flydende produkt, Komponent vægt-^_ vægt-^_ paraffiner og naphthen o,03 0 og benzen — 1,51 toluen ,0i/077 0,26 ethylbenzen 19,,71 17,35 paraxylen — 19,43 metaxylen 79,80 46,40 orthoxylen 0,38 14,96 „ * V* - 1 *Liquid Starting Material, Liquid Product, Component Weight - ^ _ Weight - ^ _ Paraffins and Naphthen o, 03 0 and Benzene - 1.51 Toluene, 0.1i / 077 0.26 Ethyl Benzene 19, 71 17.35 Paraxylene - 19.43 Methaxylene 79.80 46.40 Orthoxylene 0.38 14.96 "* V * - 1 *

kun approximative værdier Eksempel IIIonly approximate values Example III

Man fremstillede en opløsning af 600 g 1^0, 2,5 g H^BO^ og 7,5 g NaOH. 94,3 g TPABr blev tilsat til den oprindelige blanding og opløst. Derpå tilsattes 114,5 g Ludox-AS (30 vægt-% tørstoffer) til den oprindelige væskeblanding under kraftig omrøring.A solution of 600 g of 1 O, 2.5 g of H 94.3 g of TPABr were added to the original mixture and dissolved. Then, 114.5 g of Ludox-AS (30% by weight of solids) was added to the original liquid mixture with vigorous stirring.

Den resulterende blanding blev indført i en reaktionsbombe, der blev lukket. Bomben blev indført i en ovn ved 165°C i 7 dage.The resulting mixture was introduced into a closed reaction bomb. The bomb was introduced into an oven at 165 ° C for 7 days.

Efter vaskning og tørring af de udvundne faste stoffer som beskrevet i eksempel I blev det krystallinske borsilicat identificeret som AMS-1B og udviste et røntgenstrålediffraktionsmønster af lignende art som det i tabel II.After washing and drying the recovered solids as described in Example I, the crystalline borosilicate was identified as AMS-1B and exhibited an X-ray diffraction pattern similar to that of Table II.

Eksempel IVExample IV

Et borsilicat af lignende art som det, der blev fremstillet i eksempel I, blev calcineret ved ca. 593°C og derpå analyseret for at bestemme den totale sammensætning. Resultaterne er vist i det følgende.A borosilicate of a kind similar to that prepared in Example I was calcined at ca. 593 ° C and then analyzed to determine the total composition. The results are shown below.

1818

DK 153:134 BDK 153: 134 B

KomponentComponent

Si02, vægt-9é 94,90 B203 1,06SiO 2, weight-9é 94.90 B 2 O 3 1.06

Na20 0,97 A1203 0,057Na2 0.97 Al2 O3 0.057

Fe203 0,029Fe2 O3 0.029

Flygtige materialerx 2,984Volatile materialsx 2,984

Total 100,000Total 100,000

Molforhold S102/B203 104,5Mole ratio S102 / B203 104.5

Na20/B203 1,0Na 2 O / B 2 O 3 1.0

Si02/A1203 2824 ,4Si02 / A1203 2824, 4

Si02/Fe203 8787,0SiO2 / Fe2 O3 8787.0

Si02/(A1203 + Fe203) 2146 ,2 antaget værdi for at frembringe en totalværdi på 10090.SiO 2 / (Al 2 O 3 + Fe 2 O 3) 2146, 2 assumed value to produce a total value of 10090.

Man fremstillede andre borsilicater som generelt angivet i eksempel I, med undtagelse af, at man varierede indholdet af H3B03> hvilket resulterer i, at de molære forhold Si02./B203 varierer fra 50 til 160 eller derover før borsilicatet blev cal-cineret eller udvekslet. Efter udveksling med passende katalytiske materialer voksede det molære forhold Si02/B203 generelt til en værdi af 80-100 for et borsilicat, sådan som det var fremstillet, hvilket udviste et molært forhold Si02/B202 på ca. 50.Other borosilicates were prepared as generally set forth in Example I, except that the content of H3B03 was varied, resulting in the molar ratios of SiO2. After exchange with suitable catalytic materials, the molar ratio SiO 2 / B 2 O 3 generally increased to a value of 80-100 for a borosilicate as prepared, exhibiting a molar ratio SiO 50th

Eksempel VExample V

Tre borsilicat-materialer fremstilledes på lignende måde som den i eksempel I beskrevne metode. De udvundne materialer blev calcineret ved 535°C og derpå analyseret for bor og silicium som angivet nedenfor.Three borosilicate materials were prepared in a similar manner to the method described in Example I. The recovered materials were calcined at 535 ° C and then analyzed for boron and silicon as set forth below.

DK 153134BDK 153134B

1919

Molært forholdMolar relationship

Borsilicat Vægt-% bor SiO^B^^ A 0,66 47,4 B 0,64 49,1 C 0,71 44,5Borosilicate Weight% boron SiO 2 B 2 A 0.66 47.4 B 0.64 49.1 C 0.71 44.5

Efter ionbytning med ammoniumacetat blev borsilicatet calcineret ved 535°C. Følgende blev derpå bestemt:After ion exchange with ammonium acetate, the borosilicate was calcined at 535 ° C. The following was then determined:

Molært forholdMolar relationship

Borsilicat Si02/B20^ A 75,1 B 71,2 C 64,2Borosilicate SiO 2 / B 2 O 3 A 75.1 B 71.2 C 64.2

Man gennemførte røntgenstrålediffraktionsanalyser på pulver i forbindelse med prøver af de ovenfor angivne borsilicater efter, at de var blevet calcineret ved 538°C, men før ionbytning. De angivne mønstre vises i det følgende for relative intensiteter (I/IQ) på 10 eller derover. Den ovenstående tabel ~III viser de interplanare afstande, der vises af et strimmelkort for to forsøg af borsilicat A efter calcinering ved 535°C, men før ionbytning.X-ray diffraction analyzes were performed on powder in conjunction with samples of the above borosilicates after being calcined at 538 ° C but before ion exchange. The indicated patterns are shown below for relative intensities (I / IQ) of 10 or greater. The above Table ~ III shows the interplanar distances shown by a strip map for two trials of borosilicate A after calcination at 535 ° C but before ion exchange.

DK 153134 BDK 153134 B

2020

Tabel VTable V

(Borsilicat A)(Borosilicate A)

Interplanar afstand d (Å) Relativ intensitet (I/I0) . 11.34 38 10.13 30 6.01 14 4.35 11 4.26 14 3.84 100 3.72 52 3.65 31 3.44 14 3.33 16 3.04 16 2.97 22 2.48 11 1.9S 20 1.66 12Interplanar distance d (Å) Relative intensity (I / I0). 11.34 38 10.13 30 6.01 14 4.35 11 4.26 14 3.84 100 3.72 52 3.65 31 3.44 14 3.33 16 3.04 16 2.97 22 2.48 11 1.9S 20 1.66 12

Tabel VITable VI

(Borsilicat 3)(Borosilicate 3)

Interplanar afstand d (Å) Relativ intensitet tt/i0) 11.35 41 10.14 31 6.02 15 4·26 15 3.84 100 3.72 52 3.65 33 3.44 13 3.32 15 3.04 16 2.97 22 2.48 n 1.99 20 1.66 12Interplanar distance d (Å) Relative intensity tt / i0) 11.35 41 10.14 31 6.02 15 4 · 26 15 3.84 100 3.72 52 3.65 33 3.44 13 3.32 15 3.04 16 2.97 22 2.48 n 1.99 20 1.66 12

DK 153134 BDK 153134 B

2121

Tabel YIITable YII

(Borsilicat C)(Borosilicate C)

Interplanar afstand d (Å) Relativ intensitet a/i0> 11.40 33 10.17 29 6.03 13 5.62 10 4.27 14 3.84 100 3.73 51 3.65 30 3.44 13 3.32 16 3.05 16 2.98 21 1.99 19 1.66 12Interplanar distance d (Å) Relative intensity a / i0> 11.40 33 10.17 29 6.03 13 5.62 10 4.27 14 3.84 100 3.73 51 3.65 30 3.44 13 3.32 16 3.05 16 2.98 21 1.99 19 1.66 12

Claims (12)

1. Krystallinsk borsilicat til anvendelse som katalysator eller katalysatorpræcursor ved konvertering af carbonhydrider, kendetegnet ved, at det har følgende sammensætning, hvad angår molforhold af oxider: [0,9 + 0,2] (WR2o + (l-W)M2/n0), B2o3,YSi02, ZH^ hvor 0<W£1, hvor R er tetraal kyl ammonium, fortrinsvis tetra-propylammonium, hvor M er mindst en kation med valensen n, og for W Φ 0 især en alkalimetalion, hvor 4 <Y <500, og hvor 0 < Z <160, hvilket borsilicat udviser de i tabel I eller II i beskrivelsen angivne røntgenstrålediffraktionslinier.Crystalline borosilicate for use as catalyst or catalyst precursor in hydrocarbon conversion, characterized in that it has the following composition in terms of oxide molar ratio: [0.9 + 0.2] (WR2O + (1W) M2 / n0), B2 0 and where 0 <Z <160, which borosilicate exhibits the X-ray diffraction lines listed in Tables I or II of the specification. 2. Krystallinsk borsilicat ifølge krav 1, kendetegnet ved, at M er udvalgt blandt alkylammonium, ammonium, hydrogen, metalkationer eller blandinger deraf.Crystalline borosilicate according to claim 1, characterized in that M is selected from alkyl ammonium, ammonium, hydrogen, metal cations or mixtures thereof. 3. Krystallinsk borsilicat ifølge krav 1, kendetegnet ved, at M omfatter nikkel.Crystalline borosilicate according to claim 1, characterized in that M comprises nickel. 4. Krystallinsk borsilicat ifølge krav 1, kendetegnet ved, at M omfatter hydrogen, nikkel og et alkalimetal.Crystalline borosilicate according to claim 1, characterized in that M comprises hydrogen, nickel and an alkali metal. 5. Krystallinsk borsilicat ifølge krav 1, kendetegnet ved, at M omfatter hydrogen og nikkel.Crystalline borosilicate according to claim 1, characterized in that M comprises hydrogen and nickel. 6. Krystallinsk borsilicat ifølge krav 1-5, kendetegnet ved, at Y ligger i intervallet fra ca. 20 til ca. 500, fortrinsvis fra ca. 20 til ca. 160.Crystalline borosilicate according to claims 1-5, characterized in that Y is in the range of approx. 20 to approx. 500, preferably from ca. 20 to approx. 160th 7. Krystallinsk borsilicat ifølge krav 1-6, kendetegnet ved, at Z ligger i intervallet fra 0 til ca. 40.Crystalline borosilicate according to claims 1-6, characterized in that Z is in the range of 0 to approx. 40th 8. Fremgangsmåde til konvertering af carbonhydrider, kendetegnet ved, at man under konverteringsbetingelser bringer ΕΚ 153134 Β dette carbonhydrid i kontakt med krystallinsk borsilicat ifølge krav 1 - 7, om fornødent efter, at borsilicatet er bbevet kal-cineret.Process for the conversion of hydrocarbons, characterized in that, under conversion conditions, this hydrocarbon is contacted with crystalline borosilicate according to claims 1-7, if necessary after the borosilicate has been calcined. 9. Fremgangsmåde ifølge krav 8, kendetegnet ved, at konverteringen er en krakning, og at konverteringsbetiingelserne omfatter en temperatur i intervallet fra ca. 260°C til ca. 593°C, et manometertryk i intervallet fra omkring atmosfæretryk til ca. 174 kg/cm og en rumhastighed for væske i intervallet fra ca. 0,1 til ca. 75 time ^.A method according to claim 8, characterized in that the conversion is a cracking and that the conversion conditions comprise a temperature in the range of from approx. 260 ° C to approx. 593 ° C, a pressure gauge ranging from about atmospheric pressure to approx. 174 kg / cm and a space velocity for liquid in the range of approx. 0.1 to approx. 75 hours ^. 10. Fremgangsmåde ifølge krav 8, kendetegn et ved, at konverteringen er en hydrokrakning, og at konverteringsbetingelserne omfatter en temperatur i intervallet fra ca. 232'°C til ca. 482°C, et molforhold mellem hydrogen og carbonhydrid i intervallet fra ca. 1 til ca. 100, et manometertryk i intervallet fra ca. 1,4 kg/cm til ca. 176 kg/cm og en rumhastighed for væske i intervallet fra ca. 0,1 til ca. 50 timeThe method according to claim 8, characterized in that the conversion is a hydrocracking and that the conversion conditions comprise a temperature in the range of from approx. 232 ° C to approx. 482 ° C, a hydrogen to hydrocarbon molar ratio in the range of about 1 to approx. 100, a pressure gauge in the range of approx. 1.4 kg / cm to approx. 176 kg / cm and a space velocity for liquid in the range of approx. 0.1 to approx. 50 hours 11. Fremgangsmåde ifølge krav 8, kendetegneit ved, at konverteringen er en isomerisering, og at konverteringsbetingelserne omfatter en temperatur i intervallet fra ca. 149°C til ca. 538°C, et manometertryk i intervallet fra omkring atmosfærisk tryk til ca. 211 kg/cm , en rumhastighed for væske i intervallet fra ca. 0,1 til ca. 50 time 1 og et molært forhold mellem hydrogen og carbonhydrid i intervallet fra ca. 0,1 til ca. 35.A process according to claim 8, characterized in that the conversion is an isomerization and that the conversion conditions comprise a temperature in the range of from approx. 149 ° C to approx. 538 ° C, a pressure gauge ranging from about atmospheric pressure to approx. 211 kg / cm, a space velocity of liquid in the range of approx. 0.1 to approx. 50 hours 1 and a molar ratio of hydrogen to hydrocarbon in the range of about 0.1 to approx. 35th 12. Fremgangsmåde ifølge krav 8 til katalytisk isomerisering af et xylenudgangsmateriale, kendetegnet ved, at man under isomeriseringsbetingelser omfattende en temperatur i intervallet fra ca. 121°C til ca. 482°C, et manometertryk i in-tervallet fra ca. 0 kg/cm til ca. 1000 kg/cm , et molforhold mellem hydrogen og carbonhydrid i intervallet mellem ca. 0 og ca. 20 og en rumhastighed for væske i intervallet fra ca. 1 til ca. 20 time bringer dette udgangsmateriale i kontakt med det krystallinske borsilicat ifølge krav 1-7.Process according to Claim 8 for catalytic isomerization of a xylene starting material, characterized in that under isomerization conditions, a temperature in the range of from approx. 121 ° C to approx. 482 ° C, a pressure gauge in the range of approx. 0 kg / cm to approx. 1000 kg / cm, a molar ratio of hydrogen to hydrocarbon in the range of approx. 0 and approx. 20 and a space velocity of liquid in the range of about 1 to approx. 20 hours, this starting material contacts the crystalline borosilicate of claims 1-7.
DK461477A 1976-10-18 1977-10-17 CRYSTALLIC BORN SILICATE TO USE AS A CATALYST OR CATALYST PRECURSOR FOR CONVERSION OF CARBON HYDROIDS AND PROCEDURE FOR SUCH CONVERSION DK153134C (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US73326776A 1976-10-18 1976-10-18
US73326776 1976-10-18
US83640377A 1977-09-26 1977-09-26
US83640377 1977-09-26
KR770002403 1977-10-17
KR7702403A KR820000228B1 (en) 1976-10-18 1977-10-17 Crystalline borosilicate(ams-1b)

Publications (3)

Publication Number Publication Date
DK461477A DK461477A (en) 1978-04-19
DK153134B true DK153134B (en) 1988-06-20
DK153134C DK153134C (en) 1988-12-05

Family

ID=27348150

Family Applications (1)

Application Number Title Priority Date Filing Date
DK461477A DK153134C (en) 1976-10-18 1977-10-17 CRYSTALLIC BORN SILICATE TO USE AS A CATALYST OR CATALYST PRECURSOR FOR CONVERSION OF CARBON HYDROIDS AND PROCEDURE FOR SUCH CONVERSION

Country Status (15)

Country Link
JP (1) JPS6054243B2 (en)
CA (1) CA1101633A (en)
CS (1) CS266302B2 (en)
DD (1) DD136831A5 (en)
DE (1) DE2746790A1 (en)
DK (1) DK153134C (en)
FR (1) FR2367701A1 (en)
GB (1) GB1587921A (en)
IE (1) IE46162B1 (en)
IN (2) IN146957B (en)
IT (1) IT1090043B (en)
LU (1) LU78338A1 (en)
NL (1) NL187236C (en)
PT (1) PT67167B (en)
YU (1) YU41571B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1096596B (en) * 1978-06-22 1985-08-26 Snam Progetti SYNTHETIC SILICA-BASED MATERIAL
DE2953858C2 (en) * 1978-06-22 1995-03-09 Snam Progetti Silicas modified with boron, their preparation and use
GR66589B (en) 1978-06-22 1981-03-30 Snam Progetti
DE2909929A1 (en) * 1979-03-14 1980-09-25 Basf Ag METHOD FOR PRODUCING A ZSM-5 STRUCTURAL TYPE
US4331641A (en) * 1979-11-07 1982-05-25 National Distillers & Chemical Corp. Synthetic crystalline metal silicate compositions and preparation thereof
EP0054385B1 (en) * 1980-12-12 1985-08-14 Exxon Research And Engineering Company Xylene isomerization
BR8202275A (en) * 1981-04-22 1983-04-05 Nat Distillers Chem Corp GROUP VIII CRYSTALLINE SILICATE COMPOSITION AND PROCESS FOR PREPARING A CRYSTALLINE SILICATE COMPOSITION
DE3140895A1 (en) * 1981-10-15 1983-04-28 Basf Ag, 6700 Ludwigshafen BOROSILIKATZEOLITHE- ZBH AND METHOD FOR PRODUCING CRYSTALLINE BOROSILIKATZEOLITHE (ZHB) AND USE AS A CATALYST
DE3143045A1 (en) * 1981-10-30 1983-05-05 Basf Ag, 6700 Ludwigshafen BOROSILICATE ZOLITHE-ZBH AND METHOD FOR PRODUCING CRYSTALLINE BOROSILICATE ZOLITHES (ZBH) AND THE USE THEREOF AS A CATALYST
JPH062572B2 (en) * 1982-02-19 1994-01-12 出光興産株式会社 Method for producing crystalline silicate
DE3210062A1 (en) * 1982-03-19 1983-09-29 Basf Ag, 6700 Ludwigshafen NIOBINE ALUMINO AND BOROSILICATE ZOLITHES, THE PRODUCTION AND USE THEREOF AS A CATALYST
IT1157932B (en) * 1982-05-07 1987-02-18 Anic Spa SYNTHETIC, CRYSTALLINE, POROUS MATERIALS CONSTITUTED BY SILICON AND BORON OXIDES, THEIR PREPARATION METHOD AND THEIR USES
JPS59213441A (en) * 1983-05-17 1984-12-03 Idemitsu Kosan Co Ltd Conversion catalyst for organic compound, its preparation and process for preparing organic compound using said catalyst
JPS601140A (en) * 1983-06-17 1985-01-07 Idemitsu Kosan Co Ltd Production of p-ethyltoluene
US4929759A (en) * 1983-07-27 1990-05-29 Basf Aktiengesellschaft Production of amines from an olefin and ammonia or a primary or secondary amine
US4664895A (en) * 1984-07-10 1987-05-12 Westinghouse Electric Corp. High concentration boric acid solidification process
JPS60215517A (en) * 1985-03-13 1985-10-28 モ−ビル オイル コ−ポレ−ション Crystalline aluminosilicate zeolite and converting catalyst for organic raw material
US4980326A (en) * 1985-07-01 1990-12-25 Quantum Chemical Corporation Crystalline aluminosilicate compositions, the preparation thereof and their use in the conversion of synthesis gas to low molecular weight hydrocarbons
IT1227887B (en) * 1988-12-09 1991-05-14 Eniricerche Spa ISOSTRUCTURAL POROUS CRYSTALLINE BOROSILICATE WITH LEVYNITE
DD288320A5 (en) * 1989-10-16 1991-03-28 Leuna Werke Veb METHOD FOR THE PRODUCTION OF FORMSELECTIVE CATALYSTS WITH HIGH LONG-TERM STABILITY
JP5061852B2 (en) * 2007-03-26 2012-10-31 三菱化学株式会社 Alkene production method
DE102008057134A1 (en) * 2008-11-13 2010-05-27 Süd-Chemie AG Metal-containing crystalline silicates
KR20140038946A (en) * 2011-01-12 2014-03-31 비피 코포레이션 노쓰 아메리카 인코포레이티드 Method of making and using hydrocarbon conversion catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT330930B (en) * 1973-04-13 1976-07-26 Henkel & Cie Gmbh PROCESS FOR THE PRODUCTION OF SOLID, SPILLABLE DETERGENTS OR CLEANING AGENTS WITH A CONTENT OF CALCIUM BINDING SUBSTANCES
AT334491B (en) * 1974-10-03 1976-01-25 Henkel & Cie Gmbh RUBBER SCALE AGGLOMERATE FOR DETERGENT AND CLEANING AGENTS AND THE PROCESS FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
JPS5355500A (en) 1978-05-19
LU78338A1 (en) 1978-06-12
JPS6054243B2 (en) 1985-11-29
FR2367701A1 (en) 1978-05-12
PT67167A (en) 1977-11-01
IT1090043B (en) 1985-06-18
YU250377A (en) 1983-01-21
DE2746790A1 (en) 1978-04-20
DD136831A5 (en) 1979-08-01
NL7711239A (en) 1978-04-20
DE2746790C2 (en) 1991-12-19
FR2367701B1 (en) 1980-06-13
DK461477A (en) 1978-04-19
IE46162L (en) 1978-04-18
IE46162B1 (en) 1983-03-09
NL187236B (en) 1991-02-18
PT67167B (en) 1979-03-21
CS676977A2 (en) 1989-04-14
IN146957B (en) 1979-10-20
YU41571B (en) 1987-10-31
NL187236C (en) 1991-07-16
GB1587921A (en) 1981-04-15
CA1101633A (en) 1981-05-26
CS266302B2 (en) 1989-12-13
DK153134C (en) 1988-12-05
IN148719B (en) 1981-05-23

Similar Documents

Publication Publication Date Title
DK153134B (en) CRYSTALLIC BORN SILICATE TO USE AS A CATALYST OR CATALYST PRECURSOR FOR CONVERSION OF CARBON HYDROIDS AND PROCEDURE FOR SUCH CONVERSION
CA1064890A (en) Crystalline zeolite, synthesis and use thereof
US4269813A (en) Crystalline borosilicate and process of preparation
US3972983A (en) Crystalline zeolite ZSM-20 and method of preparing same
CA2161414C (en) Synthetic layered material, mcm-56, its synthesis and use
AU592616B2 (en) New zeolite SSZ-25
US4021331A (en) Organic compound conversion by zeolite ZSM-20 catalysts
CA1179476A (en) Synthetic crystalline borosilicate compositions and preparation thereof
US4086186A (en) Crystalline zeolite ZSM-34 and method of preparing the same
US3790471A (en) Conversion with zsm-5 family of crystalline aluminosilicate zeolites
JP5576266B2 (en) Alkane aromatization using germanium-zeolite catalyst
US4285919A (en) Method of preparing a metal-cation-deficient crystalline borosilicate
US4327236A (en) Hydrocarbon-conversion catalyst and its method of preparation
GB2033358A (en) Crystalline Zeolite Compositions
US5580540A (en) Zeolite SSZ-44
EP0445969A2 (en) Catalytic hydrodealkylation of aromatics
DK163576B (en) PROCEDURE FOR THE PREPARATION OF A SILICONE OXIDE-CONTAINED CRYSTALLINE ZEOLITE MATERIAL, REACTION FOR USE IN THE PROCEDURE AND ZEOLITE OF THE TYPE ZSM-22 PREPARED BY THE PROCEDURE
JPH07504151A (en) Zeolite SSZ-35
DK166317B (en) SYNTHETIC CRYSTALLINE ZEOLITE, ZSM-57, PROCEDURE FOR PREPARING IT AND USING IT FOR THE CONVERSION OF ORGANIC COMPOUNDS
NO164830B (en) NEW CRYSTALLINE ALUMINUM SILICATES.
JPS6215486B2 (en)
JPS6341851B2 (en)
CA1281700C (en) Zeolite ssz-23
US4448675A (en) Silico-crystal ZSM-48 method of preparing same and catalytic conversion therewith
JPS5953213B2 (en) Process for producing ZSM↓-5 type zeolite in the absence of alkali metals

Legal Events

Date Code Title Description
PUP Patent expired