DK149692B - PROCEDURE FOR CATALYTICAL REFORM OF NAFTA WITH A RHENIUM PLATIN CATALYST, AND SUCH A CATALYST - Google Patents

PROCEDURE FOR CATALYTICAL REFORM OF NAFTA WITH A RHENIUM PLATIN CATALYST, AND SUCH A CATALYST Download PDF

Info

Publication number
DK149692B
DK149692B DK140379AA DK140379A DK149692B DK 149692 B DK149692 B DK 149692B DK 140379A A DK140379A A DK 140379AA DK 140379 A DK140379 A DK 140379A DK 149692 B DK149692 B DK 149692B
Authority
DK
Denmark
Prior art keywords
platinum
rhenium
catalyst
weight
approx
Prior art date
Application number
DK140379AA
Other languages
Danish (da)
Other versions
DK140379A (en
DK149692C (en
Inventor
James P Gallagher
Robert M Yarrington
Original Assignee
Engelhard Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engelhard Corp filed Critical Engelhard Corp
Publication of DK140379A publication Critical patent/DK140379A/en
Publication of DK149692B publication Critical patent/DK149692B/en
Application granted granted Critical
Publication of DK149692C publication Critical patent/DK149692C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • C10G35/09Bimetallic catalysts in which at least one of the metals is a platinum group metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium

Description

149692 i149692 i

Opfindelsen angår en fremgangsmåde til reforming af en naphtafraktion, ved hvilken naphtafraktionen under reformingsbetingelser og i nærværelse af gasformig hydrogen bringes i kontakt med et katalytisk materiale 5 bestående i det væsentlige af en aluminiumoxidbærer, en mindre, katalytisk effektiv mængde af i det mindste én halogenkomponent, rhenium og platin. Opfindelsen angår endvidere katalytisk materiale bestående i det væsentlige af en aluminiumoxidbærer, en mindre, katalytisk effektiv 10 mængde af i det mindste én halogenkomponerit, rhenium og platin.The invention relates to a process for reforming a naphtha fraction in which the naphtha fraction is contacted, under reforming conditions and in the presence of gaseous hydrogen, with a catalytic material consisting essentially of an alumina carrier, a smaller catalytically effective amount of at least one halogen component. rhenium and platinum. The invention further relates to catalytic material consisting essentially of an alumina support, a smaller, catalytically effective amount of at least one halogen composerite, rhenium and platinum.

Katalytisk reformering af naphtha anvendes udstrakt inden for jordolieraffineringsindustrien til at fremstille udgangsmateriale til motorbrændstof med et stærkt forøget oktantal i forhold til rånaphtha'en og til fremstilling af aromater, især benzen, toluen og xylener. Forbedringen i oktantal er især vigtig, når der ikke anvendes metalholdige additiver, såsom tetra-ethylbly (TE3) af hensyn til miljøet. Researchoktantallet 20 af et udgangsmateriale eller et motorbrændstof, der er fri for sådanne additiver, bestemmes ved ASTM prøve nr.Catalytic reforming of naphtha is extensively used in the petroleum refining industry to produce starting material for engine fuel with a greatly increased octane number relative to the crude naphtha and for the production of aromatics, especially benzene, toluene and xylenes. The improvement in octane number is especially important when metal-containing additives such as tetraethyl lead (TE3) are not used for environmental reasons. The research octane number 20 of a starting material or motor fuel free of such additives is determined by ASTM sample no.

D-2699 og betegnes ofte som "clear" eller F-l oktantal let. Fremskridt inden for fremstillingen af motorbrændstof uden bly er af særlig miljømæssig betydning.D-2699 and is often referred to as "clear" or F-1 octane light. Advances in the production of unleaded motor fuel are of particular environmental importance.

25 De fleste reformeringskatalysatorer anvender pla tin som katalytisk middel. Nogle anvender også rhenium sammen med platin. Begge metaller er dyre, skønt platin er ca. 7-10 gange så kostbart som rhenium, hvorfor reformeringskatalysator er en af de dyreste katalysatorer, 30 der anvendes i jordolieraffineringen. Enhver forbedring, der sænker katalysatoromkostningerne pr. énhed reformeret -naphtha, såsom ved at forøge katalysatorlevetiden (dvs. forøger mængden af naphtha, der kan reformeres pr. vægtenhed katalysator, før katalysatoren bliver så 35 deaktiveret, at der kræves udskiftning),er fordelagtig.Most reforming catalysts use platinum as a catalytic agent. Some also use rhenium with platinum. Both metals are expensive, although platinum is approx. 7-10 times as expensive as rhenium, which is why reforming catalyst is one of the most expensive catalysts used in petroleum refining. Any improvement that lowers catalyst costs per unit reformed-naphtha, such as by increasing the catalyst life (i.e., increasing the amount of naphtha that can be reformed per unit weight of catalyst before the catalyst becomes so deactivated that replacement is required) is advantageous.

Dette gælder også med hensyn til at forøge katalysatorens cykluslængde, dvs. forøge mængden af 149692 2 naphtha, der kan reformeres pr. vægtenhed katalysator, før katalysatoren kræver regenerering.This is also true with regard to increasing the cycle length of the catalyst, ie. increase the amount of 149692 2 naphtha that can be reformed per weight unit catalyst before the catalyst requires regeneration.

Endvidere befinder kilderne til mere end 95% af den frie verdens platinforsyning sig i Rusland og Syd-5 afrika. Enhver forbedring, der sænker industriens behov for platin,igen, f.eks., ved at forøge levetiden af reformeringskatalysatorer, der indeholder platin,idet de stadig udfører det industrielle formål, er et bidrag til den nationale sikkerhed og endvidere til økonomisk uaf- 10 hængighed.Furthermore, the sources of more than 95% of the world's free platinum supply are in Russia and South 5 Africa. Any improvement that lowers the industry's need for platinum, again, for example, by increasing the lifetime of reforming catalysts containing platinum while still performing the industrial purpose, is a contribution to national security and, moreover, to economic sustainability. dependence.

De oprindelige kostbare kommercielle katalysatorer anvendte et platingruppemetal, fortrinsvis platin selv, som katalytisk middel, se f.eks. USA patenterne nr. 2,479,109 og 2,479,110. Omkring 1968 indførtes an- 15 vendeisen af rhenium sammen med platin. Et antal referencer henviser til rhenium-platinkatalysatorer. I beskrivelsen til USA patent nr. 3,415,737 anføres, at: "Det foretrækkes, at rhenium/platinatomforholdet er fra ca. 0,2 til ca. 2,0. Det foretrækkes yder- o n ligere, at atomforholdet mellem rhenium og platin ikke overstiger én. Højere forhold (dvs. større end én) mellem rhenium og platin kan anvendes, men der opnås i almindelighed ingen yderligere bemærkelsesværdig forbedring." (Spalte 5 linie 51-56).The original costly commercial catalysts used a platinum group metal, preferably platinum itself, as a catalytic agent, see e.g. U.S. Patents Nos. 2,479,109 and 2,479,110. Around 1968, the use of rhenium was introduced with platinum. A number of references refer to rhenium-platinum catalysts. In U.S. Patent No. 3,415,737, it is stated that: "It is preferred that the rhenium / platinum atom ratio be from about 0.2 to about 2.0. It is further preferred that the atomic ratio of rhenium to platinum does not exceed one . Higher ratios (i.e. greater than one) between rhenium and platinum can be used, but in general no further remarkable improvement is achieved. " (Column 5 lines 51-56).

2525

Inden for dette område kan mængden af platin og rhenium ifølge patentet varieres henholdsvis inden for området mellem 0,01 til 3 og 0,01 til 5% af den katalytiske sammensætning. (Spalte 5 linie 35-48). Årsagerne til at anvende et lavt forhold mellem rhenium og platin anføres i patentets spalte 4. Patentet anfører endvidere, at rånaphtha'en bør være i det væsentlige fri for svovl fortrinsvis mindre end 5 ppm og endnu bedre mindre end 1 ppm. (Spalte 7 linie 67-69).Within this range, the amount of platinum and rhenium according to the patent can be varied, respectively, in the range of 0.01 to 3 and 0.01 to 5% of the catalytic composition. (Column 5 lines 35-48). The reasons for using a low ratio of rhenium to platinum are stated in column 4. In the patent, the patent further states that the crude naphtha should be substantially free of sulfur preferably less than 5 ppm and even better less than 1 ppm. (Column 7 lines 67-69).

35 (I denne beskrivelse vil alle sammensætninger, der udtrykkes i procent eller parts pr. million (ppm) være ved vægt, medmindre andet anføres. På grund af at rheni- 3 1496-92 ums og platins atomvægte kun afviger lidt fra hinanden, er et atom-forhold på 1 det samme som et rhenium/platin-vægtforhold på 0,955).35 (In this specification, all compositions expressed in percent or parts per million (ppm) will be by weight unless otherwise stated.) Because rheni- 3 1496-92 twelve and platinum atomic weights differ only slightly, an atomic ratio of 1 the same as a rhenium / platinum weight ratio of 0.955).

I beskrivelsen til USA patent nr. 3,558,477 anfø-5 res, at: "Det er væsentligt for formålet ifølge opfindelsen, at atom-forholdet af rhenium og platin ikke er større end 1,0. Det vil sige, at rhenium/platin-atom-forholdet bør være 1,0 eller mindre end 1,0.In the disclosure to US Patent No. 3,558,477 it is stated that: "It is essential for the purpose of the invention that the atomic ratio of rhenium and platinum is not greater than 1.0. That is, rhenium / platinum atom ratio should be 1.0 or less than 1.0.

Endnu bedre bør rhenium/platinatom-forholdet være mindre end ca. 0,7. Eftersom rhenium og platin har næsten den samme atomvægt, er atom-forholdet i det væsentlige det samme som vægtforholdet." (Spalte 3 linie 26-33).Even better, the rhenium / platinum atom ratio should be less than approx. 0.7. Since rhenium and platinum have almost the same atomic weight, the atomic ratio is essentially the same as the weight ratio "(column 3 lines 26-33).

1515

Patentet beskriver også de samme mængder rhenium og platin i den katalytiske blanding og svovl i naphtha'en som USA patent nr. 3,415,737, se spalte 1 linie 62 og spalte 7 linie 48-51.The patent also discloses the same amounts of rhenium and platinum in the catalytic mixture and sulfur in the naphtha as U.S. Patent No. 3,415,737, see column 1 line 62 and column 7 line 48-51.

Konklusionerne vedrørende rhenium/platinforholdet og den totale mængde rhenium som anføres i det ovennævnte USA patent nr. 3,415,737 er enten gentagede eller udtrykkeligt indføjede som reference i USA patent nr.The conclusions regarding the rhenium / platinum ratio and the total amount of rhenium disclosed in the above-mentioned United States Patent No. 3,415,737 are either repeated or expressly incorporated herein by reference in U.S. Patent

3,449,237 i spalte 3 linie 1-24, i USA patent nr.3,449,237 in column 3 lines 1-24, in United States Patent No.

3,558,479 i spalte 5 linie 50-69 og i USA patent nr.3,558,479 in column 5 lines 50-69 and in United States patent no.

3,578,582 i spalte 1 linie 45. I beskrivelsen til USA3,578,582 in column 1 line 45. In the description to the United States

patent nr. 3,578,582 anføres endvidere, at rhenium-pla-tinreformeringskatalysatorer kan præsulfideres ved at behandle frisk katalysator,før den anvendes i reforme-^ ringen med hydrogensulfid eller en alkylmercaptan i tilstrækkelig mængde til at tilføre 0,05 til 2 mol, fortrinsvis 0,1 til 1 mol svovl pr. mol rhenium og platin, se spalte 2 linie 68 til spalte 3 linie 12.Patent No. 3,578,582 further states that rhenium platinum reforming catalysts can be presulfated by treating fresh catalyst before being used in the reforming with hydrogen sulfide or an alkyl mercaptan in sufficient quantity to add 0.05 to 2 moles, preferably 0, 1 to 1 mole of sulfur per mole of rhenium and platinum, see column 2 line 68 to column 3 line 12.

I beskrivelsen til USA patent nr. 3,578,583 omtales indførelsen af en mindre mængde,op til 0,1%,iridium 35 i en katalysator, der har op til 0,3% af både rhenium og platin.In U.S. Patent No. 3,578,583, the specification discloses the introduction of a minor amount, up to 0.1%, of iridium 35 into a catalyst having up to 0.3% of both rhenium and platinum.

4 149832 I en artikel med titlen "New Developments In Reforming" af Haensel, Pollitzer & Hayes (fra Universal Oil Products Company), i "Proceedings of the Eighth World Petroleum Congress", bind 4 side 255-261 (1971) 5 beskrives, at udbyttet af C^+ flydende produktreformat når et maksimum, når rhenium udgør 50% af det totale katalytiske metal (dvs. et rhenium/platinvægtforhold på 1), og at udbyttet af flydende produktreformat derefter falder, eftersom den relative vægt af rhenium til platin 10 enten forøges eller sænkes. Det anføres, at "Det viste forhold (i artiklens fig. 5) er korrekt inden for et temmelig bredt område af platinindhold, hvilket peger på, at rheniums modificerende virkning udføres på platinet." Ibid, side 259-60.4 149832 In an article entitled "New Developments In Reforming" by Haensel, Pollitzer & Hayes (of Universal Oil Products Company), in "Proceedings of the Eighth World Petroleum Congress", Vol. 4 pages 255-261 (1971) 5, that the yield of C ^ + liquid product reformate reaches a maximum when rhenium constitutes 50% of the total catalytic metal (i.e., a rhenium / platinum weight ratio of 1) and the yield of liquid product reformate thereafter decreases as the relative weight of rhenium to platinum 10 either increase or decrease. It is stated that "The ratio shown (in Fig. 5 of the article) is correct within a fairly wide range of platinum content, which indicates that the rhenium's modifying effect is performed on the platinum." Ibid, pages 259-60.

15 I dansk fremlæggelsesskrift nr. 141606 angives en fremgangsmåde til reforming af et carbonhydrid, hvor der anvendes en katalysator omfattende aluminiumoxid, en metallisk komponent fra platingruppen, en halogenkomponent og en rheniumkomponent, idet det for rhenium-20 komponenten og platingruppekomponenten er angivet, at de hver er til stede i mængder på fra ca. 0,05 til ca.Danish Patent Specification No. 141606 discloses a process for reforming a hydrocarbon using a catalyst comprising alumina, a metallic component of the plate group, a halogen component and a rhenium component, stating that for the rhenium component and the plate group component, each is present in amounts of from ca. 0.05 to approx.

1,0 vægtprocent.1.0% by weight.

Endvidere er der i krav 6 angivet en sammensat katalysator, hvori vægtforholdet mellem rhenium- og 25 platingruppekomponenten er fra ca. 0,05:1 til ca.Furthermore, in Claim 6, a composite catalyst is disclosed wherein the weight ratio of the rhenium to the platinum group component is from about 1 to about 1. 0.05: 1 to approx.

2,75:1.2.75: 1st

Udførelseseksemplerne viser katalysatorer med Re/Pt vægtforhold på mellem 0,13 og 0,36 (Re-indhold på fra 0,1 til 0,2 vægt% og Pt-indhold på fra 0,55 til 30. 0,75), dvs. med overvejende platinindhold.The working examples show catalysts with Re / Pt weight ratios of between 0.13 and 0.36 (Re content of 0.1 to 0.2% by weight and Pt content of 0.55 to 30. 0.75), ie . with predominantly platinum content.

Britiske patentskrifter nr. 1 269 764 og 1 269 765 angiver benyttelse af katalysatorer til nævnte brug, hvor Re/Pt-forholdet ligger i området 0,2-5. I udførelseseksemplerne har det højest viste 35 Re/Pt vægtforhold en værdi på 1British Patent Nos. 1,269,764 and 1,269,765 disclose the use of catalysts for said use, where the Re / Pt ratio is in the range of 0.2-5. In the exemplary embodiments, the highest 35 Re / Pt weight ratio has a value of 1

Det ses heraf, at man inden for reformeringsteknikken med rhenium-platinkatalysatorer vedholdende har anført, at rhenium/platinforholdet bør være mindre end 2 og fortrinsvis ca. 1 eller mindre« 5 U9B92 I tilfælde af højere Re/Pt-vægtforhold er der ikke anført nogen sammenhæng mellem svovlindholdet i den naphtha, der skal reformeres, Re/Pt-vægtforholdet i den angivne katalysator og den opnåelige cykluslængde.It can be seen from this that in the reforming technique with rhenium-platinum catalysts, it has been consistently stated that the rhenium / platinum ratio should be less than 2 and preferably approx. 1 or less «5 U9B92 In the case of higher Re / Pt weight ratios, there is no relationship between the sulfur content of the naphtha to be reformed, the Re / Pt weight ratio of the specified catalyst and the achievable cycle length.

5 Det har nu overraskende vist sig, at en rhenium- platinreformeringskatalysators cykluslængde forøges væsentligt, såfremt rhenium/platinforholdet er i området fra ikke mindre end 2 til ca. 5, fortrinsvis i området fra ca. 2 1/4 til ca. 4 og endnu bedre i området fra ca.Surprisingly, it has now been found that the cycle length of a rhenium-platinum reforming catalyst is significantly increased if the rhenium-platinum ratio is in the range of not less than 2 to approx. 5, preferably in the range of approx. 2 1/4 to approx. 4 and even better in the area from approx.

10 2½ til 3%, når der anvendes en rånaphtha med et svovl indhold, der er mindre endeiler nedbragt til ca. 0,5 ppn og fortrinsvis ikke større end ca, 0,25 ppri. Dette fremskridt er ikke blot uden for anførelserne i den kendte teknik, men er et enestående optimum,eftersom cykluslængden ved meget 15 høje rhenium/platinforhold,omtrent over 5, også falder.10 2½ to 3% when using a raw naphtha with a sulfur content that is less endile reduced to approx. 0.5 ppn and preferably not greater than about 0.25 ppri. This progress is not only beyond the teachings of the prior art, but is a unique optimum since the cycle length at very high rhenium / platinum ratios, about above 5, also decreases.

Den nye katalysator er en katalytisk blanding, der består af rhenium og platin på et Bæremiddel,, hvori vægtforholdet mellem rhenium og platin er i det ovenfor anførte område.The new catalyst is a catalytic mixture consisting of rhenium and platinum on a carrier, wherein the weight ratio of rhenium to platinum is in the range indicated above.

20 I overensstemmelse med det ovenstående er fremgangs måden ifølge opfindelsen ejendommelig ved, at naphta-fraktionen forud for kontakten med katalysatoren om fornødent afsvovles til et svovlindhold på mindre end ca.In accordance with the foregoing, the process of the invention is peculiar in that the naphtha fraction, prior to contact with the catalyst, is desulfurized to a sulfur content of less than ca.

0,5 ppm svovl efter vægt, at platinindholdet ligger 25 mellem 0,1 og 0,4 vægt%, og at vægtforholdet mellem rhenium og platin i det katalytiske materiale ligger i området fra ikke mindre end 2 til ca. 5.0.5 ppm sulfur by weight, the platinum content is between 0.1 and 0.4% by weight, and the weight ratio of rhenium to platinum in the catalytic material is in the range of not less than 2 to approx. 5th

Tilsvarende er det katalytiske materiale ifølge opfindelsen ejendommelig ved, at platinindholdet ligger 30 mellem 0,1 og 0,4 vægt%, og at vægtforholdet mellem rhenium og platin i det katalytiske materiale ligger i området fra ikke mindre end 2 til ca. 5.Similarly, the catalytic material according to the invention is characterized in that the platinum content is between 0.1 and 0.4% by weight and that the weight ratio of rhenium to platinum in the catalytic material is in the range of not less than 2 to approx. 5th

Der kan benyttes forskellige hensigtsmæssige udførelsesformer for fremgangsmåden og det katalytiske 35 materiale ifølge opfindelsen, som angivet i krav 2-4 og 6-7.Various suitable embodiments of the process and the catalytic material of the invention can be used, as set forth in claims 2-4 and 6-7.

6 1436926 143692

Bortset fra det forøgede rhenium/platinvægtfor-hold kan den katalytiske blanding ifølge opfindelsen fremstilles på sanme råde som tidligere kendt til fremstilling af katalysatorer med et lavere rhenium/platinforhold. Mæng-5 den af platin kan være i området fra ca. 0,1 til ca.Apart from the increased rhenium / platinum weight ratio, the catalytic mixture of the invention may be prepared in the prior art as known to produce lower rhenium / platinum catalysts. The amount of platinum may be in the range of approx. 0.1 to approx.

2%, fortrinsvis i området fra ca. 0,1 til 0,4% med rheniumindholdet tilpasset til opnåelse af det ønskede rhenium/platinforhold inden for det anførte område. Bæremidlet er typisk η-eller γ-aluminiumoxid og kan eventu-10 elt indeholde siliciumoxid, magnesiumoxid, oxider af sjældne jordartsmetaller og syntetiske zeoliter, der sommetider benævnes molekylsigter. Typisk består op til ca. 1% af den katalytiske blanding af halogenider især chlorid eller fluorid.2%, preferably in the range of approx. 0.1 to 0.4% with the rhenium content adjusted to obtain the desired rhenium / platinum ratio within the range indicated. The carrier is typically η or γ alumina and may optionally contain silica, magnesium oxide, rare earth oxides and synthetic zeolites, sometimes referred to as molecular sieves. Typically, up to approx. 1% of the catalytic mixture of halides especially chloride or fluoride.

15 Det foretrækkes, at katalysatoren præsulfideres før anvendelse i reformering for at undgå overdreven hydrogenkrakning, når katalysatoren først anbringes i fødestrømmen. Præsulfideringsbehandlingen udføres ved at bringe katalysatoren i kontakt med en gasstrøm, der 2Q indeholder hydrogensulfid, en alkylmercaptan eller car-bondisulfid, fortrinsvis blandet med gasformigt hydrogen, indtil katalysatoren indeholder fra ca. 0,1 til ca.It is preferred that the catalyst be presulfated before use in reforming to avoid excessive hydrogen cracking when the catalyst is first placed in the feed stream. The pre-sulfidation treatment is carried out by contacting the catalyst with a gas stream containing 2Q containing hydrogen sulfide, an alkyl mercaptan or carbon disulfide, preferably mixed with gaseous hydrogen until the catalyst contains from ca. 0.1 to approx.

0,5 vægtdele svovl pr. vægtdel rhenium, dvs. i området fra ca. 0,6 til ca. 3 mol svovl pr. mol rhenium. Det 25 foretrækkes, at katalysatoren ikke tilføres mere end ca.0.5 parts by weight of sulfur. part by weight of rhenium, ie in the area from approx. 0.6 to approx. 3 moles of sulfur per mol of rhenium. It is preferred that the catalyst be supplied with no more than approx.

0,25 vægtdele svovl pr. vægtdel rhenium i præsulfideringstrinnet, f.eks. ca. 0,17 vægtdele svovl pr. vægtdel rhenium.0.25 parts by weight of sulfur per liter. part by weight of rhenium in the presulfurization step, e.g. ca. 0.17 parts by weight of sulfur per liter. part by weight of rhenium.

Reformeringsfremgangsmåden med den nye katalysa-30 tor er i det væsentlige det samme som med den tidligere kendte type katalysator med et lavere rhenium/platinforhold, bortset fra at rånaphtha'en bør have et svovlindhold, der er mindre end eller nedbragt til ca. 0,5 ppm og fortrinsvis ikke større end Q, 25pprr. for at opnå den overlegne kataly-35 satorlevetid og et omtrentlig ækvivalent udbytte af C5+ flydende reformat, der er opnåeligt med en katalysator med et rhenium/platinforhold i området fra ca. 2 1/4 til ca.The reforming process with the new catalyst is essentially the same as with the prior art type of catalyst having a lower rhenium / platinum ratio, except that the crude naphtha should have a sulfur content less than or reduced to about 10%. 0.5 ppm and preferably not greater than Q, 25pprr. to obtain the superior catalyst lifetime and an approximate equivalent yield of C5 + liquid reformate obtainable with a catalyst having a rhenium / platinum ratio in the range of about 2 1/4 to approx.

5. X almindelighed hydrogenbehandles eller afsvovles 7 149692 rånaphtha’en ved kendte fremgangsmåder. Skønt den kendt« teknik anfører anvendelsen af naphtha med mindre end 1 ppm svovl, kræver katalysatorerne ifølge opfindelsen naphtha med det ovenfor anførte meget lave svovlindhold.5. X is generally hydrogen treated or desulfurized by the known methods. Although the prior art discloses the use of naphtha with less than 1 ppm sulfur, the catalysts of the invention require naphtha with the very low sulfur content stated above.

5 Halogenider kan tilsættes reaktionszonen under reformeringen, såsom ved at injicere hydrogenchlorid, carbontetrachlorid eller et alkylhalogenid i naphtha-fødestrømmen og/eller i tilbageføringshydrogengasstrømmen, der føres ind i reformerens reaktionszone. Mængden 10 af vand i reaktionszonen bør indstilles til opretholdelse af et molforhold mellem vand og chlorid i området fra ca. 20 til 80, fortrinsvis 40:1.Halides can be added to the reaction zone during the reforming, such as by injecting hydrogen chloride, carbon tetrachloride or an alkyl halide into the naphtha feed stream and / or into the return hydrogen gas stream entering the reaction zone of the reformer. The amount 10 of water in the reaction zone should be adjusted to maintain a water to chloride molar ratio in the range of about 20 to 80, preferably 40: 1.

Når den katalytiske blandings virkning er faldet grundet en akkumulation af carbonholdige aflejringer, 15 der i almindelighed benævnes "coke", kan katalysatoren regenereres ved kendte fremgangsmåder. Det er imidlertid en ejendommelighed ved katalysatoren, der har et rhenium/platinforhold inden for det område, der beskrives ifølge opfindelsen, at der kan akkumuleres en større 20 mængde "coke" derpå, før aktiviteten falder til et utilfredsstillende niveau, hvilket angives ved reduktion i udbyttet af C5+ reformat og/eller reformatets clear-oktantal,end ved katalysatorer, der har et rhenium/platinforhold, der er mindre end 2. Således vil regenere-25 ringsfremgangsmåden kræve noget mere tid, og der bør tages kendte forholdsregler for at undgå overdreven flam-mefronttemperatur under regenereringen for at undgå skade på katalysatoren på grund af lokal overophedning.When the effect of the catalytic mixture is decreased due to an accumulation of carbonaceous deposits commonly referred to as "coke", the catalyst can be regenerated by known methods. However, it is a peculiarity of the catalyst having a rhenium / platinum ratio within the range of the invention that a greater amount of "coke" can be accumulated thereon before the activity drops to an unsatisfactory level, which is indicated by reduction in yield of C5 + reformate and / or reformate clear octane number than catalysts having a rhenium / platinum ratio of less than 2. Thus, the regeneration process will require some more time and known precautions should be taken to avoid excessive flame-mefront temperature during regeneration to avoid damage to the catalyst due to local overheating.

Den bemærkelsesværdige forbedring i katalysator-3Q cykluslængden er blevet fastslået ved data fra laboratorieprøveanlæg , der beskrives i de følgende eksempler. Eksemplerne anføres for at belyse fremstillingen af katalysatorer, der kan anvendes i fremgangsmåden ifølge opfindelsen,og deres anvendelse i den kata-35 lytiske reformering af naphtha.The remarkable improvement in catalyst 3Q cycle length has been established by laboratory test data described in the following examples. The examples are set forth to illustrate the preparation of catalysts useful in the process of the invention and their use in the catalytic reforming of naphtha.

149692 8149692 8

Eksempel 1Example 1

Der fremstilles en række reformeringskatalysatorer med forskellige vægtforhold mellem rhenium og platin.A number of reforming catalysts having different weight ratios of rhenium to platinum are produced.

Den anvendte fremgangsmåde til fremstilling af katalysatoren er kendt og beskrives blot kort nedenfor på generel basis. Fremstillingsfremgangsmåden bestod i, at der til et bægerglas sattes de støchiometrisk Ønskede mængder af ammoniumperrhenat(NH^ReO^) og diammoniumhexa-chloroplatinat(XV)' ((NH^)2PtClg) og deioniseret vand.The method used to prepare the catalyst is known and will only be described briefly below on a general basis. The preparation process consisted of adding to the beaker the desired stoichiometric amounts of ammonium perrhenate (NH4 ReO4) and diammonium hexa-chloroplatinate (XV) ((NH4) 2PtCl2) and deionized water.

Der tilsattes vandigt ammoniumhydroxid,og reaktionsblandingen opvarmedes under omrøring med hånd til en temperatur i området mellem 81-83°C,og indtil samtlige ingredienser var opløste,og der fremkom en lys strågul farve.Aqueous ammonium hydroxide was added and the reaction mixture was heated by hand, stirring to a temperature in the range of 81-83 ° C, until all ingredients were dissolved and a pale straw yellow color appeared.

Der tilsattes en 10%* s vandig HCl opløsning og mere de-15 0 ioniseret vand. Opløsningen opvarmedes derpå til 90-94 C.A 10% * aqueous HCl solution and more deionized water were added. The solution was then heated to 90-94 ° C.

Blandingen hældtes derefter udover den ønskede mængde 1,6 mm γ-aluminiumoxidextrudater, der var anbragt i et hurtigt roterende fad. Efter ca. 1 minut eller mindre 2g fjernedes aluminiumoxidextrudaterne fra fadet og dække-des med et urglas. Extrudaterne holdtes i lutime ved en temperatur på mindst 40°C og op til et maksimum på ca.The mixture was then poured in addition to the desired amount of 1.6 mm γ-alumina extrudates placed in a rapidly rotating dish. After approx. For 1 minute or less 2g, the alumina extrudates were removed from the dish and covered with a watch glass. The extrudates were kept in lutime at a temperature of at least 40 ° C and up to a maximum of approx.

65°C ved hjælp af en infrarød lampe og omrørtes ind imellem med hånden. Katalysatoren tørredes derpå med luft ved 105-115°C. Derefter calcineredes katalysatoren i tør luft, der strømmede med en hastighed på ca.65 ° C by means of an infrared lamp and stirred in by hand. The catalyst was then dried with air at 105-115 ° C. Then, the catalyst was calcined in dry air flowing at a rate of ca.

1000 V/V/time i 2 timer ved 99°C og derpå i 2 timer ved 480°C.1000 V / V / hour for 2 hours at 99 ° C and then for 2 hours at 480 ° C.

Den analytiske sammensætning af katalysatorerne A-H er vist i tabel 1.The analytical composition of catalysts A-H is shown in Table 1.

30 930 9

Tabel 1 149692Table 1 149692

Sammen- Vægtprocent Vægtfor- sætning hold 5 Katalysator Pt Re Cl Re/Pt A 0,334 0,362 0,91 1,08 B 0,344 0,510 0,80 1,48 C 0,340 0,849 0,93 2,50 D 0,248 0,516 0,99 2,08 10 E 0,236 0,860 0,97 3,64 F 0,150 0,366 0,98 2,44 G 0,155 0,875 0,98 5,65 H 0,05 0,85 1,0 17 15Comparison Weight Percent Weight Assumption Team 5 Catalyst Pt Re Cl Re / Pt A 0.334 0.362 0.91 1.08 B 0.344 0.510 0.80 1.48 C 0.340 0.849 0.93 2.50 D 0.248 0.516 0.99 2, 08 10 E 0.236 0.860 0.97 3.64 F 0.150 0.366 0.98 2.44 G 0.155 0.875 0.98 5.65 H 0.05 0.85 1.0 17 15

De ovennævnte katalysatorer anvendtes i reformeringsprøveanlægsforsøg under accelererede ældningsbetingelser for at fastlægge den relative cykluslængde pr. vægtenhed platin som funktion af rhenium/platinvægtfor- 20 holdet. Der anvendtes en naphtha fra en Midtkontinental råolie, naphtha'en var blevet hydrogenbehandlet til opnåelse af et svovlindhold på 0,21ppm ved vægt. Naphtha'-ens egenskaber er anført nedenfor.The above catalysts were used in reforming test plant experiments under accelerated aging conditions to determine the relative cycle length per weight unit of platinum as a function of the rhenium / platinum weight ratio. A naphtha from a Middle Continental crude oil was used, the naphtha having been hydrogen treated to give a sulfur content of 0.21ppm by weight. The properties of Naphtha are listed below.

0 5 <*>0 5 <*>

Massefylde, (gem,16,5 C) 0,760Density, (save, 16.5 ° C) 0.760

Destillation begyndende kp., °c 110 10% 119 30 50% 131 90% 157 95¾ 162 slutpunkt 188 35 Svovl, ppm .0,21 nitrogen, ppm 0,3 149692 10Distillation beginning bp, ° c 110 10% 119 30 50% 131 90% 157 95¾ 162 End point 188 35 Sulfur, ppm .0.21 nitrogen, ppm 0.3 149692 10

Typeanalyse (med Massespektrometer) paraffiner 45,4% naphthener 42,6% aromater 12,0% S Prøveanlægget bestod af en enkel rørformet reak tor af rustfrit stål med nominel 2,54cm indre diameter, der blev drevet isothermt.Den forsynedes med ca. 40 gram katalysator til reformeringsundersøgelserne. Efter at en friskt fremstillet katalysator var anbragt i reak-10 toren, reduceredes katalysatoren kemisk ved at lade hydrogen strømme gennem katalysatorlaget ved 480°C Temperaturen sænkedes derpå til 425°C og katalysatoren præsulfideredes ved at føre en blanding af 0,7 rumfangsprocent hydrogensulfid i hydrogen gennem katalysator-15 laget, indtil der opnåedes et konstant svovlniveau for hver prøve på ca. 0,05 vægtprocent på katalysatoren.Type Analysis (with Mass Spectrometer) Paraffins 45.4% Naphthene 42.6% Aromatics 12.0% S The test plant consisted of a simple tubular stainless steel reactor with a nominal 2.54cm internal diameter, which was operated isothermally. 40 grams of catalyst for the reform studies. After a freshly prepared catalyst was placed in the reactor, the catalyst was chemically reduced by allowing hydrogen to flow through the catalyst layer at 480 ° C. The temperature was then lowered to 425 ° C and the catalyst presulfated by passing a mixture of 0.7 volume percent hydrogen sulfide in hydrogen through the catalyst layer until a constant sulfur level was obtained for each sample of approx. 0.05% by weight of the catalyst.

Den forvarmede rånaphtha indførtes til at begynde med ved en reaktortemperatur på 425°C, hvorefter temperaturen forøgedes til 495°C og holdtes konstant igennem de 20 300-timers ældningsforsøgs varighed.Reformeringsforsøgsbetingelserne var en temperatur på 4S5°C, en Vægtbaseret volumenhastighed" (WHSV) på 4 timer , et hydrogen/hydrocar-bon-molforhold på 3 og et tryk på 15 atm. Disse betingelser frembragte ved forsøgenes begyndelse et C5+ re-25 format med et researchoktantal uden tilsætning af tetra-ethylbly (betegnes RONC) på ca. 100, bestemt ved ASTM procedure nr. D-2699. Under reformeringsundersøgelserne injiceredes en blanding af methanol og alkylchlorid i rånaphtha'en for at opretholde et konstant (dvs. ca. 1 20 vægtprocent) chloridindhold på hver katalysator.The preheated raw anaphtha was initially introduced at a reactor temperature of 425 ° C, after which the temperature was increased to 495 ° C and kept constant for the duration of the 20 300-hour aging test. ) at 4 hours, a hydrogen / hydrocarbon mole ratio of 3 and a pressure of 15 atm. These conditions at the beginning of the experiments produced a C5 + re-25 format with a research octane number without the addition of tetraethyl lead (referred to as RONC) of approx. 100, determined by ASTM Procedure No. D-2699. During the reforming studies, a mixture of methanol and alkyl chloride was injected into the crude naphtha to maintain a constant (i.e., about 20% by weight) chloride content on each catalyst.

Dataene fra reformeringsforsøgene behandledes som følger. X løbet af 300-timers reformeringsundersøgelserne indsamledes C^+ væskeproduktet med mellemrum, og dets oktantal undersøgtes. Det målte researchoktan-25 tal afsattes imod tid i fødestrømmen,og hældningen på oktan-tidskurven indstilledes ved hjælp af kendte metoder for at kompensere for enhver forskel mellem refor- 149692 11 matets oktantal ved undersøgelsens begyndelse og det tilstræbte begyndelsesoktantal på 100. C^+ reformatets kompenserede researchoktantal indtegnedes derpå imod tiden i timer, der var gået efter reformeringsundersø-5 gelsens start, ofte betegnet som "time on feed". Oktantidskurvens hældning er negativ og angiver oktansænkningshastigheden, dvs.den hastighed hvormed oktantallet falder. Den har enheden RONC/time og anføres ofte for bekvemmelighed som ARONC/IOO timer. I katalytisk refor-20 mering er det ønskværdigt at minimalisere oktansænkningshastigheden, og en lavere absolutværdi på kurvens hældning angiver derfor en mere ønskværdig katalysator.The data from the reform experiments were processed as follows. X during the 300-hour reform studies, the C 2+ liquid product was collected at intervals and its octane number examined. The measured research octane number was plotted against time in the feed stream, and the slope of the octane time curve was adjusted by known methods to compensate for any difference between the reformed octane number at the beginning of the study and the desired initial octane number of 100. The reformat's compensated research octane number was then plotted against the time in hours that had passed since the start of the reform study, often referred to as "time on feed". The slope of the octane time curve is negative and indicates the rate of octane lowering, i.e. the rate at which the octane number decreases. It has the unit RONC / hour and is often listed for convenience as ARONC / IOO hours. In catalytic reforming, it is desirable to minimize the octane lowering rate, and a lower absolute value on the slope of the curve therefore indicates a more desirable catalyst.

I tabel II angives hældningshastigheden som faldet i researchoktantallet pr. 100 timer for de under-15 søgte katalysatorer. Katalysator A, som er repræsentativ for de hidtil kendte foretrukne rhenium/platinkatalysa-torer , tildeltes arbitrært en relativ cykluslængde på 1,00 og de relative cykluslængder for alle de resterende katalysatorer sammenlignedes med den ved at dividere 2q hældningshastigheden for katalysator A med hældningshastigheden for den betragtede katalysator. Den relative cykluslængde pr. vægtenhed platin bestemtes ved at dividere en katalysators relative cykluslængde med katalysatorens vægtdel platin (som anført i tabel 1 ). Den 2^ sidste beregning er betydningsfuld, da den angiver den effektivitet, hvormed det kostbare platin anvendes. Resultaterne i tabel 2 viser, at der ved anvendelse af rhenium/platinforhold på ikke mindre end 2 kan opnås en længere cykluslængde og/eller bedre effektivitet ved 2Q anvendelsen af platin end ved katalysatorer, der har et lavere Re/Pt forhold. Resultaterne fastslår endvidere overraskende, at der ifølge opfindelsen kan anvendes katalysatorer, der indeholder en lavere vægtdel platin (ca. 0,151 i katalysatorerne P og G) end der hidtil har 35 været anvendt kommercielt.Table II indicates the slope rate as the decrease in the research octane per 100 hours for the under-15 catalysts searched. Catalyst A, representative of the previously known preferred rhenium / platinum catalysts, was arbitrarily assigned a relative cycle length of 1.00 and the relative cycle lengths of all remaining catalysts compared to that by dividing the 2q slope rate of catalyst A by the slope of the considered catalyst. The relative cycle length per weight unit platinum was determined by dividing the relative cycle length of a catalyst by the weight part platinum of the catalyst (as listed in Table 1). The 2 ^ last calculation is significant as it indicates the efficiency with which the precious platinum is used. The results in Table 2 show that by using rhenium / platinum ratios of not less than 2, a longer cycle length and / or better efficiency can be achieved in the use of platinum than in catalysts having a lower Re / Pt ratio. Furthermore, the results surprisingly state that, according to the invention, catalysts containing a lower part by weight of platinum (about 0.151 in catalysts P and G) can be used than have been commercially used so far.

Tabel 2 149692 12 Vægtfor- Ældnings- Relativ Relativ cyk- hold hastighed cyklus- luslængde pr.Table 2 149692 12 Weight Maturity Relative Relative cycle holding speed cycle length per unit.

længde vægtenhed 5 platinlength weight unit 5 platinum

Katalysator Re/Pt ARONC/IOOCatalyst Re / Pt ARONC / IOO

timer A 1,08 2,8 1,00 2,99 B 1,48 2,1 1,33 3,87 10 C 2,50 1,7 1,65 4,85 D 2,08 2,2 1,27 5,12 E 3,64 1,9 1,47 6,23 P 2,44 2,5 1,12 7,47 G 5,65 3,4 0,82 5,47 15 H 17 33 0,08 1,60hours A 1.08 2.8 1.00 2.99 B 1.48 2.1 1.33 3.87 10 C 2.50 1.7 1.65 4.85 D 2.08 2.2 1, 27 5.12 E 3.64 1.9 1.47 6.23 P 2.44 2.5 1.12 7.47 G 5.65 3.4 0.82 5.47 15 H 17 33 0.08 1.60

Eksempel 2Example 2

Katalysator C sammenlignedes med katalysator ACatalyst C was compared to Catalyst A

20 under anvendelse af rånaphtha med forskelligt svovlindhold. Forsøgsbetingelserne var de samme som angivet i eksempel 1, bortset fra at svovlindholdet i rånaphtha'en indstilledes ved at tilsætte thiophen for at forøge svovlindholdet til lOppm ved vægt. Resultaterne fra æld-25 ningsundersøgelsen under anvendelse af rånaphtha med svovlindhold på 0,2 og lOppm er anført i tabel 3 . Som det vistes i eksempel 1 har katalysator C ifølge opfindelsen en lavere .ældningshastighed end den kendte katalysator A. Den relative cykluslængde og også den relati-30 ve cykluslængde pr. vægtenhed platin af katalysator C, ifølge opfindelsen,er større end den af den kendte katalysator A, når svovlindholdet i rånaphthaen er 0,2ppm, men omvendt hvis svovlindholdet er lOppm. Disse resultater fastslår, at til optimal udnyttelse af den om-35 handlede opfindelse bør svovlindholdet i rånaphthaen reduceres til mindre end 0,5 og fortrinsvis til mindre end 0,25ppm.20 using robber naphtha with different sulfur content. The test conditions were the same as in Example 1 except that the sulfur content of the crude naphtha was adjusted by adding thiophene to increase the sulfur content to 100ppm by weight. The results from the aging study using crude naphtha with sulfur content of 0.2 and 100ppm are given in Table 3. As shown in Example 1, catalyst C of the invention has a lower curing rate than the known catalyst A. The relative cycle length and also the relative cycle length per the unit weight of platinum of catalyst C, according to the invention, is greater than that of the known catalyst A when the sulfur content of the crude naphtha is 0.2ppm but vice versa if the sulfur content is 10ppm. These results state that for optimal utilization of the present invention, the sulfur content of the raw naphtha should be reduced to less than 0.5 and preferably to less than 0.25 ppm.

Tabel 3 149692 13Table 3 149692 13

Katalysator Rånaphtha- Ældnings- Relativ Relativ svovl, ppm hastighed cyklus- cyklus- 5 ARONC/IOO længde længde pr.Catalyst Rånaphtha- Aging Relative Relative sulfur, ppm speed cycle cycle 5 ARONC / IOO length length per.

timer vægtenhed platin A 0,21 2,8 1,00 2,99 A 10 4,0 0,70 2,10 C 0,21 1,7 1,65 4,85 10 C 10 6,2 0,45 1,32hours weight unit platinum A 0.21 2.8 1.00 2.99 A 10 4.0 0.70 2.10 C 0.21 1.7 1.65 4.85 10 C 10 6.2 0.45 1 , 32

Eksempel 3Example 3

Katalysatorerne A, C og G anvendtes i reformeringspilotanlægsundersøgelser, der yderligere belyser fremgangsmåden ifølge opfindelsen. Den hydrogenbehandlede naphtha fra en Midtkontinental råolie havde de nedenfor anførte egenskaber: 20 Massefylde, (gcm?I6,5°C) 0,761Catalysts A, C and G were used in reforming pilot plant studies which further elucidate the process of the invention. The hydrogen-treated naphtha from a Middle Continental crude had the following characteristics: Density, (gcm? I6.5 ° C) 0.761

Destillation begyndende kp., °C 103 10% 117 25 50% 131 90% 161 95% 173Distillation starting bp, ° C 103 10% 117 25 50% 131 90% 161 95% 173

Slutpunkt 185End point 185

Svovl 0,57 ppmSulfur 0.57 ppm

3Q3Q

nitrogen 0,77 ppmnitrogen 0.77 ppm

Typeanalyse (med Massespektrometer) paraffiner 45,5 naphthener 42,8 35 aromater 11#7 149692 14Type Analysis (with Mass Spectrometer) Paraffins 45.5 Naphthenes 42.8 35 Aromatics 11 # 7

Reformeringspilotanlægget og fremgangsmåderne til reducering og præsulfidering af de friske katalysatorer var de samme som beskrevet i eksempel 1, bortset fra,at den mængde svovl, der tilsattes hver katalysator, varie-5 redes til opnåelse af ca. 0,17 dele svovl pr. vægtdel rhenium som anført i den følgende tabel.The reforming pilot plant and the methods for reducing and presulfating the fresh catalysts were the same as described in Example 1, except that the amount of sulfur added to each catalyst varied to give approx. 0.17 parts sulfur per part by weight of rhenium as set out in the following table.

Katalysator Svovl på Vægtforhold katalysator, S/Re vægtprocent 10 - - - A 0,06 0,166 C 0,15 0,177 G o,15 0,171 15Catalyst Sulfur on Weight Ratio Catalyst, S / Re weight percent 10 - - - A 0.06 0.166 C 0.15 0.177 G o, 15 0.171 15

Hver af disse katalysatorer anvendes til reformering ved en temperatur på 480°c et tryk på 13,3 atm. et hydrogen/hydrocarbon-molforhold på 9 og en voluraenha-stighed i området fra 2 til 12 timer1, der andredes til at 20 justere oktanniveauet for C^+ reformatet på 91 RONC.Each of these catalysts is used for reforming at a temperature of 480 ° C at a pressure of 13.3 atm. a hydrogen / hydrocarbon molar ratio of 9 and a volura velocity in the range of 2 to 12 hours1, which was adjusted to adjust the octane level of the C₂ + reformate of 91 RONC.

Forsøgene afsluttedes,efter at ca.7Q0 liter naphtha pr.The experiments were completed after approx. 7Q0 liters of naphtha per day.

kg katalysator var blevet behandlet, og de brugte katalysatorer analyseredes for carbonindhold. De relevante data er anført nedenfor: 25 Vægt- Middel Reformat- Carbon på brugt kata-kg of catalyst had been treated and the catalysts used were analyzed for carbon content. The relevant data are listed below: 25 Weight- Medium Reformat- Carbon on used cat-

Katalysator forhold WHSV ved udbytte lysator_Catalyst ratio WHSV at yield lysator_

Re/Pt 91 RONC ved 91 Vægt% af % pr.Re / Pt 91 RONC at 91% by weight%

RONC katalysator vagtenhed timer1 30 A 1,08 7,0 87,6 1,15 3,44 C 2,5 6,7 85,8 0,49 1,44 G 5,65 6,0 85,6 0,28 1,81 149692 15RONC catalyst watch unit timer130 A 1.08 7.0 87.6 1.15 3.44 C 2.5 6.7 85.8 0.49 1.44 G 5.65 6.0 85.6 0.28 1.81 149692 15

Katalysatorernes aktiviteter,som angivet ved vægt/rumfang-hastighed og' udbyttet af C5+ reformat, var omtrentlig ens for katalysatorerne, skønt begyndelsessvovlindholdene var forskellige. Endvidere tyder re-5 duktionen i mængde carbon (ofte benævnt "coke") på de brugte katalysatorer ved en forøgelse i rhenium/platin-forholdet på, at rhenium udøver en "on-stream" rensende virkning, der er i overensstemmelse med den større relative cykluslængde, der er opnåelig med katalysatorer, 10 der har et, i forhold til tidligere kendte katalysatorer, forøget Re/Pc-forhold.The activities of the catalysts, as indicated by weight / volume velocity and the yield of C5 + reformate, were approximately similar for the catalysts, although the initial sulfur content was different. Furthermore, the reduction in the amount of carbon (often referred to as the "coke") of the catalysts used by an increase in the rhenium / platinum ratio indicates that rhenium exerts an "on-stream" purifying effect consistent with the larger relative cycle length obtainable with catalysts having a higher Re / Pc ratio compared to prior art catalysts.

Claims (6)

149692149692 1. Fremgangsmåde til reforming af en naphtafrak-tion, ved hvilken naphtafraktionen under reformingsbe-tingelser og i nærværelse af gasformig hydrogen bringes 5 i kontakt med et katalytisk materiale bestående i det væsentlige af en aluminiumoxidbærer, en mindre, katalytisk effektiv mængde af i det mindste én halogenkomponent, rhenium og platin, kendetegnet ved, at naphtafraktionen forud for kontakten med katalysatoren 10 om fornødent afsvovles til et svovlindhold på mindre end ca. 0,5 ppm svovl efter vægt, at platinindholdet ligger mellem 0,1 og 0,4 vægt%, og at vægtforholdet mellem rhenium og platin i det katalytiske materiale ligger i området fra ikke mindre end 2 til ca. 5.A process for reforming a naphtha fraction in which the naphtha fraction is brought into contact with a catalytic material consisting essentially of an alumina carrier under a reforming conditions and in the presence of gaseous hydrogen, a smaller catalytically effective amount of at least one halogen component, rhenium and platinum, characterized in that the naphtha fraction, prior to contact with the catalyst 10, is desulfurized to a sulfur content of less than approx. 0.5 ppm sulfur by weight, the platinum content is between 0.1 and 0.4% by weight, and the weight ratio of rhenium to platinum in the catalytic material is in the range of not less than 2 to approx. 5th 2. Fremgangsmåde ifølge krav 1, kendeteg net ved, at vægtforholdet mellem rhenium og platin ligger i området mellem ca. 2 1/4 til ca. 4.Process according to Claim 1, characterized in that the weight ratio of rhenium to platinum is in the range between approx. 2 1/4 to approx. 4th 3. Fremgangsmåde ifølge krav 1, kendetegnet ved, at det katalytiske materiale præsulfideres 20 tilstrækkeligt til at tilføre dette mellem ca. 0,1 og ca. 0,5 vægtdele svovl pr. vægtdel rhenium forud for re-formeringscyklus'en.Process according to claim 1, characterized in that the catalytic material is sufficiently presulphidated to provide this between 0.1 and approx. 0.5 parts by weight of sulfur. part by weight of rhenium prior to the reformation cycle. 4. Fremgangsmåde ifølge krav 1, kendetegnet ved, at svovlindholdet i rånaphtaen forud for kon- 25 takten med katalysatoren ikke er større end ca. 0,25 ppm ved vægt.Process according to Claim 1, characterized in that the sulfur content of the wafer aperture prior to contact with the catalyst is not greater than approx. 0.25 ppm by weight. 5. Katalytisk materiale bestående i det væsentlige af en aluminiumoxidbærer, en mindre, katalytisk effek- • tiv mængde af i det mindste én halogenkomponent, rhenium 30 og platin, k endetegnet ved, at platinindholdet ligger mellem 0,1 og 0,4 vægt%, og at vægtforholdet mellem rhenium og platin i det katalytiske materiale ligger i området fra ikke mindre end 2 til ca. 5.5. Catalytic material consisting essentially of an alumina carrier, a minor catalytic effective amount of at least one halogen component, rhenium 30 and platinum, k characterized in that the platinum content is between 0.1 and 0.4% by weight and that the weight ratio of rhenium to platinum in the catalytic material is in the range of not less than 2 to approx. 5th 6. Katalytisk materiale ifølge krav 5, kende-35 t e g n e t ved, at rhenium/platin-vægtforholdet ligger i området fra ca. 2 1/4 til ca. 4.6. Catalytic material according to claim 5, characterized in that the rhenium / platinum weight ratio is in the range of approx. 2 1/4 to approx. 4th
DK140379A 1978-04-10 1979-04-05 PROCEDURE FOR CATALYTICAL REFORM OF NAFTA WITH A RHENIUM PLATIN CATALYST, AND SUCH A CATALYST DK149692C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US89489078A 1978-04-10 1978-04-10
US89489078 1978-04-10

Publications (3)

Publication Number Publication Date
DK140379A DK140379A (en) 1979-10-11
DK149692B true DK149692B (en) 1986-09-08
DK149692C DK149692C (en) 1987-03-30

Family

ID=25403638

Family Applications (1)

Application Number Title Priority Date Filing Date
DK140379A DK149692C (en) 1978-04-10 1979-04-05 PROCEDURE FOR CATALYTICAL REFORM OF NAFTA WITH A RHENIUM PLATIN CATALYST, AND SUCH A CATALYST

Country Status (16)

Country Link
JP (1) JPS54145707A (en)
AU (2) AU537495B2 (en)
BE (1) BE875386A (en)
BR (1) BR7902106A (en)
CA (1) CA1127583A (en)
DE (1) DE2913183A1 (en)
DK (1) DK149692C (en)
EG (1) EG13933A (en)
FI (1) FI65798C (en)
FR (1) FR2422711B1 (en)
GB (1) GB2018278B (en)
IT (1) IT1116165B (en)
MX (1) MX151766A (en)
NL (1) NL7902617A (en)
NO (1) NO791160L (en)
SE (1) SE432604B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1223836A (en) * 1981-12-31 1987-07-07 William E. Winter Catalytic reforming process
RU2206599C1 (en) * 2002-04-25 2003-06-20 Макаров Павел Алексеевич Aromatic hydrocarbon production process
FR2840548B1 (en) * 2002-06-07 2005-03-18 Inst Francais Du Petrole HOMOGENEOUS CATALYST BED AND PROCESS FOR PROCESSING HYDROCARBONS INTO AROMATIC COMPOUNDS WITH SUCH BED

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415737A (en) * 1966-06-24 1968-12-10 Chevron Res Reforming a sulfur-free naphtha with a platinum-rhenium catalyst
GB1256000A (en) * 1968-04-24 1971-12-08 Universal Oil Prod Co Hydrocarbon conversion catalyst and processes for the manufacture and use thereof
CA949544A (en) * 1970-02-13 1974-06-18 Henry Erickson Rhenium and platinum series metal-containing catalysts
FR2125126A1 (en) * 1971-02-12 1972-09-29 Universal Oil Prod Co Hydrocarbon conversion - with a catalyst contg a platinum group metal,rhenium,tin and halogen
GB1374863A (en) * 1972-03-13 1974-11-20 Universal Oil Prod Co Catalyst and process for the isomerization of hydrocarbons
CA1050917A (en) * 1973-05-07 1979-03-20 Atlantic Richfield Company Hydrocarbon reforming process
FR2286187A1 (en) * 1974-09-25 1976-04-23 Catalyse Soc Prod Francais HYDROCONVERSION CATALYSTS FOR HYDROCARBONS

Also Published As

Publication number Publication date
SE7903154L (en) 1979-10-11
FR2422711A1 (en) 1979-11-09
JPS6353239B2 (en) 1988-10-21
IT1116165B (en) 1986-02-10
DE2913183A1 (en) 1979-10-18
CA1127583A (en) 1982-07-13
DK140379A (en) 1979-10-11
FI65798B (en) 1984-03-30
NL7902617A (en) 1979-10-12
IT7948661A0 (en) 1979-04-06
AU2707684A (en) 1984-08-02
FR2422711B1 (en) 1985-11-29
EG13933A (en) 1983-03-31
BR7902106A (en) 1979-11-27
MX151766A (en) 1985-03-07
SE432604B (en) 1984-04-09
FI791128A (en) 1979-10-11
FI65798C (en) 1984-07-10
AU4547079A (en) 1979-10-18
BE875386A (en) 1979-10-08
NO791160L (en) 1979-10-11
DK149692C (en) 1987-03-30
GB2018278B (en) 1982-08-11
GB2018278A (en) 1979-10-17
JPS54145707A (en) 1979-11-14
AU537495B2 (en) 1984-06-28

Similar Documents

Publication Publication Date Title
US4153540A (en) Upgrading shale oil
US3730876A (en) Production of naphthenic oils
JPH0631335B2 (en) Contact dewaxing method
US4134823A (en) Catalyst and hydrocarbon conversion process
NO315124B1 (en) Procedure for upgrading petrol
US2485073A (en) Hydrocarbon conversions
US3092567A (en) Low temperature hydrocracking process
US3456029A (en) Process for the purification of lower olefin gases
KR930011921B1 (en) Multi-stage catalystic reforming with high rhenium content catalyst
DK149692B (en) PROCEDURE FOR CATALYTICAL REFORM OF NAFTA WITH A RHENIUM PLATIN CATALYST, AND SUCH A CATALYST
US3434960A (en) Low-pressure reforming process with a platinum-rhenium catalyst
US3530194A (en) Process for the catalytic conversion of hydrocarbons with steam
JPH0768151B2 (en) Method for selective production of ethylene and propylene
NO168484B (en) CHEMICAL MODIFIED ETHYL COPOLYMER, AND COMPOSITE PRODUCT CONTAINING THE COPOLYMER.
US2945806A (en) Hydrocracking hydrocarbons with a platinum group metal deposited on an active cracking catalyst base
CA1072904A (en) Hydrodenitrogenation of shale oil using two catalysts in parallel reactors
US2311498A (en) Aviation fuel
US4255250A (en) Extended cycle regenerative reforming
US3494857A (en) Process for the hydrogenation of unsaturated hydrocarbons
US3362392A (en) Gang sawmill with particular hydraulic saw blade tensioning means
CA1223856A (en) Passivation of metal contaminants on cracking catalysts
US4914074A (en) Catalyst composition
US3072564A (en) Hydrofining process
US4136060A (en) Catalyst and hydrocarbon conversion process
CN102139222B (en) Platinum rhenium reforming catalyst and preparation method thereof

Legal Events

Date Code Title Description
PBP Patent lapsed