DK149782B - PROCEDURE FOR THE PREPARATION OF ETHANOL BY CONTINUOUS PUMPING IN A FERMENTATOR - Google Patents
PROCEDURE FOR THE PREPARATION OF ETHANOL BY CONTINUOUS PUMPING IN A FERMENTATOR Download PDFInfo
- Publication number
- DK149782B DK149782B DK037779AA DK37779A DK149782B DK 149782 B DK149782 B DK 149782B DK 037779A A DK037779A A DK 037779AA DK 37779 A DK37779 A DK 37779A DK 149782 B DK149782 B DK 149782B
- Authority
- DK
- Denmark
- Prior art keywords
- ethanol
- stream
- fermentation
- yeast
- concentration
- Prior art date
Links
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title description 136
- 238000000034 method Methods 0.000 title description 38
- 238000002360 preparation method Methods 0.000 title description 2
- 238000005086 pumping Methods 0.000 title 1
- 238000000855 fermentation Methods 0.000 description 61
- 230000004151 fermentation Effects 0.000 description 61
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 33
- 238000004821 distillation Methods 0.000 description 24
- 239000000758 substrate Substances 0.000 description 17
- 239000002994 raw material Substances 0.000 description 13
- 235000013379 molasses Nutrition 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- 235000000346 sugar Nutrition 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 239000012141 concentrate Substances 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000010802 sludge Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 235000014633 carbohydrates Nutrition 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical group CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000007700 distillative separation Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 235000016127 added sugars Nutrition 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002481 ethanol extraction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013206 minimal dilution Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 238000009923 sugaring Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
149782149782
Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af ethanol ved kontinuert forgæring af et kulhydratholdigt substrat i en fermentator, som indgår i en kontinuerlig proces-cyclus, hvorved en kontinuer-5 lig gærrecirkulation opretholdes i fermentatoren. Med fermentator forstås i denne sammenhæng fortrinsvis en enkelt forgæringstank.The present invention relates to a process for the preparation of ethanol by continuous fermentation of a carbohydrate-containing substrate in a fermenter, which is part of a continuous process cycle, thereby maintaining a continuous yeast recycling in the fermenter. In this context, fermenter is preferably meant a single fermentation tank.
Med hensyn til ethanol af teknisk type tilvirkes denne hovedsagelig ved hjælp af rent syntetiske metoder ud fra 10 råvaren ethylen, som på sin side opnås ud fra petroleums råvare eller naturgas. På grund af begrænsningerne i tilførslen åf fossile råvarer, har man påbegyndt undersøgelse af mulighederne for at udvinde brændstof og kemikalier ud fra ressourcer, der lader sig fornye igen, d.v.s. ud fra 15 ressourcer af vegetabilsk art. På denne måde har den gamle teknik til fremstilling af ethanol ud fra kulhydrater i videste forstand fået fornyet aktualitet. Ethanol har interesse både som brændstof og som .råvare. Man vil huske, at den svenske organisk/kemiske industri, som voksede frem ;efter 20 anden verdenskrig, var baseret på sulfitsprit, som blev forvandlet til ethylen og videre til ethylenoxid etc. Pen ændrede råvaresituation har således aktualiseret sådanne synteseveje. Dersom man iblander benzin op til 20?ί> Vandfri ethanol, forbedres oktantallet, og man behøver kun at fore-25 tage små forandringer på forbrændingsmotorer, for at disse skal kunne fungerer méd et sådant brændstof. I mange lande, hvor man råder over store kvantiteter af billigt sukker eller af stivelsesbaserede råvarer, foretages der et inten- . sivt udviklingsarbejde efter disse linier. Nyere forsknings-30 resultater gør det sandsynligt, at forvandling af cellulose til forgærbart sukker vil kunne blive en økonomisk realitet. Cellulose forekommer i hele verden i tilsyneladende ubegrænsede mængder, og cellulose udgør en potentielt ideel råvare til ethanolproduktion.In the case of ethanol of a technical type, it is produced mainly by purely synthetic methods from the raw material ethylene, which in turn is obtained from the petroleum raw material or natural gas. Due to the restrictions on the supply of fossil raw materials, research has begun on the possibilities of extracting fuel and chemicals from renewable resources, i.e. based on 15 resources of a vegetable type. In this way, the old technique for producing ethanol from carbohydrates has in the broadest sense been updated again. Ethanol is of interest both as a fuel and as a raw material. It will be recalled that the Swedish organic / chemical industry that emerged; after the Second World War, was based on sulfite spirit, which was transformed into ethylene and on to ethylene oxide, etc. Pen's changing raw material situation has thus updated such synthetic routes. Incorporating gasoline up to 20 µl of anhydrous ethanol improves the octane and only needs to make minor changes on internal combustion engines in order for them to function with such fuel. In many countries where large quantities of cheap sugar or starch-based raw materials are available, intensive care is taken. ongoing development work along these lines. Recent research 30 results make it likely that turning cellulose into digestible sugar could become an economic reality. Cellulose occurs worldwide in seemingly unlimited quantities, and cellulose is a potentially ideal raw material for ethanol production.
149782 2149782 2
De fleste eksisterende anlæg til fremstilling af ethanol gennem forgæring er baseret på batch-produktion, hvorved råvarer med forholdsvis lav koncentration af forgærbart 5 den dannede ethanol når en koncentration, som inhiberer forgæringen, hvilket på sin side medfører, at man opnår store mængder spildevand, som i ubehandlet tilstand kan give anledning til store miljøproblemer. Det bliver mere og mere en nødvendighed for produktionen af ethanol gennem 10 forgæring i stor skala, at man er nødt til at undgå miljøskadelige udslip ved håndtering af restprodukter fra processen på økonomisk forsvarlig måde.Most existing plants for the production of ethanol by fermentation are based on batch production, whereby raw materials having a relatively low concentration of fermentable ethanol formed reach a concentration which inhibits fermentation, which in turn results in large quantities of wastewater being obtained. which in the untreated state can give rise to major environmental problems. Increasingly, it is becoming a necessity for the production of ethanol through 10 large-scale fermentation that one has to avoid environmentally harmful emissions when handling residual products from the process in an economically sound manner.
Man kender en kontinuert forgæringsmetode til industriel anvendelse, som er baseret på et antal forgæringstanke, der 15 er såkaldt kaskadekoblede, og i hvilke man opretholder trinvis forøgede ethanolkoncentrationer og trinvis formindsket substratkoncentrationer fra tank t-il tank. Denne metode har ikke opnået nogen større udbredelse, formodentlig på grund af infektionsproblemer, samtidig med at man stadig har den 20 samme begrænsning med hensyn til koncentrationen af tilført substrat som ved den traditionelle batch-metode.A continuous fermentation method for industrial use is known, which is based on a number of fermentation tanks, which are so-called cascade coupled, in which incrementally increased ethanol concentrations are maintained and incrementally reduced substrate concentrations from tank to tank. This method has not achieved any widespread use, presumably due to infection problems, while still having the same restriction with regard to the concentration of substrate supplied as with the traditional batch method.
En alvorlig ulempe ved de hidtil anvendte metoder til etha-nolproduktion gennem forgæring kan således henføres til behovet for en vis minimal fortynding af substratet, hvilket 25 på sin side kraftigt begrænser muligheden for at opnå et tilstrækkelig koncentreret procesrestmateriale til økonomisk afsætning. Inhiberingseffekter optræder allerede ved en ethanol-koncentration på ca. 7%, hvilket sætter den praktiske grænse for substratkoncentrationen til ca. 16-18% fermenterbare kul-30 hydrater.Thus, a serious disadvantage of the methods so far used for ethanol production by fermentation can be attributed to the need for some minimal dilution of the substrate, which in turn severely limits the possibility of obtaining a sufficiently concentrated process residual material for economic disposal. Inhibition effects already occur at an ethanol concentration of approx. 7%, which sets the practical limit for the substrate concentration to approx. 16-18% fermentable carbohydrates.
En yderligere begrænsning ved den konventionelle batch-metode er den lave ethanolproduktivitet i forhold til kapitalomkostningerne. Man har derfor foreslået med henblik på at øge etha- 3 149782 nolproduktiviteten forskellige metoder til ooretholdelse af en høj gærcelle-koncentration under forgæringen, hvilket af økonomiske grunde ligeledes indebærer, at gærcellerne må holdes levende og anvendes til ethanolproduktionen i en længe-5 re tidsperiode.A further limitation of the conventional batch method is the low ethanol productivity relative to the cost of capital. Therefore, with a view to increasing ethanol productivity, various methods have been proposed for maintaining a high yeast cell concentration during fermentation, which for economic reasons also implies that yeast cells must be kept alive and used for ethanol production for a longer period of time. .
I USA patentskrift nr. 2 440 925 omtales en metode til forlængelse af en batch-forgæringscyclus og dermed tiden, i løbet af hvilken samme gær udnyttes. De toxiske virkninger på gæren af ethanol ved højere koncentration undgåes 10 derigennem, at ethanolen fjernes under batch-cyclusen. For at kunne fjerne ethanolen fjernes væske fra fermenterings-beholderen, og den strippes under vakuum, således at gæren ikke ødelægges. Fra vakuumbeholderen recirkuleres gæren til forgæringsbeholderen sammen med den væske (bærmen), hvori gæ-15 ren befinder sig i suspension. Denne uønskede akkumulering af bærme i fermentatoren fører imidlertidig hurtigt til en inhibering af gæraktiviteten, således at man må afbryde batch-processen.U.S. Patent No. 2,440,925 discloses a method of extending a batch fermentation cycle and thus the time during which the same yeast is utilized. The toxic effects on the yeast of ethanol at higher concentration are avoided by removing the ethanol during the batch cycle. In order to remove the ethanol, liquid is removed from the fermentation vessel and stripped under vacuum so that the yeast is not destroyed. From the vacuum vessel, the yeast is recirculated to the fermentation vessel together with the liquid (carrier) in which the yeast is in suspension. However, this unwanted accumulation of fermenters in the fermenter quickly leads to an inhibition of the yeast activity, so that the batch process must be interrupted.
Man har også foreslået at holde fermentatoren under vakuum og 20 at bortkoge den dannede alkohol ved tilstrækkelig lav temperatur til bibeholdelse af gærens aktivitet. En alvorlig ulempe ved denne metode er, at kuldioxid, som dannes under forgæringen, må borttages ved hjælp af vakuumapparaturet, hvilket kræver stort energiforbrug.It has also been proposed to keep the fermentor under vacuum and to boil off the alcohol formed at a sufficiently low temperature to maintain the yeast activity. A serious disadvantage of this method is that carbon dioxide formed during fermentation must be removed by the vacuum apparatus, which requires high energy consumption.
25 Den negative indvirkning på gærens aktivitet, når gæren udsættes for visse koncentrationer af de i forgæringsrestvæsken (bærmen) indgående bestanddele har, til trods for at de har været velkendte i mange år og har afskrækket mange fra en tillempning af bærme-recirkulering, ikke været genstand for 30 særlig grundig undersøgelse. Man har praktiseret ved gæringsprocesser til fremstilling af gær en vis genanvendelse af forgæringsresteme med henblik på fuldstændig at udnytte næringsstofferne i urten til yderligere propagering af gæren.The negative effect on yeast activity when the yeast is exposed to certain concentrations of the constituents contained in the fermentation residue (broth), despite being well known for many years and has discouraged many from the application of broth recirculation, has not been subject to 30 particularly thorough investigation. Some fermentation processes have been practiced in fermentation processes for the production of yeast in order to fully utilize the nutrients in the herb for further propagation of the yeast.
4 149782 I USA patentskrift nr. 1 884 272 er det således omtalt, at man udtager urt, som indeholder gær, fra en propageringsbeholder, at man fjerner gæren ved centrifugering og tilbagefører den gærfrie urt til anlægget til genanvendelse af en 5 uspecifiseret del af denne mængde til yderligere propagering. Eftersom ethanol ligeledes kan dannes som biprodukt, har man også påpeget muligheden for lejlighedsvis at udtage en del gærfri urt til udvinding af ethanol ved afdestillering inden urten tilbageføres.U.S. Patent No. 1,884,272 discloses extracting herb containing yeast from a propagation container to remove the yeast by centrifugation and returning the yeast-free herb to the plant for reuse of an unspecified portion thereof. quantity for further propagation. Since ethanol can also be formed as a by-product, it has also been pointed out the opportunity to occasionally extract some yeast-free herb for extracting ethanol by distillation before returning the herb.
10 I en forskningsrapport "Biotechnology and Bioengineering, bind 19, side 1125-43 (1977)" omtales eksperimenter, som indikerer, at et koncentreret substrat indeholdende 33% glucose skulle kunne forgæres kontinuert under opretholdes af en høj gærkoncentration (4-7%) i en vakuumfermentator. Ethano-15 len bortkoges kontinuert fra fermentatoren, en afløsbsstrøm udtages kontinuert fra fermentatoren for at forhindre akkumulering af ikke-£Lygtige bestandele i fermentatoren, og gæren recirkuleres efter at være blevet frasepareret fra afgangsstrømmen gennem sedimentering. Til industrielle anven-20 delser foreslås, at sedimenteringsbeholderen erstattes med en centrifuge. Trods den oven for nævnte alvorlige ulempe som et stort energiforbrug til komprimering af kuldioxid, er, tildeles i rapportens resumé vakuumforgæringsmetoden de største fordele og. fremtidsmuligheder. Anledningen hertil fremgår af føl-25 gende citat fra dette omtalte skrift: " En alt overskyggende fordel ved vakuumfermentatoren er eliminering af ethanolinhi-beringen. Dette muliggør forgæring af koncentreret sukkeropløsninger med ekstremt høje hastigheder" (side 1141), samt "produktiviteten ved atmosfærisk forgæring med cellerecir-30 kulation blev begrænset af den lave glucosekoncentration, som det var nødvendig at anvende i tilførselsstrømmen for at undgå en alvorlig ethanolinhibering" ( side 1142)". I denne relativt nye forskningsrapport, som beretter om et intensivt arbejde og forsøg på at klarlægge betingelserne for kontinuert 35 forgæring, hævdes således påny det alment vedtagne synspunkt 5 149782 med hensyn til atmosfærisk forgæring i en fermentator, at inhiberingsvirkninger fra alkohol dannet i fermentatoren begrænser koncentrationen af tilsat fermenterbart materiale til den velkendte grænse på ca. 16-18 vægt-%. Det bør bemærkes, 5 at rapporten ikke kommenterer de infektionsricici, som bestemt foreligger ved kontinuert forgæring i lang tid i samme forgæringskar ved en temperatur, som er gunstig for bakteritil-vækst.10 In a research report "Biotechnology and Bioengineering, Vol. 19, pages 1125-43 (1977)", mention is made of experiments which indicate that a concentrated substrate containing 33% glucose should be fermented continuously while maintaining a high yeast concentration (4-7%). in a vacuum fermenter. The ethanol is continuously boiled from the fermenter, a drain stream is continuously withdrawn from the fermenter to prevent the accumulation of non-volatile constituents in the fermenter, and the yeast is recycled after being separated from the outlet stream through sedimentation. For industrial applications, it is proposed to replace the sedimentation vessel with a centrifuge. Despite the aforementioned serious disadvantage as a large energy consumption for the compression of carbon dioxide, the report summarizes the vacuum fermentation method, the major advantages and benefits. future opportunities. The reason for this is evidenced by the following quote from this cited paper: "An all-for-profit advantage of the vacuum fermenter is the elimination of the ethanoline ring. This allows fermentation of concentrated sugar solutions at extremely high speeds" (page 1141), as well as "productivity of atmospheric fermentation with cell recirculation was limited by the low glucose concentration needed to be applied in the feed stream to avoid severe ethanol inhibition "(page 1142)". In this relatively new research report, which reports intensive work and attempts to clarify The conditions for continuous fermentation are thus reiterated in the generally accepted view of atmospheric fermentation in a fermentor that inhibition effects of alcohol formed in the fermenter limit the concentration of added fermentable material to the well known limit of about 16-18 wt.%. It should be noted that the report does not comment on the infections cici, which is definitely present by continuous fermentation for a long time in the same fermentation vessel at a temperature favorable for bacterial growth.
Den foreliggende opfindelse har til formål at tilvejebringe 10 en fremgangsmåde af den i indledningen nævnte art, ved hvilken man kan tilføre et substrat med høj kulhydratkoncentration, og ved hvilken der opstår en koncentreret afløbs-strøm, som lader sig uskadeliggøre eller udnytte på effektiv, økonomisk måde.The present invention has for its object to provide a process of the kind mentioned in the preamble to which a high carbohydrate concentration substrate can be applied and in which a concentrated effluent stream which can be rendered harmless or utilized on efficient, economical manner.
15 Ifølge opfindelsen er det ejendommelige ved en fremgangsmåde af den i indledningen nævnte art, at man opretholder en stabil tilstand i fermentatoren gennem kontinuert tilførsel til en sådan proces-cyclus af en strøm af et sådant substrat med en koncentration af fermenterbare kulhydrater større end kon-20 centrationen i melasse af 22° Brix, hvilken strøm mangderegu-leres således, at man opretholder en koncentration af forgær-bar substans i fermentatoren ikke overstigende 2,5 vægt-%, gennem kontinuert afgang af en strøm af fermenteringsvæske fra fermentatoren, hvilken strøm mængdereguleres således, at dens 25 indhold af ethanol ligger lavere end den i sig selv kendte grænseværdi for alvorlig inhibering af ethanolforgæringen i fermentatoren, gennem kontinuert centrifuge-separering af den-· ne strøm af fermenteringsvæske til dannelse i det mindste af en gærkoncentratstrøm og en i det væsentlige gærfri strøm, 50 tilbageføring af gærkoncentratstrømmen til fermentatoren, kon-ninuert separering af den gærfrie strøm til en med ethanol beriget strøm, der borttages, og en reststrøm, kontinuert borttagning af en del af denne reststrøm samt recirkulering 6 149702 af den resterende del af denne reststrøm til fermentatoren, hvorved man tilsikrer, at den til fermentatoren tilbageførte del af reststrømmen er pasteuriseret ved at være blevet udsat for opvarmning til en temperatur højere end 60 °C.According to the invention, it is peculiar to a process of the kind mentioned in the preamble that a steady state of the fermentor is maintained through continuous application to such a process cycle of a stream of such substrate having a concentration of fermentable carbohydrates greater than In the molasses of 22 ° Brix, which flow is regulated so as to maintain a concentration of digestible substance in the fermentor not exceeding 2.5% by weight, through the continuous flow of a fermentation liquid from the fermenter, which stream is quantitated so that its content of ethanol is lower than the per se known limit of severe inhibition of the ethanol fermentation in the fermenter, through continuous centrifuge separation of this stream of fermentation liquid to form at least one yeast concentrate stream and one substantially yeast-free stream, return of the yeast concentrate stream to the fermenter, continuous separating ring of the yeast-free stream to an ethanol-enriched stream which is removed and a residual stream, continuous removal of a portion of this residual stream, and recycling 6 149702 of the remaining portion of this residual stream to the fermenter, thereby ensuring that it is returned to the fermentor part of the residual stream is pasteurized by being heated to a temperature higher than 60 ° C.
5 Centrifugalsepareringen gennemføres bedst med en centrifugalseparator. Ved at tilbageføre gærkoncentratet til forgæringsbeholderen, beskyttes gæren fra beskadigelse ved fjernelse af ethanolen. Recirkuleringen af gær medfører også, at man kan opretholde en højere koncentration af gær i forgæringsbehol-10 deren, hvilket medfører højere forgæringshastighed.5 Centrifugal separation is best performed with a centrifugal separator. By returning the yeast concentrate to the fermentation vessel, the yeast is protected from damage by removal of the ethanol. The recycling of yeast also means that a higher concentration of yeast can be maintained in the fermentation vessel, which results in a higher fermentation rate.
Strømmen af forgæringsvæske kan ligeledes deles op i tre strømme, nemlig udover de allerede omtalte en såkaldt slamstrøm indeholdende forureninger. Dette kan gennemføres med en centrifugalseparator, som deler den indkomne strøm af for-15 gæringsvæske dels i en kontinuert gærkoncentratstrøm og en kontinuert gærfri strøm, og dels i en Intermitterende strøm \ af slam. Dette indebærer, at slam opsamles i centrifugalseparatorens rotorperiferi og udtømmes intermitterende derfra. Derigennem forhindres, at forureninger akkumuleres i syste-20 met. Ved en egnet udformning af en sådan' centrifugalseparator tilføres gærkoncentratstrømmen ved hjælp af et fordelingsrør og den gærfrie strøm med en fordelingsskive.The stream of fermentation liquid can also be divided into three streams, namely in addition to the so-called sludge stream containing contaminants. This can be accomplished with a centrifugal separator which divides the incoming stream of fermentation liquid into a continuous yeast concentrate stream and a continuous yeast-free stream, and partly into an intermittent stream of sludge. This implies that sludge is collected in the rotor periphery of the centrifugal separator and discharged intermittently therefrom. This prevents contamination from accumulating in the system. In a suitable design of such a centrifugal separator, the yeast concentrate stream is supplied by means of a distribution tube and the yeast-free stream with a distribution disc.
Ved konventionel ethanolforgæringsteknik anvender man en . sådan substratkoncentration, at ethanolindholdet- efter af-25 sluttet forgæring når op på ca. 7 vægt-%. Dersom man som substrat anvender melasse, er den oprindelige melassekoncentration omkring 22° Brix. Et sådant substrat kan fuldstændig forgæres. Højere koncentrationer af melasse kan ikke forgæ-res fuldstændig, efter som dette ville føre til højere e-30 thanol-koncentrationer end 7 vægt-%, som virker inhiberende på forgæringsreaktioneme. Ifølge den foreliggende opfindelse kan man forgære melasse med de inden for sukkerindustrien højest forekomne koncentrationer på 50-60° Brix, ved at etha-nolkoncentrationen forhindres i at nå op over ca. 5 vægt-% gen-35 nem kontinuert borttagelse af ethanol fra forgæringsvæskens cirkulationscyklus.In conventional ethanol fermentation technique, one is used. such substrate concentration that the ethanol content after completion of fermentation reaches approx. 7% by weight. If molasses is used as a substrate, the initial molasses concentration is about 22 ° Brix. Such a substrate can be completely fermented. Higher molasses concentrations cannot be completely fermented, as this would result in higher e-30 thanol concentrations than 7 wt% which inhibit fermentation reactions. According to the present invention, molasses with the highest concentrations in the sugar industry of 50-60 ° Brix can be fermented by preventing the ethanol concentration from reaching above approx. 5% by weight of continuous removal of ethanol from the fermentation liquid circulation cycle.
149762 7149762 7
Man opdeler ved en udførelsesform for fremgangsmåden ifølge opfindelsen den fra centrifugalsepareringen opnåede gærfrie sub strat strøm ved destillation i en strøm, som er beriget med ethanol, og i en reststrøm, af hvilken en del 5 tilbageføres til forgæringsbeholderen, medens den resterende delstrøm borttages fra cirkulationscyklusen i form af- en bærme. Denne bærme opnår ved fremgangsmåden ifølge den foreliggende opfindelse betydeligt højere koncentration, end det er tilfældet ved de hidtil tillempede destillationsmetoder 10 i forbindelse med ethanolforgæring. En stor fordel ved fremgangsmåden ifølge den foreliggende opfindelse består deri, at destillationskurven for ethanol forbedres betydelig ved de høje substratkoncentrationer, som anvendes, hvilket i kombination med opretholdelsen af et stort recirkulationsfor-15 hold medfører, at indholdet af opløselig ikke-forgærbar substans i strømmen igennem destillationstrinnet bliver betydeligt.In one embodiment of the process according to the invention, the yeast-free substrate stream obtained from the centrifugal separation is partitioned by distillation in a stream enriched with ethanol and in a residual stream, part of which is returned to the fermentation vessel, while the remaining partial stream is removed from the circulation cycle. in the form of a carrying case. In the process of the present invention, this broth achieves significantly higher concentration than is the case with the previously used distillation methods 10 in connection with ethanol fermentation. A major advantage of the process of the present invention is that the distillation curve of ethanol is significantly improved at the high substrate concentrations used, which, in combination with the maintenance of a large recycle ratio, causes the content of soluble non-digestible substance in the stream through the distillation step becomes significant.
Man kan alternativt til de destillative metoder til udskillelse af ethanol fra den cirkulerende forgæringsvæske til-20· lempe ekstraktionsmetoder, d.v.s. optage ethanolen i et cirkulationskredsløb af et eller andet egnet opløsningsmiddel, som har affinitet til den pågældende forbindelse men mindre affinitet til vandet. Eksempel på et sådant opløsningsmiddel er oktanol. Ethanolen udvindes derefter fra oktanolopløsningen 25 ved fraktionering. En sådan ekstraktion-fremgangsmåde fremviser god varmeøkonomi.Alternatively, the distillative methods for separating ethanol from the circulating fermentation liquid can be reduced to -20 extraction methods, i.e. take up the ethanol in a circulation circuit of some suitable solvent having affinity for the compound in question but less affinity for the water. An example of such a solvent is octanol. The ethanol is then recovered from the octanol solution 25 by fractionation. Such an extraction process exhibits good heat economy.
Den destillative eller den ekstraktive udskillelse af ethanolen gennemført hensigtmæssigt i det væsentlige ved atmosfæretryk. Termisk udskillelse under vakuum har 50 den fordel, at temperaturen kan holdes lavere, men driftsomkostningerne til opretholdelse af vakuum indebærer en u-lempe.The distillative or extractive separation of the ethanol is conveniently carried out essentially at atmospheric pressure. Thermal separation under vacuum has the advantage of keeping the temperature lower, but the operating costs of maintaining a vacuum involve a disadvantage.
8 1497828 149782
Ved fremgangsmåden ifølge opfindelsen pasteuriserer man den fra den destillative eller den ekstraktive adskillelse kommende reststrøm ved en temperatur på 60-100 °C, inden strømmen føres tilbage til forgærings-5 beholderen.In the process of the invention, the residual stream coming from the distillative or extractive separation is pasteurized at a temperature of 60-100 ° C before returning the stream to the fermentation vessel.
En stor fordel ved fremgangsmåden er, at man uafhængigt af den måde, hvorpå man udvinder ethanolen, opnår en afløbsstrøm med høj koncentration af substans, som lader sig behandle på økonomisk forsvarlig måde. Man opnår således en bær-10 me, som er 4-6 gange mere koncentreret end bærme fra konventionel ethanoldestillation, og som har en positiv forbræn-dingsvarmeværdi, hvilket bidrager til en god driftsøkonomi ved fremgangsmåden. På grund af bærmens høje indhold af organisk substans kan den eventuelt anvendes som råvare til 15 fremstilling af produkter, såsom f. eks. furfurol etc.A major advantage of the process is that, independently of the manner in which the ethanol is extracted, a high concentration of substance flow stream which can be treated in an economically sound manner is obtained. Thus, a carrier is obtained which is 4-6 times more concentrated than conventional ethanol distillation boilers, and which has a positive combustion heat value, which contributes to a good operating economy in the process. Due to the high organic matter content of the carrier, it may be used as a raw material for the production of products such as furfurol, etc.
Fremgangsmåde ifølge opfindelsen skal i det følgende nær mere beskrives under henvisning til de vedlagte tegninger, på hvilke : fig. 1 viser et principielt strømskema for fremgangsmåden 20 ifølge opfindelsen, fig. 2 viser et strømskema for fremgangsmåden med destil-lativ udskillelse af ethanolen, fig. 3 viser et skema for fremgangsmåden udført med ekstrak-tiv udskillelse af ethanolen.The method according to the invention will now be described in more detail with reference to the accompanying drawings, in which: FIG. 1 is a schematic flow diagram of the method 20 according to the invention; FIG. Figure 2 is a flow chart of the process of distillative separation of the ethanol; Figure 3 shows a scheme for the process of extractive ethanol extraction.
25 På fig. 1 betegnes et forgæringskar med F, en centrifugalseparator med C, en enhed til fjernelse af ethanol med RU og en blander med med M. Disse enheder er ved hjælp af ledningerne 1, 2, 3 og 4 forbundet til dannelse af et cirkulationskredsløb. Centrifugalseparatoren C er yderligere di- 30 rekte forbundet med blanderen M ved hjælp af en ledning 5.25 In FIG. 1, a fermentation vessel is denoted by F, a centrifugal separator with C, a unit for removing ethanol with RU and a mixer with M. These units are connected by means of lines 1, 2, 3 and 4 to form a circulation circuit. The centrifugal separator C is further directly connected to the mixer M by means of a conduit 5.
9 1497829 149782
En tilgangsledning 6 til cirkulationskredsløbet er tilsluttet ved blanderen M. Forgæringskar F er desuden udrustet med en gasafgang 7, centrifugalseparatoren C med en slamafgang 8, enheden RU med et udløb 9 til en strøm, som er beriget med 5 ethanol, mens ledningen 3 er forsynet med en afgrening 10 til aftapning væk fra cirkulationskredsløbet. Centrifugalseparatoren C er af en type, som opdeler en indgående strøm i to kontinuerlige væske strømme og en intermitterende slamstrøm.A supply line 6 for the circulation circuit is connected to the mixer M. The fermenter F is additionally provided with a gas outlet 7, the centrifugal separator C with a sludge outlet 8, the unit RU with an outlet 9 for a stream enriched with 5 ethanol, while the line 3 is provided. with a branch 10 for tapping away from the circulation circuit. The centrifugal separator C is of a type which divides an incoming stream into two continuous liquid streams and an intermittent sludge stream.
10 En udførelsesform for fremgangsmåden, ved hvilken ethanol udskilles fra cirkulationskredsløbet ved hjælp af destillation, enten i form af en enkel afdampning eller igennem fraktionering, er gengivet på fig. 2. I denne figur har man anvendt de samme betegnelser som i fig. 1 for tilsvarende ap-15 paratenheder og ledninger. Enheden Ru i fig. 1 er blevet erstattet af en destillationsenhed D. Ledningen 2 til destillationsenheden og ledningen 3 fra den samme står i en varmevekslerforbindelse igennem en varmeveksler HE i. Ledningen 3 passerer en køler HE il før tilslutning til blanderen M.An embodiment of the process by which ethanol is separated from the circulation circuit by distillation, either in the form of a simple evaporation or through fractionation, is depicted in FIG. 2. In this figure, the same designations as in FIG. 1 for corresponding ap-15 prepared devices and wires. The unit Ru in FIG. 1 has been replaced by a distillation unit D. The conduit 2 of the distillation unit and the conduit 3 from the same are in a heat exchanger connection through a heat exchanger HE i. The conduit 3 passes through a cooler HE il before connection to the mixer M.
20 Ved fremstilling af ethanol i et anlæg af den slags, som er vist på fig. 2, tilføres koncentreret, klaret substrat ved hjælp af tilgangsledningen 6 og blander M til forgæringskarret F. Den tilførte strøm blandes derved dels med den fra centrifugalseparatoren kommende suspension af gær og dels 25 med den fra destillationsenheden kommende gærfrie strøm, d.v.s. bærmen . I centrifugalseparatoren udskilles intermitterende forureningsslam, som ellers ville blive akkumuleret i anlægget. Ethanol afdrives fra den gærfrie strøm i destillationsenheden D, hvorved den dertil nødvendige varme tilfø-30 res enten gennem indirekte opvarmning eller med direkte damptilførsel. I sidstnævnte tilfælde kompenseres fortyndingen gennem en forøgelse af det tilførte substrats koncentration. Fordelen ved den direkte damptilførsel er, at man undgår belægninger på varmeoverføringsoverflader. Ethanol udtages ved 35 udløbet 9, og bærmen afgiver næsten hele sit tilgængelige varmeindhold til den strøm, som kommer ind til destillations- 149782 ίο enheden, ved hjælp af varmeveksleren he i.In preparing ethanol in a plant of the kind shown in FIG. 2, concentrate clarified substrate is supplied by the inlet line 6 and mixes M to the fermentation vessel F. The feed is thereby mixed partly with the yeast-free stream coming from the centrifugal separator and partly from the yeast-free stream coming from the distillation unit, i.e.. the carrying case. In the centrifugal separator, intermittent contaminant sludge is excreted, which would otherwise accumulate in the plant. Ethanol is stripped from the yeast-free stream in the distillation unit D, whereby the required heat is supplied either by indirect heating or by direct vapor supply. In the latter case, the dilution is compensated by an increase in the concentration of the applied substrate. The advantage of the direct steam supply is that avoiding coatings on heat transfer surfaces. Ethanol is taken out at outlet 9, and the carrier emits almost all of its available heat content to the stream entering the distillation unit by means of the heat exchanger.
En mindre del af bærmestrømmen afledes fra cirkulationskredsløbet ved hjælp af udløbet 10, og den er her så koncentreret, at man kan håndtere den på økonomisk måde. Resten 5 af bærmestrømmen køles ned ved hjælp af varmeveksleren HE li og tilføres så via blanderen M til forgæringskarret F. Den ved " forgæringen dannede gas, d.v.s. i hovedsagen kuldioxid, ud ledes gennem udløbet 7. Fremgangsmåden gennemføres på en sådan måde, at ethanolindholdet i forgæringskarret holdes ved 10 et lavt niveau, i størrelsesordenen 4 vægt-% i forgæringskarret, hvorved substratet forgæres til næsten 100% . udstrækning under de således valgte procesbetingelser. E-thanolindholdet i den bærme, som kommer fra destillations-. enheden, er meget lavt.A smaller portion of the carrier current is derived from the circulation circuit by means of the outlet 10, and it is so concentrated here that it can be handled economically. The remainder 5 of the carrier stream is cooled by means of the heat exchanger HE ll and then supplied via the mixer M to the fermentation vessel F. The gas formed during the fermentation, i.e., mainly carbon dioxide, is discharged through the outlet 7. The process is carried out in such a way that the ethanol content of the fermentation vessel is kept at a low level, in the order of 4 wt.%, in the fermentation vessel, whereby the substrate is fermented to almost 100% extent under the process conditions thus chosen. The e-thanol content of the distillation-derived carriers is very low. .
15 Som et alternativ til destillativ udskillelse af ethanolen fra cirkulationskredsløbet kan man anvende ekstraktiv teknik. På fig. 3 er skitseret et anlæg udstyret til en sådan fremgangsmåde, Anlægget indeholder ud over de fra figurerne 2 og 3 kendte enheder en ekstrationsenhed E, eksempelvis 20 i form af en modstrømsekstraktionskolonne, og en destillationsenhed FR, eksempelvis en fraktioneringskolonne. Ledningen 2 fra centrifugalseparatoren er i dette tilfælde forbundet med ekstraktionsenheden E, til hvilken der ligeledes føres en opløsningsmiddelstrøm gennem et indløb 15. Denne 25 opløsningsmiddelstrøm strømmer igennem ekstrationsenheden E og optager derved ethanol, hvorpå den strømmer videre gennem en ledning 16 til destillationsenheden FR, hvorfra ethanolen afgår gennem et udløb 17. Bundstrømmen af opløsningsmiddel fra destillationsenheden FR strømmer igennem 30 en ledning 18 til indløbet 15, som ligeledes tilføres opløsningsmiddel gennem et indløb 19. En del af den fra ekstraktionsenheden E udtagne strøm, som er fattig på ethanol, bortledes fra anlægget, mens resten tilføres forgæringskarret F via blanderen M. Destillationsenheden opvarmes bekvemt 35 med indirekte opvarmning 21.As an alternative to distillative separation of the ethanol from the circulation circuit, extractive techniques can be used. In FIG. 3 outlines a plant equipped for such a process. The plant contains, in addition to the units known from Figures 2 and 3, an extraction unit E, for example 20 in the form of a countercurrent extraction column, and a distillation unit FR, for example a fractionation column. In this case, the conduit 2 from the centrifugal separator is connected to the extraction unit E, to which a solvent stream is also passed through an inlet 15. This solvent stream flows through the extraction unit E, thereby receiving ethanol, and then flows through a conduit 16 to the distillation unit FR, from which the ethanol passes through an outlet 17. The bottom stream of solvent from the distillation unit FR flows through a conduit 18 to the inlet 15, which is also supplied to solvent through an inlet 19. A portion of the stream extracted from the extraction unit E which is poor on ethanol is drained from The distillation unit is conveniently heated by indirect heating 21.
EKSEMPEL 1 11 149782EXAMPLE 1 11 149782
Som eksempel på gennemførelse af en fremgangsmåde ifølge opfindelsen skal her beskrives en kontinuerlig forgæring af melasse i et anlæg af den type, som er vist på fig. 2.As an example of carrying out a method according to the invention, a continuous fermentation of molasses in a plant of the type shown in FIG. 2nd
5 For at påbegynde processen anbragte man 10 kg pressegær i 100 liter klaret melasse med 20° Brix i et forgæringskar, som var forsynet med omrører. I cirkulationskredsløbet er placeret en køler. Forgæringstemperaturen blev reguleret til 32 °C, og det forgærbare sukker blev forvandlet i 90% 10 udstrækning til ethanol inden for ca. 3 timer. Under den seneste del af forgæringsforløbet måtte man kontinuert udtage ethanol fra substratet, for at man skulle kunne opretholde i substratet et alkoholindhold på ca. 4 vægt-%. Derfor måtte forgæringsvæske cirkulere gennem en centrifugal-15 separator C, hvorved man kunne lede en strøm af gærkoncen trat tilbage til forgæringskarret, mens en gærfri strøm tilførtes en simpel destillationsenhed D, hvor ethanolen blev afdrevet under atmosfæretryk. Da forgæringen af den oprindelige charge var fuldstændig, tilførte man kontinuert 20 til forgæringskarret 7-13 kg/time klaret melasse med 40°5 To begin the process, 10 kg of press yeast in 100 liters of molasses with 20 ° Brix was placed in a fermenter fitted with a stirrer. In the circulation circuit is placed a cooler. The fermentation temperature was adjusted to 32 ° C and the fermentable sugar was converted to ethanol within 90% 10 within approx. 3 hours. During the last part of the fermentation process, ethanol had to be continuously removed from the substrate in order to maintain an alcohol content of approx. 4% by weight. Therefore, fermentation liquid had to circulate through a centrifugal separator C, whereby a stream of yeast concentrate could be funneled back to the fermentation vessel, while a yeast-free stream was fed to a simple distillation unit D where the ethanol was evaporated under atmospheric pressure. When the fermentation of the original charge was complete, 20 to 13.7 kg / h of molasses clarified molasses with continuous 40 ° continuously was added continuously.
Brix. I forgæringskarret opretholdt man et væskerumfang på 100 liter. Forgæringen foregik igennem en uge, og i løbet af denne tid borttog man en ethanolstrøm med et ethanol-indhold på 25-35 vægt-%, hvorved ethanolindholdet i forgæ-25 ringskarret blev holdt på ca. 4 vægt-%. En lille strøm af bærme med 25-30 vægt-% tørstofindhold blev udtaget fra cirkulationskredsløbet .Brix. A fermentation volume of 100 liters was maintained in the fermentation vessel. The fermentation took place for a week and during this time an ethanol stream with an ethanol content of 25-35% by weight was removed, keeping the ethanol content of the fermentation vessel at approx. 4% by weight. A small stream of 25-30 wt.% Solids content stream was withdrawn from the circulation circuit.
Man opnoterede driftsdata vedrørende begge tilførselshastighederne, hvilket er vist i efterfølgende tabel: 12 149782Operating data were recorded for both feed rates, as shown in the following table: 12 149782
Tilførselsha- F^/Fg Ligevægt for- Ethanolpro-stighed 40° gærbart sukker diaktivitetSupply rate F ^ / Fg Equilibrium for- Ethanol resistance 40 ° fermentable sugar diactivity
Brix melasse i forgærings- (100%) kg/time beholderen i kg/100 1/time vægt-% 7,0 10,0 1,0 1,0 13,0 5,5 2,5 1,7Brix molasses in fermentation (100%) kg / h container in kg / 100 l / h wt% 7.0 10.0 1.0 1.0 13.0 5.5 2.5 1.7
Udtrykket F^/Fg angiver forholdet mellem rumfangsstrømmene i ledningerne 3 og 6 på fig. 2. Det fremgår af tabellen, at produktiviteten for ethanol blev forøget med forøget råstoftilsætning, men på bekostning af udnyttelsen af det tilfør- 5 te sukker, eftersom mere af dette forblev uudnyttet i de sidste tilfælde. Det er klart, at optimeringen af tilførselshastigheden bestemmes af forholdet mellem råvareromkosiningerne og kapital- henholdsvis driftsomkostningerne.The term F ^ / Fg denotes the ratio of the volume currents in lines 3 and 6 of FIG. 2. The table shows that the productivity of ethanol was increased with increased raw material addition, but at the expense of utilization of the added sugar, since more of this remained unused in the latter cases. It is clear that the optimization of the feed rate is determined by the ratio of the raw material costs and the capital and operating costs respectively.
Det skal bemærkes, at råvaren ikke blev steriliseret ved den 10 beskrevne forgæring. Til trods for dette forekom der ingen akkumulering af bakterier i systemet, hvilket tydeligt be-rorede på, at strømmen blev steriliseret i destillationsenheden.It should be noted that the raw material was not sterilized at the fermentation described. Despite this, there was no accumulation of bacteria in the system, which clearly caused the flow to be sterilized in the distillation unit.
EKSEMPEL 2 15 Man gennemførte kontinuerlig forgæring af rørsukkermelasse i en fermentator, som blev holdt under stabile betingelser, ved hjælp af den på fig. 2 viste procescyclus . Fermenta-toren blev holdt under atmosfæretryk, forgæringsvæskens pH og temperatur blev reguleret til ca. 4,5 henholdsvis 32 °C.EXAMPLE 2 Continuous fermentation of cane sugar molasses was carried out in a fermentor which was kept under stable conditions by means of the one shown in FIG. 2. The fermentor was kept under atmospheric pressure, the fermentation pH and temperature were adjusted to approx. 4.5 and 32 ° C, respectively.
20 Gærtilvæksten blev reguleret gennem luftindblæsning. Som gær anvendte man Schizosaccharomyces pombe.20 Yeast growth was regulated through air supply. As a yeast, the Schizosaccharomyces pump was used.
Man satte til procescyclus ved hjælp af 6: 13 149782 kq/h vaat-%Process cycles were added using 6: 13 149782 kq / h wt%
Forgærbar substans 56 23Digestible substance 56 23
Ikke-forgærbar, opløselig substans 22 9Non-digestible, soluble substance 22 9
Ikke-forgærbar, fast substans 2 1Non-digestible solid 2 1
Vand (totalt) 163 67 243 100Water (total) 163 67 243 100
Den i det væsentlige gærfrie strøm 2, som fra separatoren blev indført til destillationskolonnen Df var på , 580 kg/h, og den til fermentatoren F recirkulerede bærmestrøm ( strøm 3' - strøm 10) var på 363 kg/h og havde en 5 ethanolkoncentration på ca. 0 %. Fra destillationskolonnen D udtog man 65 kg/h damp indeholdende 68% ethanol, og fra fermentatoren udledtes 26 kg/h kuldioxid.The substantially yeast-free stream 2 introduced from the separator into the distillation column Df was 580 kg / h, and the carrier flow recirculated to the fermentor F (stream 3 '- stream 10) was 363 kg / h and had a 5 ethanol concentration. of approx. 0%. From the distillation column D, 65 kg / h of steam containing 68% ethanol was extracted, and 26 kg / h of carbon dioxide was extracted from the fermentor.
I fermentatoren F opretholdt man følgende stabile forhold: Gær 5 x 10® celler/mlIn the fermentor F, the following stable conditions were maintained: Yeast 5 x 10 6 cells / ml
Luft 0,1 ppmAir 0.1 ppm
Ethanol 4,3% Tørstofindhold (foruden gær) 15 %Ethanol 4.3% Solids content (in addition to yeast) 15%
Forgærbart sukker 0,2% 10 En bærmestrøm 10 på 152 kg/h med tørstofindhold på 17 vægt-% blev kontinuert udtaget.Fermentable sugar 0.2% 10 A load stream 10 of 152 kg / h with a solids content of 17% by weight was taken continuously.
EKSEMPEL 3EXAMPLE 3
Som råmateriale til den kontinuerlige ethanolforgæring anvendtes hvede (87% tørstof). Eksemplet er i overensstemmel-15 se med den i fig. 2 viste procescyclus med tillæg af et forsukringstrin, som tilførseisstrømmen 6 passerer før den når blanderen M. Fermentatoren blev holdt under atmosfæretryk, pH i fermentatoren blev reguleret til ca. 4,5, og temperaturen i fermentatoren blev holdt ved 32 °C. For at 14 149782 undgå, at store partikler i strømmen 1 af forgæringsvæske fra fermentatoren passerer separatoren C, indsatte man i ledningen 1 før separatoren en centrifugalsi med maskeåbninger på 200 yum., hvorved det tilbageholdte materiale blev 5 ført sammen med den gærfrie strøm 2 før indføring til destil lationskolonnen D. En lignende si blev placeret i bærmestrømmen 3 fra destillationskolonnen, for at bortsigte grovere partikler og fjerne disse med denne borttagne bærmestrøm 10. Den anvendte gær var Saccharomyces cerevisiæ.Wheat (87% dry matter) was used as feedstock for the continuous ethanol fermentation. The example is in accordance with that of FIG. 2, with the addition of a suction step which the feed ice stream 6 passes before reaching the mixer M. The fermentor was kept under atmospheric pressure, the pH of the fermentor was adjusted to approx. 4.5, and the temperature of the fermentor was maintained at 32 ° C. In order to avoid large particles in the fermentation fluid stream 1 from the fermenter passing the separator C, a centrifugalsi with mesh openings of 200 µm were inserted into the line 1 before the separator, whereby the retained material was brought together with the yeast-free stream 2 before introduction to the distillation column D. A similar strainer was placed in the carrier stream 3 from the distillation column to dispose of coarser particles and remove them with this removed carrier stream 10. The yeast used was Saccharomyces cerevisiæ.
10 Man tilførte kontinuert igennem forsukringstrinnet og indføringsstrømmen 6 følgende mængder hvederåvare: kg/h vægt-%10 The following quantities of wheat raw material were continuously fed through the sugaring stage and the feed stream 6: kg / h wt.%
Forgærbar substans 62 30,6Digestible Substance 62 30.6
Ikke-forgærbar opløselig substans 10 4,9Non-digestible soluble substance 10 4.9
Ikke-forgærbar fast substans 15 7,4Non-fermentable solid 15 7.4
Totalt vand 116 57.1 203 100,0Total water 116 57.1 203 100.0
Den til destillationskolonnen D tilførte strøm 2, som indeholdt såvel den i separatoren C fraseparerede gærfrie strøm som det afsigtede tilbageholdte materiale fra strømmen 1, 15 var på 530 kg/h, og den til fermentatoren recirkulerede bærmestrøm (strøm 3 - strøm 10) var på 360 kg/h (ethanolkon-centrationen ca. 0). Fra destillationskolonnen D udtog man 69 kg/h damp indeholdende 42 vægt-% ethanol, og fra fermentatoren udtog man 33 kg/h kuldioxid.The stream 2 supplied to the distillation column D, which contained both the yeast-free stream separated in the separator C and the intended retained material from stream 1, 15 was 530 kg / h, and the carrier stream recirculated (stream 3 - stream 10) was at 360 kg / h (ethanol concentration about 0). From the distillation column D, 69 kg / h of vapor containing 42% by weight of ethanol was extracted and from the fermentor 33 kg / h of carbon dioxide was extracted.
20 I fermentatoren F opretholdt man følgende stabile betingelser: Gær 5 x io8 celler/mlIn the fermentor F, the following stable conditions were maintained: Yeast 5 x 10 8 cells / ml
Luft 0,015 ppmAir 0.015 ppm
Ethanol 5,5%Ethanol 5.5%
Total tørstof (foruden gær) 16 %Total dry matter (excluding yeast) 16%
Forgærbart sukker 0,05% 1A 97 8 2 15Fermentable sugar 0.05% 1A 97 8 2 15
Den via 10 kontinuert borttagne bærmestrøm, som ligeledes indeholdt det på sien tilbageholdte materiale fra strømmen 3, var 101 kg/h, og dennes totale tørstofindhold var 26 vægt-%.The carrier current removed via 10 continuously, which also contained the material retained on stream 3, was 101 kg / h and its total dry matter content was 26% by weight.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7801133A SE430171B (en) | 1978-01-31 | 1978-01-31 | CONTINUOUS PROCEDURE FOR THE PRODUCTION OF ETHANOL IN A FERMENTOR ADDED TO A SUBSTRATE WITH HIGH CARBOHYDRATE CONCENTRATION, WHICH DISPOSES FERMENTATION LIQUID AFTER COMPOUNDING A FRENCH PREPARED FLUID ... |
SE7801133 | 1978-01-31 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK37779A DK37779A (en) | 1979-08-01 |
DK149782B true DK149782B (en) | 1986-09-29 |
DK149782C DK149782C (en) | 1987-03-02 |
Family
ID=20333821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK37779A DK149782C (en) | 1978-01-31 | 1979-01-30 | PROCEDURE FOR THE PREPARATION OF ETHANOL BY CONTINUOUS PUMPING IN A FERMENTATOR |
Country Status (17)
Country | Link |
---|---|
JP (1) | JPS6043117B2 (en) |
AR (1) | AR222649A1 (en) |
AU (1) | AU511754B2 (en) |
BR (1) | BR7900321A (en) |
CA (2) | CA1110985A (en) |
DE (1) | DE2903273A1 (en) |
DK (1) | DK149782C (en) |
FI (1) | FI66905C (en) |
FR (1) | FR2416263A1 (en) |
GB (1) | GB2013716B (en) |
IN (1) | IN150767B (en) |
NL (1) | NL7900803A (en) |
NZ (1) | NZ189485A (en) |
PH (1) | PH17707A (en) |
SE (1) | SE430171B (en) |
SU (1) | SU1303034A3 (en) |
ZA (1) | ZA787390B (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE416315B (en) * | 1978-11-16 | 1980-12-15 | Alfa Laval Ab | METHOD FOR MANUFACTURE OF ETHANOL, WHEREAS THE CURRENT FLOW IS DIVIDED INTO A FLOW RICH OF SOLID SUBSTANCE AND A SUBSTRATE FLOW FREE OF SOLID SUBSTANCE, WHEN THE LAST FLOW AFTER PROCESSING IS PARTICULARLY BRINGED ... |
SE432441B (en) * | 1979-02-27 | 1984-04-02 | Alfa Laval Ab | PROCEDURE FOR PREPARING ETHANOL BY CONTINUOUS SPRAYING OF A CARBOHYDRATE-SUBSTRATE, WHICH A DRINK WITH RELATIVE HIGH RATE OF SOLID SUBSTANCE RECOVERY |
PH15644A (en) * | 1979-07-16 | 1983-03-11 | Ag Patents Ltd | Fermentation process and apparatus |
DE2938339B2 (en) * | 1979-09-21 | 1981-06-19 | Uhde Gmbh, 4600 Dortmund | Process for the continuous fermentation of aqueous mashes for the production of alcohol and yeast biomass |
US4287303A (en) * | 1979-11-13 | 1981-09-01 | Alfa-Laval Ab | Production of ethanol |
NZ196049A (en) * | 1980-01-30 | 1984-05-31 | Commw Scient Ind Res Org | Production of ethano l by yeast fermentation of carbohydrate-containing material; petrolethanol mixture |
CA1174191A (en) * | 1980-03-05 | 1984-09-11 | Peter L. Rogers | Ethanol production |
US4310629A (en) * | 1980-04-03 | 1982-01-12 | National Distillers & Chemical Corp. | Continuous fermentation process for producing ethanol |
US4385118A (en) * | 1980-04-03 | 1983-05-24 | National Distillers & Chemical Corp. | Fermentation process |
CU35492A (en) * | 1980-06-27 | 1982-08-24 | Ag Patents Ltd | Procedure and apparatus to fermentation |
US4517298A (en) * | 1981-05-08 | 1985-05-14 | Georgia Tech Research Corporation | Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation |
JPS5911160A (en) * | 1982-07-08 | 1984-01-20 | Kikkoman Corp | Preparation of seasoning liquid |
US4508929A (en) * | 1983-01-03 | 1985-04-02 | The United States Of America As Represented By The Secretary Of The Army | Recovery of alcohol from a fermentation source by separation rather than distillation |
AT388386B (en) * | 1983-01-13 | 1989-06-12 | Voest Alpine Ag | METHOD FOR OBTAINING AETHANOL FROM TRANSFERABLE SUGAR SOLUTIONS |
AT391876B (en) * | 1983-01-13 | 1990-12-10 | Voest Alpine Ag | Process for obtaining ethanol from fermentable sugar solutions |
FI118301B (en) * | 2005-05-25 | 2007-09-28 | St1 Biofuels Oy | A process for preparing an ethanol-water mixture |
FI20075288A0 (en) * | 2007-04-25 | 2007-04-25 | St1 Biofuels Oy | Method and apparatus for preparing a mixture of ethanol and water |
RO129937B1 (en) * | 2013-11-25 | 2017-12-29 | Transproiect Organic Srl | Process for obtaining fertilizers from vinasse |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR673283A (en) * | 1927-10-04 | 1930-01-13 | Mode of production of compressed yeast, particularly aerolyeast, with or without alcohol production | |
DE596107C (en) * | 1931-11-19 | 1934-04-27 | Dansk Gaerings Ind As | Process for the production of alcohol by fermenting liquids containing carbohydrates |
US2053770A (en) * | 1933-08-15 | 1936-09-08 | Dreyfus Henry | Removal from a fermenting medium of organic compounds produced by the fermentation |
AT160210B (en) * | 1938-05-14 | 1941-03-10 | Heinrich Dr Ing Scholler | Fermentation processes for the cultivation of microorganisms or for the production of fermentation products. |
US2430170A (en) * | 1942-12-22 | 1947-11-04 | Distillers Co Yeast Ltd | Production of alcohol and glycerol by fermentation |
FR896756A (en) * | 1943-07-26 | 1945-03-02 | Bergin Ag Fu R Holzhydrolyse D | Process for treating sugar solutions |
US2440925A (en) * | 1944-04-27 | 1948-05-04 | Chemprotin Producs | Fermenting method |
CH264588A (en) * | 1948-03-24 | 1949-10-31 | Keussler Helene Von | Process for fermenting sugar-rich liquids on alcohol. |
SE387657B (en) * | 1973-07-09 | 1976-09-13 | Alfa Laval Ab | CONTINUES WITH CONTINUOUS JESNING, WHICH AFTER THE JESNING SEPARATION TAKES PLACE BY CENTRIFUGATION IN THREE COMPONENTS, Namely CULTIVATION LIQUID, LIVING CELL MASS AND POLLUTIONS |
AT334857B (en) * | 1975-05-16 | 1977-02-10 | Vogelbusch Gmbh | PROCESS FOR THE ALCOHOLIC FERMENTATION OF SUGAR-CONTAINING SUBSTRATES |
-
1978
- 1978-01-31 SE SE7801133A patent/SE430171B/en unknown
- 1978-12-28 ZA ZA00787390A patent/ZA787390B/en unknown
- 1978-12-29 IN IN1394/CAL/78A patent/IN150767B/en unknown
-
1979
- 1979-01-05 PH PH22033A patent/PH17707A/en unknown
- 1979-01-08 GB GB7900623A patent/GB2013716B/en not_active Expired
- 1979-01-18 BR BR7900321A patent/BR7900321A/en unknown
- 1979-01-26 FI FI790258A patent/FI66905C/en not_active IP Right Cessation
- 1979-01-26 NZ NZ189485A patent/NZ189485A/en unknown
- 1979-01-29 CA CA320,434A patent/CA1110985A/en not_active Expired
- 1979-01-29 DE DE19792903273 patent/DE2903273A1/en active Granted
- 1979-01-30 DK DK37779A patent/DK149782C/en active
- 1979-01-30 SU SU792719149A patent/SU1303034A3/en active
- 1979-01-30 AU AU43764/79A patent/AU511754B2/en not_active Expired
- 1979-01-30 JP JP54008803A patent/JPS6043117B2/en not_active Expired
- 1979-01-31 FR FR7902498A patent/FR2416263A1/en active Granted
- 1979-01-31 AR AR275358A patent/AR222649A1/en active
- 1979-01-31 NL NL7900803A patent/NL7900803A/en not_active Application Discontinuation
-
1982
- 1982-01-14 CA CA000394207A patent/CA1140873B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
FI66905B (en) | 1984-08-31 |
NL7900803A (en) | 1979-08-02 |
ZA787390B (en) | 1979-12-27 |
FI66905C (en) | 1987-04-22 |
FI790258A (en) | 1979-08-01 |
JPS54110387A (en) | 1979-08-29 |
GB2013716B (en) | 1982-03-03 |
NZ189485A (en) | 1982-03-30 |
SE430171B (en) | 1983-10-24 |
DE2903273C2 (en) | 1993-03-25 |
DK37779A (en) | 1979-08-01 |
SE7801133L (en) | 1979-08-01 |
SU1303034A3 (en) | 1987-04-07 |
FR2416263B1 (en) | 1982-07-02 |
IN150767B (en) | 1982-12-11 |
PH17707A (en) | 1984-11-19 |
JPS6043117B2 (en) | 1985-09-26 |
AR222649A1 (en) | 1981-06-15 |
CA1140873B (en) | 1983-02-08 |
CA1110985A (en) | 1981-10-20 |
FR2416263A1 (en) | 1979-08-31 |
DE2903273A1 (en) | 1979-08-16 |
DK149782C (en) | 1987-03-02 |
AU511754B2 (en) | 1980-09-04 |
AU4376479A (en) | 1979-08-09 |
BR7900321A (en) | 1979-08-14 |
GB2013716A (en) | 1979-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK149782B (en) | PROCEDURE FOR THE PREPARATION OF ETHANOL BY CONTINUOUS PUMPING IN A FERMENTATOR | |
US4460687A (en) | Fermentation method | |
US9732362B2 (en) | Processes and systems for alcohol production and recovery | |
US4517298A (en) | Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation | |
US8722911B2 (en) | Process and method for improving the water reuse, energy efficiency, fermentation, and products of an ethanol fermentation plant | |
US6262313B1 (en) | Thermal conversion of fatty acid salts to ketones | |
CN102665843B (en) | For the system and method that alcohol reclaims and stillage accessory substance is concentrated | |
US8987509B2 (en) | Recovery of volatile carboxylic acids by extractive evaporation | |
WO2011022811A1 (en) | Recovery of volatile carboxylic acids by a stripper- extractor system | |
CN102482689A (en) | Recovery of higher alcohols from dilute aqueous solutions | |
US5110319A (en) | Process for extracting ethanol from fermentation broths for direct blending into gasoline while preserving the broth for recycling | |
CN103373901A (en) | Method for extracting erythritol from erythritol mother liquor and special barm strain for erythritol | |
CA1282358C (en) | Method of continuously recovering fermentation products | |
Atkinson et al. | Development of downstream processing | |
Qureshi | Integrated processes for product recovery | |
CN102757984B (en) | Production method of butyl alcohol by fermentation of biomass coupled with pervaporation separation | |
CA1175370A (en) | Fermentation method | |
GB2065699A (en) | Ethanol production | |
CN109182393A (en) | A kind of method of reuse anaerobic effluent and smart tower raffinate production ethyl alcohol | |
MXPA00000158A (en) | Method for conversion of biomass to chemicals and fuels |