DK149616B - METHOD OF MANUFACTURING INSULINES - Google Patents

METHOD OF MANUFACTURING INSULINES Download PDF

Info

Publication number
DK149616B
DK149616B DK320483A DK320483A DK149616B DK 149616 B DK149616 B DK 149616B DK 320483 A DK320483 A DK 320483A DK 320483 A DK320483 A DK 320483A DK 149616 B DK149616 B DK 149616B
Authority
DK
Denmark
Prior art keywords
insulin
thr
reaction
enzyme
cpd
Prior art date
Application number
DK320483A
Other languages
Danish (da)
Other versions
DK149616C (en
DK320483D0 (en
DK320483A (en
Inventor
Klaus Breddam
Jack Taaning Johansen
Fred Widmer
Original Assignee
Carlsberg Biotechnolgy Ltd A S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DK319780A external-priority patent/DK319780A/en
Application filed by Carlsberg Biotechnolgy Ltd A S filed Critical Carlsberg Biotechnolgy Ltd A S
Publication of DK320483D0 publication Critical patent/DK320483D0/en
Publication of DK320483A publication Critical patent/DK320483A/en
Publication of DK149616B publication Critical patent/DK149616B/en
Application granted granted Critical
Publication of DK149616C publication Critical patent/DK149616C/en

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

i 149616in 149616

Den foreliggende opfindelse angår en fremgangsmåde af den i krav l's indledning angivne art til fremstilling af insuliner. De som udgangsmaterialer anvendte insulinderivater kan være fremstillet ved fremgangsmåden ifølge 5 stamansøgningen DK fremlæggelsesskrift nr. 148.714 eller ved andre fremgangsmåder som nærmere forklaret nedenfor.The present invention relates to a process of the kind set forth in claim 1 for the manufacture of insulins. The insulin derivatives used as starting materials may be prepared by the method of the parent application DK Patent Specification No. 148,714 or by other methods as further explained below.

Opfindelsen forklares i det følgende i forbindelse med den specifikke spaltning af derivater af human insulin, 10 men det ses let, at den beskrevne metode lige så vel kan anvendes på derivater af andre typer insulin, såsom okseinsulin og svineinsulin.The invention is explained below in connection with the specific cleavage of derivatives of human insulin, but it is readily seen that the method described can equally well be applied to derivatives of other types of insulin, such as bovine insulin and porcine insulin.

Der kendes, jfr. Morihara et al. (Ref. 1), en syntese 15 af human insulin ud fra des-alanin(B-30)-insulin (DAI) opnået ved nedbrydning af svineinsulin med carboxypep-tidase A i 8 timer. 10 mM DAI inkuberedes med et stort overskud (0,5 M) threonin-OBu1' ester ved 37°C i 20 timer i nærvær af trypsin og høje koncentrationer af organiske 20 co-solventer. Det dannede [Thr - 0Bu*" -Β-3θ] insulin deblokeredes med trifluoreddikesyre, idet det for at undgå racemisering er nødvendigt at arbejde i nærvær af anisol.It is known, cf. Morihara et al. (Ref. 1), a synthesis of human insulin from des-alanine (B-30) insulin (DAI) obtained by digestion of porcine insulin with carboxypeptidase A for 8 hours. 10 mM DAI was incubated with a large excess (0.5 M) of threonine-OBu1 ester at 37 ° C for 20 hours in the presence of trypsin and high concentrations of organic 20 co-solvents. The resulting [Thr - 0Bu * "-Β-3θ] insulin was unblocked with trifluoroacetic acid, in order to avoid racemization it is necessary to work in the presence of anisole.

25 I et lignende eksperiment har Morihara et al. (Ref.In a similar experiment, Morihara et al. (Ref.

2) anvendt Achromobacter Protease I som enzymatisk katalysator for kobling af DAI med stort overskud af Thr -0Bu*· under dannelse af [Thr - OBu^ - B-30j insulin, der isoleredes og deblokeredes som ovenfor.2) used Achromobacter Protease I as the enzymatic catalyst for coupling large excess DAI with Thr -0Bu * · to generate [Thr - OBu ^ - B-30j insulin which was isolated and unblocked as above.

3030

Et lignende eksperiment med okseinsulin fører til [Thr -OBu^ - B—30[] okseinsulin.A similar experiment with bovine insulin leads to [Thr -OBu ^ - B-30 [] bovine insulin.

Fremgangsmåderne beskrevet i Ref. 1 og 2 er også omtalt 55 i EP offentliggørelsesskrift nr. 17938 og DK-ans. 2556/80, jfr. fremlæggelsesskrift nr. 146.482. I begge tilfælde 2 149616 gennemførtes en kemisk deblokering som omtalt ovenfor med trifluoreddikesyre i nærvær af anisol for at undgå racemisering.The procedures described in Ref. 1 and 2 are also mentioned 55 in EP publication no. 17938 and DK-ans. 2556/80, cf. Petition No. 146,482. In both cases, a chemical unblocking as mentioned above was performed with trifluoroacetic acid in the presence of anisole to avoid racemization.

5 Formålet med den foreliggende opfindelse er at angive en fremgangsmåde til deblokering af insulinderivater, der er B-30 carboxylgruppebeskyttede med amid- eller estergrupper, under skånsomme betingelser, hvorved det er muligt under korte reaktionstider at opnå rene insu-10 liner i godt udbytte, og uden at der skal træffes særlige forholdsregler for at undgå racemisering.The object of the present invention is to provide a method for unblocking insulin derivatives which are B-30 carboxyl group protected with amide or ester groups, under gentle conditions, whereby it is possible, in short reaction times, to obtain pure insulin in good yield. and without special precautions to avoid racialization.

Dette opnås ved fremgangsmåden ifølge opfindelsen, der er ejendommelig ved det i krav l's kendetegnende del 15 anførte.This is achieved by the method according to the invention, which is characterized by the characterizing part 15 of claim 1.

De som udgangsmaterialer anvendelige insulinderivater er naturligvis ikke kun insulinderivater fremstillet ved det første transpeptideringstrin ved fremgangsmåden 20 ifølge stamansøgningen, men fremgangsmåden ifølge opfindelsen kan anvendes på et hvilket som helst sådant derivat uden hensyn til oprindelsen, især derivater fremstillet ifølge EP offentliggørelsesskrift nr. 17938 som vist nedenfor i eksempel 2.Of course, the insulin derivatives useful as starting materials are not only insulin derivatives prepared by the first transpeptidation step of the process 20 according to the parent application, but the method of the invention can be applied to any such derivative irrespective of the origin, in particular derivatives prepared according to EP Publication No. 17938 as shown. below in Example 2.

2525

Det er fornylig blevet påvist, at enzymet carboxypepti-dase-Y er en effektiv katalysator for peptidsynteser (Widmer og Johansen (Ref. 3)). Det er endvidere blevet vist, at enzymet under visse betingelser katalyserer 30 udskiftningen af C-terminale aminosyrer i et peptid med en anden aminosyre eller aminosyrederivat i en trans-peptideringsreaktion (jfr. international ansøgning nr.It has recently been shown that the enzyme carboxypeptidase-Y is an effective catalyst for peptide syntheses (Widmer and Johansen (Ref. 3)). Furthermore, it has been shown that, under certain conditions, the enzyme catalyzes the replacement of C-terminal amino acids in a peptide with another amino acid or amino acid derivative in a trans-peptidation reaction (cf. International Application no.

W0 80/02151, videreført som dansk patentansøgning nr.W0 80/02151, continued as Danish patent application no.

5202/80).5202/80).

Opfindelsen ifølge stamansøgningen hviler på den over- 35 3 149616 raskende erkendelse, at det ovennævnte enzym carboxy-peptidase-Y kan omdanne svineinsulin til human insulin ved udskiftning af B-30 alanin med threonin i et enkelt trin eventuelt uden isolering af et mellemprodukt og 5 efterfølgende deblokeringsbehandling.The invention according to the parent application rests on the surprising recognition that the aforementioned enzyme carboxy-peptidase-Y can convert porcine insulin to human insulin by replacing B-30 alanine with threonine in a single step optionally without isolating an intermediate and subsequent unblocking processing.

Som yderligere belyst nedenfor er det mest velegnede derivat for denne omdannelse threoninamid. Imidlertid vil omdannelsen, såfremt et mellemprodukt ikke isoleres, 10 resultere i en blanding af human insulin og en vis mængde uomsat svineinsulin, som det er vanskeligt at adskille, hvorfor de dannede human insulin-amidmellemprodukter fortrinsvis separeres fra reaktionsblandingen, der bl.a. indeholder uomsat svineinsulin, og derpå deamideres.As further illustrated below, the most suitable derivative for this conversion is threoninamide. However, if an intermediate is not isolated, the conversion will result in a mixture of human insulin and a certain amount of unreacted porcine insulin, which is difficult to separate, which is why the human insulin-amide intermediates formed are preferably separated from the reaction mixture. contains unreacted swine insulin, and then deamidates.

15 ved fremgangsmåden ifølge opfindelsen, med fordel ved hjælp af det samme enzym carboxypeptidase-Y, som ligeledes forklaret nedenfor. .15 by the method of the invention, advantageously by the same enzyme carboxypeptidase-Y, as also explained below. .

I DK-ans. 5202/80 er de ønskede enzymatiske karakteristika 20 med hensyn til en almen peptidsyntese beskrevet i detaljer, og det er anført, at en række carboxypeptidaser udviser forskellige enzymatiske aktiviteter, som er meget pH afhængige, således at de f.eks. i basisk miljø ved pH 8 - 10,5 udviser overvejende esterase- eller 25 amidaseaktivitet og ved pH 9 - 10,5 ingen eller kun ubetydelig carboxypeptidaseaktivitet, der imidlertid bliver mere og mere udtalt ved pH-værdier faldende under 9. Disse egenskaber kan også med fordel udnyttes ved fremgangsmåden ifølge opfindelsen, eftersom de bidrager 30 til gennemførelsen af en skånsom deblokeringsproces med gode udbytter.In DK-ans. 5202/80, the desired enzymatic characteristics of a general peptide synthesis 20 are described in detail, and it is stated that a number of carboxypeptidases exhibit various enzymatic activities which are highly pH dependent, so that, e.g. in alkaline environment at pH 8 - 10.5, predominantly esterase or 25 amidase activity and at pH 9 - 10.5 exhibit no or only negligible carboxypeptidase activity, which, however, becomes more pronounced at pH values falling below 9. These properties may also are advantageously utilized in the method of the invention since they contribute 30 to the implementation of a gentle deblocking process with good yields.

De anvendelige carboxypeptidaser ved fremgangsmåden ifølge opfindelsen er L-specifikke serin- eller thiol-35 carboxypeptidaser, sådanne enzymer kan produceres af gærsvampe, eller de kan være af animalsk, vegetabilsk U9616 4 gærsvampe, eller de kan være af animalsk, vegetabilsk eller anden mikrobiel oprindelse.The carboxypeptidases useful in the process of the invention are L-specific serine or thiol-carboxypeptidases, such enzymes may be produced by yeast fungi or they may be of animal, vegetable yeast fungi or they may be of animal, vegetable or other microbial origin. .

Et særligt velegnet enzym er som nævnt carboxypeptidase-Y 5 fra gærsvampe (CPD-Y). Dette enzym er bl.a. beskrevet i DK-ans. nr. 5202/80, bl.a. under henvisning til Johansen et al. (Ref. 4), der udviklede en særligt hensigtsmæssig rensningsmetode ved affinitetskromatografi på en affinitetsresin omfattende et polymert resinskelet med til-10 koblede benzylsuccinylgrupper. CPD-Y, der er et serin-enzym, udmærker sig ved at have de ovennævnte relationer mellem de forskellige enzymatiske aktiviteter ved pH 9 og ved ikke at udvise endopeptidaseaktivitet. En anden fordel ved CPD-Y er, at det er tilgængeligt i store 15 mængder og udviser en relativt høj stabilitet. Yderligere detaljer er angivet i Ref. 3 og 6.A particularly suitable enzyme is, as mentioned, carboxypeptidase-Y 5 from yeast fungi (CPD-Y). This enzyme is described in DK-ans. No. 5202/80, i.a. citing Johansen et al. (Ref. 4), which developed a particularly convenient purification method by affinity chromatography on an affinity resin comprising a polymeric resin backbone with benzylsuccinyl groups attached. CPD-Y, which is a serine enzyme, is distinguished by having the aforementioned relationships between the various enzymatic activities at pH 9 and by not exhibiting endopeptidase activity. Another advantage of CPD-Y is that it is available in large quantities and exhibits a relatively high stability. Further details are given in Ref. 3 and 6.

foruden CPD-Y, der er det foretrukne enzym for nærværende, kan fremgangmåden ifølge opfindelsen gennemføres med 20 andre carboxypeptidaser, f.eks. de nedenstående:in addition to CPD-Y, which is the preferred enzyme at present, the method of the invention can be carried out with 20 other carboxypeptidases, e.g. the following:

Enzyiji OprindelseEnzyiji Origin

SvampeMushrooms

Penicillocarboxypeptidase S-l Penicillium janthinellum 25 " S-2 " "Penicillocarboxypeptidase S-1 Penicillium janthinellum 25 "S-2" "

Carboxypeptidase(r) fra Aspergillus saitoi " Aspergillus oryzaeCarboxypeptidase (s) from Aspergillus saitoi “Aspergillus oryzae

Planterplants

Carboxypeptidase(r) C Orangeblade 30 OrangeskallerCarboxypeptidase (s) C Orange Leaves 30 Orange Shells

Carboxypeptidase C^ Citrus natsudaidai HayataCarboxypeptidase C ^ Citrus natsudaidai Hayata

Phaseolain BønnebladePhaseolain Bean Leaves

Carboxypeptidase(r) fra Spirende bygCarboxypeptidase (s) from germinating barley

Spirende bomuldsplanter 35 TomaterSprouting cotton plants 35 Tomatoes

Vandmelonerwatermelons

Bromelain (ananas) pulver 5 149616Bromelain (pineapple) powder 5 149616

Det nære slægtskab mellem en række af de ovennævnte carboxypeptidaser er diskuteret at Kubota et al. (Ref.The close relationship between a number of the above carboxypeptidases is discussed by Kubota et al. (Ref.

7).7).

5 Det skal nævnes, at ioniserbare grupper, der er til stede i de enkelte aminosyrer, der indgår i insulin-udgangsmaterialet, om ønsket kan blokeres på i og for sig kendt måde afhængig af gruppens art. Dette er imidlertid absolut ikke nødvendigt, hvilket netop er en 10 af fordelene ved den omhandlede fremgangsmåde. Hvis af en eller anden årsag det skulle være ønskeligt at beskytte de funktionelle grupper, kan egnede beskyttelsesgrupper vælges som anført i den ovennævnte DK-ans.It should be noted that ionizable groups present in the individual amino acids contained in the insulin starting material may, if desired, be blocked in a manner known per se depending on the nature of the group. However, this is absolutely not necessary, which is precisely one of the advantages of the present process. If for some reason it should be desirable to protect the functional groups, suitable protecting groups may be selected as stated in the above DK case.

5202/80.5202/80.

1515

Aminosyren B, der indgår i insulinderivatet, der er udgangsmaterialet for fremgangsmåden ifølge opfindelsen, kan være en hvilken som helst af de kendte L-aminosyrer, f.eks. Leu, Ile, Ala, Gly, Ser, Val, Thr, Lys, Arg, 20 Asn, Glu, Gin, Met, Phe, Tyr, Trp eller His, men er dog fortrinsvis Thr.The amino acid B contained in the insulin derivative, which is the starting material for the process of the invention, can be any of the known L-amino acids, e.g. Leu, Ile, Ala, Gly, Ser, Val, Thr, Lys, Arg, Asn, Glu, Gln, Met, Phe, Tyr, Trp or His, but are preferably Thr.

For gruppen betegner "alkyl" ligekædet eller forgrenet alkyl, fortrinsvis med 1-6 carbonatomer, såsom methyl, 25 ethyl, propyl, isopropyl, butyl, isobutyl, tert.butyl, amyl eller hexyl.For the group, "alkyl" means straight or branched alkyl, preferably having from 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, amyl or hexyl.

Som anført i krav l's kendetegnende del gennemføres fremgangsmåden ifølge opfindelsen ved pH 7,0 - 10,5, 30 fortrinsvis ved pH 9 - 10,5. Den foretrukne pH-værdi, der ofte ligger inden for et meget snævert interval, afhænger af henholdsvis pH-maxima og pH-minima for det anvendte enzyms forskellige enzymatiske aktiviteter, idet det er underforstået, at pH-værdien skal vælges 35 således, at aktiviteterne er indbyrdes afstemt som forklaret ovenfor.As stated in the characterizing part of claim 1, the process according to the invention is carried out at pH 7.0 - 10.5, preferably at pH 9 - 10.5. The preferred pH, which is often within a very narrow range, depends on the pH maxima and pH minima, respectively, of the various enzymatic activities of the enzyme used, since it is understood that the pH value must be chosen so that the activities are mutually coordinated as explained above.

U9616 6U9616 6

Hvis CPD-Y anvendes som enzym, er pH-værdien fortrinsvis 7,5 - 10,5, især 9,0 - 10,5 på grund af den mere udtalte amidase- og esteraseaktivitet og den negligerbare carboxy-peptidaseaktivitet.If CPD-Y is used as an enzyme, the pH is preferably 7.5 - 10.5, especially 9.0 - 10.5 due to the more pronounced amidase and esterase activity and the negligible carboxy peptidase activity.

5 pH-kontrol kan f.eks. opnås ved inkorporering af en passende puffer for det ønskede pH-område i reaktions-mediet, såsom en bicarbonatpuffer.For example, pH control can e.g. is obtained by incorporating a suitable buffer for the desired pH range in the reaction medium, such as a bicarbonate buffer.

10 pH-værdien kan også opretholdes ved tilsætning af en syre, såsom HC1, eller en base, såsom NaOH, under reaktionen. Dette kan bekvemt gøres ved anvendelse af en pH-stat.The pH may also be maintained by the addition of an acid such as HCl or a base such as NaOH during the reaction. This can be conveniently done using a pH state.

15 På basis af informationen givet ovenfor og i Ref. 3 og 6, vil fagmanden være i stand til at udvælge de mest velegnede reaktionsbetingelser, især med hensyn til den pH-værdi, ved hvilken amidase-, esterase eller pep-tidyl-aminosyre-amid hydrolaseaktiviteten bedst kan 20 udnyttes i afhængighed af insulinudgangsmaterialet.15 Based on the information given above and in Ref. 3 and 6, those skilled in the art will be able to select the most suitable reaction conditions, especially with respect to the pH at which the amidase, esterase or peptidylamino acid amide hydrolase activity can best be utilized depending on the insulin starting material.

Imidlertid kan disse betingelser også påvirkes ved variation af enzymkoncentrationen, reaktionstiden, etc.However, these conditions can also be affected by variation in enzyme concentration, reaction time, etc.

25 Reaktionen gennemføres i et vandigt reaktionsmedium, der om ønsket kan indeholde op til 50?ά af et organisk opløsningsmiddel. Foretrukne organiske opløsningsmidler er alkanoler, f.eks. methanol og ethanol, glycoler, f.eks. ethylenglycol eller polyethylenglycoler, dimethyl- 30 formamid, dimethylsulfoxid, tetrahydrofuran, dioxan og dimethoxyethan.The reaction is carried out in an aqueous reaction medium which, if desired, may contain up to 50 µm of an organic solvent. Preferred organic solvents are alkanols, e.g. methanol and ethanol, glycols, e.g. ethylene glycol or polyethylene glycols, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, dioxane and dimethoxyethane.

Valget af reaktionsmediets sammensætning afhænger især af opløseligheden, temperaturen og pH for reaktions- 35 komponenterne og de involverede insulinprodukter, samt af enzymets stabilitet.The choice of the composition of the reaction medium depends in particular on the solubility, temperature and pH of the reaction components and the insulin products involved, as well as on the stability of the enzyme.

7 1496167 149616

Reaktionsmediet kan også indeholde en komponent, som gør enzymet uopløseligt, men bibeholder en væsentlig del af enzymaktiviteten, såsom en ionbytterharpiks.The reaction medium may also contain a component which renders the enzyme insoluble, but retains a substantial part of the enzyme activity, such as an ion exchange resin.

Alternativt kan enzymet immobiliseres på i og for sig 5 kendt måde, jfr. Methods of Enzymology, Vol. 44, 1976, f.eks. ved binding til en matrix, såsom en tværbunden dextran eller agarose, eller til en silica, et polyamid eller cellulose, eller ved indkapsling i polyacrylamid, alginater eller fibre. Endvidere kan enzymet modificeres 10 ad kemisk vej til forbedring af dets stabilitet eller enzymatiske egenskaber.Alternatively, the enzyme may be immobilized in a manner known per se, cf. Methods of Enzymology, Vol. 44, 1976, e.g. by bonding to a matrix, such as a cross-linked dextran or agarose, or to a silica, polyamide or cellulose, or by encapsulation in polyacrylamide, alginates or fibers. Furthermore, the enzyme can be chemically modified to improve its stability or enzymatic properties.

Reaktionsmediet kan også indeholde urinstof eller guanidin-hydrochlorid i koncentrationer på op til 3 molær. Dette 15 kan også være fordelagtigt ved pH-værdier og i medier, hvor insulin-udgangsmaterialet har begrænset opløselighed.The reaction medium may also contain urea or guanidine hydrochloride at concentrations up to 3 molar. This may also be advantageous at pH values and in media where the insulin starting material has limited solubility.

Enzymaktiviteten kan variere, men er fortrinsvis 10 ** - 10 ^ molær, især 10~^ molær.The enzyme activity may vary, but is preferably 10 ** - 10 3 molar, especially 10 ~ 3 molar.

2020

Reaktionstemperaturen ved fremgangsmåden ifølge opfindelsen er fortrinsvis 20-40°C. Den mest hensigtsmæssige reaktionstemperatur kan fastlægges ved forsøg, men afhænger især af enzymkoncentrationen. En passende temperatur 25 er sædvanligvis ca. 20 - 30°C, fortrinsvis ca. 25°C.The reaction temperature of the process according to the invention is preferably 20-40 ° C. The most appropriate reaction temperature can be determined by experiment, but depends in particular on the concentration of the enzyme. A suitable temperature 25 is usually approx. 20 to 30 ° C, preferably approx. 25 ° C.

Ved temperaturer under 20°C vil reaktionstiden sædvanligvis være uhensigtsmæssig lang, mens temperaturer over 40°C ofte forårsager problemer med stabiliteten af enzymet og/eller reaktanterne eller reaktionsprodukterne.At temperatures below 20 ° C, the reaction time will usually be inappropriately long, while temperatures above 40 ° C often cause problems with the stability of the enzyme and / or the reactants or reaction products.

3030

Standardreaktionstiden ved fremgangsmåden ifølge opfindelsen er yderst kort, nemlig helt ned til 15-20 min., som det fremgår af eksemplerne omhandlende deamidering.The standard reaction time of the process according to the invention is extremely short, namely as low as 15-20 minutes, as is evident from the examples of deamidation.

35 Før fremgangsmåden ifølge opfindelsen illustreres nærmere ved eksempler, vil udgangsmaterialerne, målemetoderne, 8 149616 etc. blive omtalt.Before the process of the invention is further illustrated by examples, the starting materials, measurement methods, etc. will be discussed.

UDGANGSMATERIALERSOURCE MATERIALS

5 Svineinsulin blev leveret af Nordisk Insulinlaboratorium, København. Carboxypeptidase-Y fra bagerigær, et kommercielt produkt fra Carlsberg Bryggerierne, blev isoleret ved en modificering af affinitetschromatografifremgangsmåden ifølge Johansen et al. (Ref. 4) og opnået som 10 et lyofiliseret pulver (10¾ enzym i natriumcitrat).5 Swine insulin was provided by the Nordic Insulin Laboratory, Copenhagen. Carboxypeptidase-Y from bakery yeast, a commercial product of the Carlsberg Breweries, was isolated by a modification of the affinity chromatography method of Johansen et al. (Ref. 4) and obtained as 10 a lyophilized powder (10¾ enzyme in sodium citrate).

(1?)(1?)

Inden brugen blev enzymet afsaltet på en "Sephadex ^ G-25" kolonne (1,5 x 25 cm) ækvilibreret og elueret med vand. Enzymkoncentrationen bestemtes spektrofoto-1¾ metrisk ved E^gg nm = Det anvendte enzympræparat 15 var fri for Protease A bestemt ifølge Lee og Riordan (Ref. 5). L-threoninamid blev indkøbt hos Vega-Fox,Prior to use, the enzyme was desalted on a "Sephadex ^ G-25" column (1.5 x 25 cm) equilibrated and eluted with water. The enzyme concentration was determined spectrophoto-1¾ metric at E ^ µg nm = The enzyme preparation 15 used was free of Protease A determined according to Lee and Riordan (Ref. 5). L-threoninamide was purchased from Vega-Fox,

Arizona, USA. L-threoninmethylester fra Fluka, Schweiz og L-threonin, Dansyl chlorid, carboxypeptidase A og trypsin fik man fra Sigma, USA. Chromatografiske materia-20 ler var fra Pharmacia, Sverige. Alle andre reagenter og opløsningsmidler var af analytisk renhedsgrad fra Merck, BRD.Arizona, USA. L-threonine methyl ester from Fluka, Switzerland and L-threonine, Dansyl chloride, carboxypeptidase A and trypsin were obtained from Sigma, USA. Chromatographic materials were from Pharmacia, Sweden. All other reagents and solvents were of analytical purity from Merck, BRD.

AMINOSYREÅNALVSERAMINOSYREÅNALVSER

2525

Prøver til aminosyreanalyse blev hydrolyseret i 6M HC1 ved 110°C i vakuum i 24 timer og analyseret på en Durrum D-500 aminosyreanalysator. Aminosyresammensætningen var baseret på det kendte indhold af asparaginsyre og 30 glycin. Thr, Lys og Ala er de eneste aminosyrer, der påvirkes af reaktionerne. Værdierne af disse aminosyrer for svine-(human) insulin er: Thr = 1,93 (2,87), Lys = 0,97 (0,98) og Ala = 2,00 (1,05). Mængden af uomdannet svineinsulin i reaktionsblandingerne blev bestemt ud 35 fra alaninanalyse af "insulinpoolen" efter chromatografi på "Sephadex G-50". Koblingsudbyttet angives som mængden U9616 9 af et givet produkt divideret med mængden af det totale insulinforbrug i reaktionen.Samples for amino acid analysis were hydrolyzed in 6M HCl at 110 ° C in vacuum for 24 hours and analyzed on a Durrum D-500 amino acid analyzer. The amino acid composition was based on the known content of aspartic acid and glycine. Thr, Lys and Ala are the only amino acids affected by the reactions. The values of these amino acids for porcine (human) insulin are: Thr = 1.93 (2.87), Lys = 0.97 (0.98) and Ala = 2.00 (1.05). The amount of unconverted swine insulin in the reaction mixtures was determined from alanine analysis of the "insulin pool" after chromatography on "Sephadex G-50". The coupling yield is indicated as the amount of U9616 9 of a given product divided by the amount of total insulin consumption in the reaction.

ENZYMATISK NEDBRYDNING AF INSULINDERIVATER (eksempel 2) 5ENZYMATIC DEVELOPMENT OF INSULIN DERIVATIVES (Example 2) 5

Nedbrydning af forskellige insulinderivater med carboxy-peptidase A og Y udførtes i en 0,05 M Tris puffer, pHDegradation of various insulin derivatives with carboxy peptidase A and Y was carried out in a 0.05 M Tris buffer, pH

7,5 ved stuetemperatur under anvendelse af ca. 0,5 mM insulin og 5^uM carboxypeptidase. Reaktionstiden var 10 3 timer med CPD-A og 1,5 time med CPD-Y. Under disse betingelser opnåedes den maksimale frigivelse af C-termi-nal aminosyre. Efter at reaktionsblandingen var blevet gjort sur med HC1, anvendtes de udtagne mængder direkte i aminosyreanalysatoren.7.5 at room temperature using approx. 0.5 mM insulin and 5 µM carboxypeptidase. The reaction time was 10 3 hours with CPD-A and 1.5 hours with CPD-Y. Under these conditions, the maximum release of C-terminal amino acid was obtained. After the reaction mixture was acidified with HCl, the amounts withdrawn were used directly in the amino acid analyzer.

1515

Aminosyresekvensen i den C-terminale del af de forskellige insulinderivater bestemtes efter trypsinnedbrydning og reaktion af det nedbrudte materiale med Dansylchlorid, efterfulgt af identificering af Oansylpeptider. Nedbryd-20 ning af insulinderivater med trypsin udførtes i 0,1MThe amino acid sequence of the C-terminal portion of the various insulin derivatives was determined following trypsin breakdown and reaction of the degraded material with Dansyl chloride, followed by identification of Oansyl peptides. Degradation of insulin derivatives with trypsin was performed in 0.1M

NaHCOj ved pH-værdi 8,2 under anvendelse af 1 mM insulin, 40yuM DPCC-trypsin og en inkubationstid på 1 time. Forudgående forsøg på svineinsulin havde vist, at disse betingelser var tilstrækkelige til fuldstændig frigørelse 25 af den C-terminale alanylrest fra B-kæden. De frigjorte aminosyrer eller dipeptider blev dansyleret som følger:NaHCO₂ at pH 8.2 using 1 mM insulin, 40 µM DPCC trypsin and a 1 hour incubation time. Prior experiments on swine insulin had shown that these conditions were sufficient to completely release the C-terminal alanyl residue from the B chain. The released amino acids or dipeptides were dansylated as follows:

Til en lOO^ul prøve af trypsin-nedbrydningsblandingen sattes 100yul 0,5M HC1, hvorved nedbrydningen standsede.To a 100 µl sample of the trypsin degradation mixture was added 100 µl of 0.5 M HCl, thereby stopping the degradation.

Prøven blev inddampet til tørhed og genopløstes i 100^ul 30 0,1M NaHCOj, pH-værdi 8,2. lOO^ul Dansylchlorid (5 mg/ml) i acetone tilsattes, og reaktionsblandingen inkuberedes i 2 timer ved 37°C. Reaktionsblandingen blev analyseret ved HPLC ved hjælp af et Waters væskechromatografi-system, der bestod af en Model U6K injector, 2 Model 6000 A 35 pumper, en Model 660 Solvent Programmer, en Model 450 UV detector, et Waters Data Modul og et Waters Radial Com- 149616 ίο pression Module (RCM 100) kammer forsynet med en Waters Radial Pak A (C-18 reverse phase) kolonne.The sample was evaporated to dryness and redissolved in 100 µl of 30 0.1 M NaHCO 3, pH 8.2. 100 µl Dansyl chloride (5 mg / ml) in acetone was added and the reaction mixture was incubated for 2 hours at 37 ° C. The reaction mixture was analyzed by HPLC using a Waters liquid chromatography system consisting of a Model U6K injector, 2 Model 6000 A 35 pumps, a Model 660 Solvent Programmer, a Model 450 UV detector, a Waters Data Module and a Waters Radial Com - 149616 ίο pression Module (RCM 100) chamber equipped with a Waters Radial Pak A (C-18 reverse phase) column.

Følgende standardforbindelser blev syntetiseret: 5The following standard compounds were synthesized: 5

Dns-Ala-OH, Dns-Thr-OH, Dns-Ala-Thr-OH, Dns-Thr-Thr-OH, Dns-Thr-NH^, Dns-Thr-Thr-NH2 og Dns-Ala-Thr-NH^. Ved at anvende den ovenfor beskrevne fremgangsmåde for dansy-lering af insulinnedbrydningsproduktet, kunne tre af 10 disse derivater syntetiseres fra H-Ala-OH, H-Thr-OHDns-Ala-OH, Dns-Thr-OH, Dns-Ala-Thr-OH, Dns-Thr-Thr-OH, Dns-Thr-NH 2, Dns-Thr-Thr-NH 2, and Dns-Ala-Thr-NH ^. Using the above-described procedure for dancing the insulin degradation product, three of these 10 derivatives could be synthesized from H-Ala-OH, H-Thr-OH

og H-Thr-NI^. De dansylerede dipeptider blev syntetiseret via Dns-Ala-OMe og Dns-Thr-OMe: 1 mmol H-Ala-OMe,HC1 opløstes i 0,1M NaHCO^, 5 mmol Dansylchlorid tilsattes, og reaktionsblandingen inkuberedes i 2 timer. Dns-Ala-OMe 15 ekstraheredes fra reaktionsblandingen med ethylacetat og inddampedes til tørhed. Det påvistes ved HPLC, at det isolerede produkt var rent. Samme fremgangsmåde anvendtes ved syntetisering af Dns-Thr-OMe. Ved anvendelse af fremgangsmåderne til enzymatisk peptidsyntese svarende 20 til de tidligere beskrevne (Ref. 3 og 6) kobledes disse to forbindelser dernæst til H-Thr-0H, der gav Dns-Ala-Thr-OH og Dns-Thr-Thr-OH, og H-Thr-NH2, der gav Dns-Ala-Thr-NH2 og Dns-Thr-Thr-NH2. Betingelserne var følgende: 5 mM substrat, 0,5M nucleophil, 0,1M KC1, 2 mM EDTA, 25 l^uM CPD-Y, pH 9,0, 10¾ ethanol. Alle syv Dansylderivater kunne nemt adskilles ved HPLC ved brug af to forskellige programmer.and H-Thr-NI 2. The dansylated dipeptides were synthesized via Dns-Ala-OMe and Dns-Thr-OMe: 1 mmol H-Ala-OMe, HCl was dissolved in 0.1 M NaHCO 3, 5 mmol Dansyl chloride was added and the reaction mixture was incubated for 2 hours. Dns-Ala-OMe 15 was extracted from the reaction mixture with ethyl acetate and evaporated to dryness. HPLC demonstrated that the isolated product was pure. The same procedure was used in synthesizing Dns-Thr-OMe. Using the methods of enzymatic peptide synthesis similar to those previously described (Refs. 3 and 6), these two compounds were then coupled to H-Thr-OH which yielded Dns-Ala-Thr-OH and Dns-Thr-Thr-OH. and H-Thr-NH2, yielding Dns-Ala-Thr-NH2 and Dns-Thr-Thr-NH2. The conditions were as follows: 5 mM substrate, 0.5M nucleophile, 0.1M KCl, 2 mM EDTA, 25 µM CPD-Y, pH 9.0, 10¾ ethanol. All seven Dansyl derivatives could be easily separated by HPLC using two different programs.

Opfindelsen illustreres nærmere på tegningen, hvor 30The invention is further illustrated in the drawing, wherein:

Fig. 1 viser en elueringsprofil fra en ionbytningschroma-tografi af reaktionsproduktet mellem svineinsulin og threoninamid.FIG. Figure 1 shows an elution profile from an ion exchange chromatography of the swine insulin-threoninamide reaction product.

35 EKSEMPEL 1 (Baggrundsundersøgelser)EXAMPLE 1 (Background Studies)

Svineinsulin inkuberedes med carboxypeptidase-Y ved 11 149616 25°C og pH 5 - 7, der er et pH-område, hvor enzymet udviser maksimal peptidaseaktivitet. Derved frigjordes følgende aminosyrer fra C-terminalen af B-kæden: 1,0 Alanin, 1,0 Lysin, 1,0 Prolin, 1,0 Threonin, 1,0 Tyrosin 5 og 2,0 Phenylalanin. Ved stilling B-23 (glycin) standser carboxypeptidase-Y, og man kan således opnå en fuldstændig frigivelse af de første 7 aminosyrer i B-kæden i insulin. Overraskende nok frigives C-terminal asparagin (A-21) i A-kæden overhovedet ikke. Ved pH 9,5 frigives C-terminal 10 alanin fra B-kæden meget hurtigere end de efterfølgende aminosyrer. Da det rensede CPD-Y præparat var fri for protease A (endopeptidase) i modsætning til mange kommercielt tilgængelige præparater fra andre kilder, hydrolyseredes (B-15-16) Leu-Tyr bindingen ikke, hvilket er 15 af stor vigtighed.Swine insulin was incubated with carboxypeptidase-Y at 25 ° C and pH 5-7, which is a pH range where the enzyme exhibits maximum peptidase activity. Thereby, the following amino acids were released from the C-terminus of the B chain: 1.0 Alanine, 1.0 Lysine, 1.0 Proline, 1.0 Threonine, 1.0 Tyrosine 5 and 2.0 Phenylalanine. At position B-23 (glycine), carboxypeptidase-Y stops and thus a complete release of the first 7 amino acids of the B chain in insulin can be obtained. Surprisingly, C-terminal asparagine (A-21) in the A-chain is not released at all. At pH 9.5, C-terminal 10 alanine is released from the B chain much faster than the subsequent amino acids. As the purified CPD-Y preparation was free of protease A (endopeptidase) unlike many commercially available preparations from other sources, the (B-15-16) Leu-Tyr bond was not hydrolyzed, which is of great importance.

EKSEMPEL 2 (Omdannelse af svineinsulin til human insulin under anvendelse af threoninamid som aminkom-ponent og med isolering af insulinamidmellem-20 produkterne og efterfølgende deamidering ifølge opfindelsen)Example 2 (Conversion of porcine insulin to human insulin using threoninamide as an amine component and isolating the insulin amide intermediates and subsequent deamidation of the invention)

Til en opløsning af zinkfri svineinsulin (2 mM) i 2 mM EDTA, 0,1M KC1 og 1,5M guanidin hydrochlorid og indehol-25 dende 0,5M threoninamid (L-Thr-NH2) ved pH 7,5 og 25°C sattes CPD-Y (15^,uM). pH-værdien holdtes konstant under reaktionen ved tilsætning af 0,5M NaOH ved brug af en pH-stat. For at følge reaktionsforløbet blev lige store prøver udtaget på forskellige tidspunkter, og reaktionen 30 blev standset efter 2 timer ved at indstille pH-værdien til 1,5 - 2,0 med 1M HC1. Insulinfraktionen skiltes fra enzymet og lavmolekylære forbindelser ved chromatogra-fering på "Sephadex ® G-50 fine" (1 x 30 cm) ækvilibre-ret med 1M eddikesyre og blev lyofiliceret. Aminosyre-35 analyse på den lyofilicerede "insulin pool" som beskrevet ovenfor viste, at 78°ό af svineinsulinet var blevet for- 12 149616 brugt under reaktionen.For a solution of zinc-free porcine insulin (2 mM) in 2 mM EDTA, 0.1M KCl and 1.5M guanidine hydrochloride and containing 0.5M threoninamide (L-Thr-NH 2) at pH 7.5 and 25 ° C CPD-Y (15 µM) was added. The pH was kept constant during the reaction by adding 0.5M NaOH using a pH-stat. To follow the course of the reaction, equal samples were taken at different times and reaction 30 was stopped after 2 hours by adjusting the pH to 1.5 - 2.0 with 1M HCl. The insulin fraction was separated from the enzyme and low molecular weight by chromatography on "Sephadex ® G-50 fine" (1 x 30 cm) equilibrated with 1M acetic acid and lyophilized. Amino acid analysis on the lyophilized "insulin pool" as described above showed that 78 ° ό of the porcine insulin had been used during the reaction.

For yderligere at analysere reaktanterne i "insulin poolen" gennemførtes ionbytningschromatografi på "DEAE-5 Sephadex ® A-25" i det væsentlige som beskrevet afTo further analyze the reactants in the "insulin pool", ion exchange chromatography on "DEAE-5 Sephadex ® A-25" was performed essentially as described by

Morihara et al. (Ref. 1). Den lyofilicerede insulinprøve (75 mg) opløstes i 0,01M Tris, 2,5M urinstof, 0,05M NaCl, pH 7,5 og påførtes en "DEAE Sephadex® A-25" kolonne (2,5 x 25 cm) ækvilibreret med den samme puffer. Insulinet 10 blev elueret med en NaCl gradient fra 0,05 til 0,30M i den samme puffer og 8 ml fraktioner opsamledes på en "Sephadex ®G-25" kolonne og blev lyofiliseret.Morihara et al. (Ref. 1). The lyophilized insulin sample (75 mg) was dissolved in 0.01M Tris, 2.5M urea, 0.05M NaCl, pH 7.5 and applied to a "DEAE Sephadex® A-25" column (2.5 x 25 cm) equilibrated with the same buffer. Insulin 10 was eluted with a NaCl gradient from 0.05 to 0.30M in the same buffer and 8 ml fractions were collected on a "Sephadex ® G-25" column and lyophilized.

Elueringsprofilen er vist i fig. 1, hvor tre toppe kan 15 observeres. Desuden er aminosyresammensætningerne for de enkelte toppe og topsammensætningerne som resultat af nedbrydningsforsøg udført med CPD-Y og CPD-A som beskrevet ovenfor. Da kun C-terminalen af B-kæden i insulin er involveret i disse reaktioner anvendes -Pro-20 Lys-Ala-OH som forkortelse for svineinsulin. Andre insulinderivater forkortes også tilsvarende: -Pro-Lys-Thr-OH = human insulin, -Pro-Lys-Thr-NH^ = human insulinamid, etc. Det ses, at ved pH-værdien 7,5, der blev brugt i reaktionen, og hvor amidaseaktiviteten for CPD-Y almin-25 deligvis er lavere end peptidaseaktiviteten, er det dannede peptidamid tilstrækkeligt stabilt, da toppen I omfattede ca. 208! af den totale "insulin pool". Ca.The elution profile is shown in FIG. 1, where three peaks can be observed. In addition, the amino acid compositions of the individual peaks and the peak compositions as a result of degradation experiments were performed with CPD-Y and CPD-A as described above. Since only the C-terminus of the B chain in insulin is involved in these reactions, -Pro-20 Lys-Ala-OH is used as an abbreviation for swine insulin. Other insulin derivatives are also abbreviated similarly: -Pro-Lys-Thr-OH = human insulin, -Pro-Lys-Thr-NH 4 = human insulin amide, etc. It is seen that at the pH 7.5 used in the reaction and where the amidase activity of CPD-Y is generally lower than the peptidase activity, the peptidamide formed is sufficiently stable since the peak I comprised ca. 208! of the total "insulin pool". Ca.

75¾ af svineinsulinudgangsmaterialet blev omdannet i reaktionen. Da imidlertid threoninindholdet i toppen 30 I (3,65) er større end de 3,0 i human insulin, er det tydeligt, at det oprindelige transpeptideringsprodukt (-Pro-Lys-Thr-NH2) ikke er tilstrækkelig stabilt til at undgå en oligomerisering under dannelse af (-Pro-Lys-Thr-Thr-NH2)·75¾ of the porcine insulin starting material was converted in the reaction. However, since the threonine content of the top 30 I (3.65) is greater than that of 3.0 in human insulin, it is evident that the original transpeptidation product (-Pro-Lys-Thr-NH 2) is not sufficiently stable to avoid an oligomerization to give (-Pro-Lys-Thr-Thr-NH 2) ·

Denne dannelse af en blanding af amid-mellemprodukter 35 13 149616 kunne umiddelbart indicere, at homogent human insulin •s ikke ville blive dannet ved deamidering ved hjælp af CPD-Y, da det kunne forventes, at deamideringen ville resultere i en blanding af -Pro-Lys-Thr-OH og -Pro-Lys-5 Thr-Thr-OH. Når imidlertid top I blandingen underkastedes en deamideringsbehandling ifølge opfindelsen med lO^uM CPD-Y ved pH 10,0 i 0,1M KC1, 2mM EDTA i 20 minutter opnåedes overraskende næsten ren human insulin. Forsøget forløb som følger: 10This formation of a mixture of amide intermediates could immediately indicate that homogeneous human insulin would not be formed by deamidation by CPD-Y, as it was expected that the deamidation would result in a mixture of -Pro -Lys-Thr-OH and -Pro-Lys-5 Thr-Thr-OH. However, when the top I mixture was subjected to a deamidation treatment of the invention with 10 µM CPD-Y at pH 10.0 in 0.1M KCl, 2mM EDTA for 20 minutes, surprisingly nearly pure human insulin was obtained. The experiment proceeded as follows: 10

Efter at det omsatte insulin var skilt fra enzymet og (ft det lavmolekylære materiale ved chromatografi på "Sephadex G-50", chromatograferes materialet på "DEAE Sephadex® A-25" ved at anvende fremgangsmåder, der er identiske 15 med de ved fig. 1 angivne. Reaktionsproduktet elueredes som top II som forventet, mens uomsat materiale (<10%) elueredes som top I. Der var ingen top III, d.v.s. der dannedes ingen insulinderivater uden lysin. Som vist i resultaterne i Tabel I nedenfor opnået med CPD-A, 20 CPD-Y og trypsinnedbrydning, var kun threoninindholdet væsentligt påvirket af disse reaktioner. Dette er i overensstemmelse med den forventede mangel på peptidase-aktivitet for CPD-Y ved denne pH-værdi.After the reacted insulin was separated from the enzyme and (low molecular weight material by chromatography on "Sephadex G-50", the material is chromatographed on "DEAE Sephadex® A-25" using procedures identical to those of FIG. 1. The reaction product was eluted as peak II as expected, while unreacted material (<10%) eluted as peak I. There was no peak III, i.e. no insulin derivatives were formed without lysine, as shown in the results in Table I below obtained with CPD. A, 20 CPD-Y and trypsin breakdown, only the threonine content was significantly affected by these reactions, which is consistent with the expected lack of peptidase activity for CPD-Y at this pH.

25 Aminosyresammensætningen af top II fra deamiderings-reaktionen ligger tæt på analysen for human insulin:The top II amino acid composition of the deamidation reaction is close to the human insulin assay:

Thr = 2,87, Ala = 1,05, Lys = 0,98. Nedbrydningen af deamideret produkt med CPD-Y, CPD-A og trypsin viser, at prøven indeholdt 90-95% rent human insulin. Dette 30 indicerer, at insulinderivatet -Pro-Lys-Thr-Thr-NH2 reagerer næsten udelukkende via peptidyl-aminosyre-amid-hydrolaseaktiviteten, mens -Pro-Lys-Thr-NH2 reagerer overvejende via amidaseaktiviteten. Det totale udbytte ved omdannelsen af svineinsulin til human insulin er 35 ca. 30% beregnet på mængden af omdannet insulin.Thr = 2.87, Ala = 1.05, Lys = 0.98. The degradation of deamidated product with CPD-Y, CPD-A and trypsin shows that the sample contained 90-95% pure human insulin. This indicates that the insulin derivative -Pro-Lys-Thr-Thr-NH2 reacts almost exclusively via the peptidyl-amino acid-amide hydrolase activity, while -Pro-Lys-Thr-NH2 reacts predominantly via the amidase activity. The total yield of the conversion of swine insulin to human insulin is about 35%. 30% based on the amount of converted insulin.

TABEL ITABLE I

14 14961614 149616

Aminosyresammensætning af toppene I, II og III i fig.Amino acid composition of peaks I, II and III of FIG.

1 og top II opnået efter deamideringsbehandling af top I fraktionen1 and peak II obtained after deamidation treatment of the peak I fraction

Top II opnået efter deamidering _ Top I Top II Top III af Top I_Top II achieved after deamidation _ Top I Top II Top III of Top I_

Asparaginsyre 2,99 2,99 3,01 3,01Aspartic Acid 2.99 2.99 3.01 3.01

Threonin 3,62 2,52 2,50 2,79Threonine 3.62 2.52 2.50 2.79

Serin 2,93 2,92 2,92 2,93Serine 2.93 2.92 2.92 2.93

Glutaminsyre 6,88 7,16 7,18 7,01Glutamic Acid 6.88 7.16 7.18 7.01

Prolin 1,00 0,98 0,71 0,87Proline 1.00 0.98 0.71 0.87

Glycin 4,00 4,00 4,00 4,00Glycine 4.00 4.00 4.00 4.00

Alanin 1,16 1,52 1,03 1,09Alanine 1.16 1.52 1.03 1.09

Valin 2,42 2,82 2,81 2,50Selected 2.42 2.82 2.81 2.50

Ileucin 0,94 1,04 1,09 1,19Ileucine 0.94 1.04 1.09 1.19

Leucin 5,80 . 6,21 6,18 6,10Leucine 5.80. 6.21 6.18 6.10

Tyrosin 3,8C 3,86 3,67 4,02Tyrosine 3.8C 3.86 3.67 4.02

Phenylalanin 2,74 2,82 2,65 2,64Phenylalanine 2.74 2.82 2.65 2.64

Histidin 1,96 1,90 1,93 1,89Histidine 1.96 1.90 1.93 1.89

Lysin 0,99 0,74 0,06 1,01Lysine 0.99 0.74 0.06 1.01

Arginin 0,96 1,00 0,98 0,89 15 149616 EKSEMPEL 3 (Deamidering af human insulinamid opnået ved trypsinkatalyseret kondensering af Des-alanin (B30) svineinsulin (DAI) med threonin-amid).Arginine 0.96 1.00 0.98 0.89 15 EXAMPLE 3 (Deamidation of human insulin amide obtained by trypsin-catalyzed condensation of Des-alanine (B30) porcine insulin (DAI) with threonine amide).

55

For at påvise, at den fordelagtige CPD-Y katalyserede deamidering af insulinamider ved fremgangsmåden ifølge opfindelsen ikke er begrænset til insulinamider opnået ved transpeptideringsfremgangsmåden ifølge stamansøgningen 10 blev human insulinamid fremstillet i overensstemmelse med kendt teknik ifølge Morihara et al. (EP 17938 og Ref. 1 og 2). Det bemærkes imidlertid, at mens amiderne er omtalt i EP 17938 som én blandt andre beskyttende grupper for carboxylgruppen i threonin, er dens anvende-15 lighed ikke blevet vist ved eksempler, idet det eneste eksempel omhandler threonin-tert.butyl ester.To demonstrate that the advantageous CPD-Y catalyzed deamidation of insulin amides by the process of the invention is not limited to insulin amides obtained by the transpeptidation process of the stock application 10, human insulin amide was prepared in accordance with the prior art of Morihara et al. (EP 17938 and Refs. 1 and 2). However, it is noted that while the amides are mentioned in EP 17938 as one among other protecting groups for the carboxyl group in threonine, its usefulness has not been demonstrated by examples, the only example being about threonine tert-butyl ester.

Omsætningen kan illustreres med det følgende skema: 7 nThe turnover can be illustrated by the following scheme: 7 n

Trypsin/ThrNH? CPD-YTrypsin / ThrNH? CPD-Y

DAI -4 DAI-Thr-NhL -* DAIThrDAI -4 DAI-Thr-NhL - * DAIThr

pH 6,5 LpH 6.5 L

Denne fremgangsmåde har den betydelige fordel i forhold til fremgangsmåden, der er eksemplificeret i EP 17938, 25 at den enzymatiske deamidering er meget mildere end syre-katalyseret deesterificering ifølge Morihara et al.This process has the significant advantage over the method exemplified in EP 17938 that the enzymatic deamidation is much milder than acid-catalyzed deesterification according to Morihara et al.

Fremstilling af DAI-ThrNHp 30Preparation of DAI-ThrNHp 30

Threoninamid,hydrochlorid (400 mg) suspenderedes i 60?ό dimethylformamid (DMF) (2 ml). pH-værdien indstilledes til 6,5 med pyridin (20 ^ul) og 6M NaOH (50 yul). Trypsin (100 mg) og DAI (100 mg) tilsattes. Efter 1/2 time stand-35 sedes reaktionen ved tilsætning af myresyre (1 ml).Threoninamide, hydrochloride (400 mg) was suspended in 60 µm dimethylformamide (DMF) (2 ml). The pH was adjusted to 6.5 with pyridine (20 µl) and 6M NaOH (50 µl). Trypsin (100 mg) and DAI (100 mg) were added. After 1/2 hour, the reaction was quenched by the addition of formic acid (1 ml).

o (R)o (R)

Reaktionsblandingen fraktioneredes på "Sephadex w G-50" 16 149616 med 1M eddikesyre. Følgende fraktioner blev opsamlet:The reaction mixture was fractionated on "Sephadex w G-50" with 1M acetic acid. The following fractions were collected:

Trypsinfraktion: 60 mgPressure infraction: 60 mg

Insulinfraktion: 102 mg 5 Rest: 371 mgInsulin fraction: 102 mg Rest: 371 mg

Insulinfraktionen (102 mg) rensedes ued ionbytnings-chromatografi på "DEAE Sephadex ® A-25", ækuilibreredes med 7M urinstof og elueredes med en NaCl gradient i 10 overensstemmelse med EP 17938.The insulin fraction (102 mg) was purified by ion exchange chromatography on "DEAE Sephadex ® A-25", equilibrated with 7M urea and eluted with a NaCl gradient in accordance with EP 17938.

Rent human insulinamid (DAI-Thr-NH^) i en mængde på 59,2 mg (bestemt ued aminosyreanalyse) blev opnået.Pure human insulin amide (DAI-Thr-NH 4) in an amount of 59.2 mg (determined without amino acid analysis) was obtained.

15 Fremstilling af DAI-Thr (human insulin) DAI-Thr-Nl^ (11 mg) opløstes i ImM EDTA og 2mM KC1 (2 ml). pH-uærdien indstilledes til 9,0 ued hjælp af 0,5M NaOH (51^ul) og CPD-Y (50yul, 13,6 mg/ml) tilsattes.Preparation of DAI-Thr (human insulin) DAI-Thr-N1 (11 mg) was dissolved in ImM EDTA and 2mM KCl (2ml). The pH was adjusted to 9.0 by means of 0.5 M NaOH (51 µl) and CPD-Y (50 µl, 13.6 mg / ml) was added.

20 Efter 15 minutters forløb standsedes reaktionen med 6M HC1 (25yul), og pH-uærdien faldt til 1,2. Reaktions-blandingen fraskiltes på "Sephadex G-50" og elueredes med IH eddikesyre. 8 mg human insulin bleu opnået. Amino-syreanalysen er vist i Tabel II nedenfor:After 15 minutes, the reaction was quenched with 6M HCl (25 µl) and the pH decreased to 1.2. The reaction mixture was separated on "Sephadex G-50" and eluted with 1 H acetic acid. 8 mg of human insulin were obtained. The amino acid analysis is shown in Table II below:

TABEL IITABLE II

17 14861617 148616

AminosyreanalyseAmino acid analysis

Human insulin Human _( formel)_DAI_Amid_insulinHuman insulin Human _ (formula) _DAI_Amid_insulin

Asp 3 2,97 3,05 3,04Asp 3 2.97 3.05 3.04

Thr 3 1,91 2,94 2,90Thr 3 1.91 2.94 2.90

Ser 3 2,86 2,86 2,95Ser 3 2.86 2.86 2.95

Glu 7 7,27 7,23 . 7,04Glu 7 7.27 7.23. 7.04

Pro 1 0,94 0,95 0,85Pro 1 0.94 0.95 0.85

Gly 4 4,000 4,000 4,000Gly 4 4,000 4,000 4,000

Ala 1 1,00 1,00 1,04Ala 1 1.00 1.00 1.04

Cys 6 5,31 5,19 5,02Cys 6 5.31 5.19 5.02

Val 4 3,37 3,11 3,24Choice 4 3.37 3.11 3.24

Ile 2 1,36 1,22 1,40Ile 2 1.36 1.22 1.40

Leu 6 6,28 6,20 6,13Leu 6 6.28 6.20 6.13

Tyr 4 3,64 3,97 3,77Tyr 4 3.64 3.97 3.77

Phe 3 2,82 2,92 2,83Phe 3 2.82 2.92 2.83

His 2 1,96 1,96 1,87His 2 1.96 1.96 1.87

Lys 1 0,94 1,00 0,95 NH3 6 8,12 6,46 6,98Lys 1 0.94 1.00 0.95 NH3 6 8.12 6.46 6.98

Arg 1 0,98 0,99 0,87Arg 1 0.98 0.99 0.87

Thr/Ser 1,00 1,003 (x3/2) 1,027 0,984 143616 18 EKSEMPEL 4 (Omdannelse af human insulin-methylester til human insulin)Thr / Ser 1.00 1.003 (x3 / 2) 1.027 0.984 143616 EXAMPLE 4 (Conversion of human insulin methyl ester to human insulin)

Human insulin-methylester fremstilledes ved kobling 5 af des-Ala(B30)insulin med threonin-methylester i nærvær af trypsin som beskrevet af Gattner et al. (Ref. 8).Human insulin methyl ester was prepared by coupling 5 of des-Ala (B30) insulin with threonine methyl ester in the presence of trypsin as described by Gattner et al. (Ref. 8).

5 mg Ins-Thr(B30)-0Me opløstes i 1 ml 0,1M KC1 med ImM EDTA ved at hæve pH fra 4,5 til 8,5 med 1M NaOH. Denne 10 pH holdtes i en pH-stat med 0,05M NaOH som titrant ved stuetemperatur. Reaktionen startedes ved tilsætning af l^ug CPD-Y opløst i lO^ul vand. Reaktionen fulgtes med HPLC; efter 1 time og 10 minutter var hydrolysen færdig. Reaktionsblandingen gelfiltreredes i 30% HAC 15 over "Sephadex ® G-50". Udbytte bestemt ved A2qq var 4,8 mg human insulin.5 mg Ins-Thr (B30) -0Me was dissolved in 1 ml 0.1M KCl with ImM EDTA by raising the pH from 4.5 to 8.5 with 1M NaOH. This pH was maintained in a pH state with 0.05M NaOH as titrant at room temperature. The reaction was started by adding 1 µg of CPD-Y dissolved in 10 µl of water. The reaction was followed by HPLC; after 1 hour and 10 minutes the hydrolysis was complete. The reaction mixture was gel filtered in 30% HAC 15 over "Sephadex ® G-50". Yield determined by A2qq was 4.8 mg of human insulin.

Aminosyreanalyse gav følgende sammensætning:Amino acid analysis gave the following composition:

TABEL IIITABLE III

19 14961619 149616

FORMEL ANALYSEFORMAL ANALYSIS

Asp 3 3,00Asp 3 3.00

Thr 3 2,83Thr 3 2.83

Ser 3 3,00Looks 3 3.00

Glu 7 7,09Glu 7 7.09

Pro 1 0,76Pro 1.76

Gly · 4 4,00Gly · 4 4.00

Ala 1 1,07Ala 1.07

Cys 6 4,67Cys 6 4.67

Mal 4 2,88Mal 4 2.88

Ile 2 1,97Ile 2 1.97

Leu 6 6,18Leu 6 6.18

Tyr 4 3,89Tyr 4 3.89

Phe 3 2,89Phe 3 2.89

His 2 1,86His 2 1.86

Arg 1 0,97Arg 1 0.97

Lys 1 0,98 20 149616List 1 0.98 20 149616

REFERENCERREFERENCES

1. Morihara, V.: Semi-synthesis of human insulin by trypsin-catalysed replacement of Ala-B30 by Thr in porcine insulin, Nature, Vol. 280, No. 5721, 1979, 412-13 2. Morihara, K,, Oka, T., Tsuzuki, H., Tochino, Y.,1. Morihara, V.: Semi-synthesis of human insulin by trypsin-catalysed replacement of Ala-B30 by Thr in porcine insulin, Nature, Vol. 280, No. 5721, 1979, 412-13 2. Morihara, K ,, Oka, T., Tsuzuki, H., Tochino, Y.,

Kanaya, T.: Achromobacter protease I-catalyzed conversion of porcine insulin into human insulin, Biochemical and Biophysical Research Comm. Vol. 92, No. 2, 1980, 396-402.Kanaya, T.: Achromobacter protease I-catalyzed conversion of porcine insulin into human insulin, Biochemical and Biophysical Research Comm. Vol. 92, no. 2, 1980, 396-402.

3. Widmer, F., Johansen, J.T.: Enzymatic peptide synthesis carboxypeptidase Y catalyzed formation of peptide bonds, Carlsberg Res. Commun., Vol. 44, 23. april 1979, 37-46.3. Widmer, F., Johansen, J.T .: Enzymatic peptide synthesis carboxypeptidase Y catalyzed formation of peptide bonds, Carlsberg Res. Commun., Vol. 44, April 23, 1979, 37-46.

4. Johansen, J.T., Breddam, K., Ottesen, M.: Isolation of Carboxypeptidase Y by affinity chromatography,4. Johansen, J. T., Breddam, K., Ottesen, M.: Isolation of Carboxypeptidase Y by Affinity Chromatography,

Carlsberg Res. Commun., Vol. 41, No. 1, 1976, 1-13.Carlsberg Res. Commun., Vol. 41, no. 1, 1976, 1-13.

5. Lee, H.-M., Riordan, J.F.: Does carboxypeptidase Y have intrinsic endopeptidase activity?, Biochemical and Biophysical Research Comm., Vol. 85, No. 3, 1978, 1135-1142.5. Lee, H.-M., Riordan, J.F .: Does carboxypeptidase Y have intrinsic endopeptidase activity ?, Biochemical and Biophysical Research Comm., Vol. 85, no. 3, 1978, 1135-1142.

6. Breddam, K., Widmer, F., Johansen, J.T.: Carboxypeptidase Y catalyzed transpeptidations and enzymatic peptide synthesis, Carlsberg Res. Comm. Vol. 45, 4. november 1980, p. 237-247.6. Breddam, K., Widmer, F., Johansen, J.T .: Carboxypeptidase Y catalyzed transpeptidations and enzymatic peptide synthesis, Carlsberg Res. Comm. Vol. 45, November 4, 1980, pp. 237-247.

7. Kubota et al., Carboxypeptidase C^, J. Biochem.,7. Kubota et al., Carboxypeptidase C1, J. Biochem.,

Vol. 74, No. 4 (1973), p. 757-770.Vol. 74, no. 4 (1973), pp. 757-770.

8. Gattner et al., Trypsin catalyzed pepti.de synthesis: Modification of the B-chain C-terminal region of insulin; European Peptide Symposium 1980.8. Gattner et al., Trypsin catalyzed peptide.de synthesis: Modification of the B-chain C-terminal region of insulin; European Peptide Symposium 1980.

DK320483A 1980-07-24 1983-07-12 PROCEDURE FOR MANUFACTURING INSULINES DK149616C (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DK319780A DK319780A (en) 1980-07-24 1980-07-24 PROCEDURE FOR ENZYMATIC REPLACEMENT OF B-30 AMINO ACID IN INSULINES
DK319780 1980-07-24
PCT/DK1981/000074 WO1982000301A1 (en) 1980-07-24 1981-07-23 Enzymatic replacement of the b-30 amino acid in insulins
DK8100074 1981-07-23
DK130082A DK148714C (en) 1980-07-24 1982-03-23 PROCEDURE FOR ENZYMATIC REPLACEMENT OF B-30 AMINO ACID IN INSULINES
DK130082 1982-03-23

Publications (4)

Publication Number Publication Date
DK320483D0 DK320483D0 (en) 1983-07-12
DK320483A DK320483A (en) 1983-07-12
DK149616B true DK149616B (en) 1986-08-11
DK149616C DK149616C (en) 1987-02-02

Family

ID=26065552

Family Applications (2)

Application Number Title Priority Date Filing Date
DK130082A DK148714C (en) 1980-07-24 1982-03-23 PROCEDURE FOR ENZYMATIC REPLACEMENT OF B-30 AMINO ACID IN INSULINES
DK320483A DK149616C (en) 1980-07-24 1983-07-12 PROCEDURE FOR MANUFACTURING INSULINES

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DK130082A DK148714C (en) 1980-07-24 1982-03-23 PROCEDURE FOR ENZYMATIC REPLACEMENT OF B-30 AMINO ACID IN INSULINES

Country Status (1)

Country Link
DK (2) DK148714C (en)

Also Published As

Publication number Publication date
DK149616C (en) 1987-02-02
DK130082A (en) 1982-03-23
DK148714C (en) 1986-01-27
DK320483D0 (en) 1983-07-12
DK148714B (en) 1985-09-09
DK320483A (en) 1983-07-12

Similar Documents

Publication Publication Date Title
US4806473A (en) Process for enzymatic production of peptides
US4645740A (en) Process for enzymatic replacement of the B-30 amino acid in insulins
EP0278787A1 (en) A process for enzymatic production of dipeptides
JP3329810B2 (en) Method for producing C-terminal amidated peptide compound
Kieffer et al. Sequence determination of a peptide fragment from electric eel acetylcholinesterase, involved in the binding of quaternary ammonium
DK149615B (en) PROCEDURE FOR THE MANUFACTURE OF HUMAN INSULIN, WHICH PHEB1 MAY BE DISPOSED AND WHICH MAY BE PROTECTING PROTECTION GROUPS
US4579820A (en) Process for enzymatic replacement of the B-30 amino acid in insulins
FI78119C (en) FOERFARANDE FOER FRAMSTAELLNING AV MAENSKLIGT INSULIN ELLER B-30-ESTRAR DAERAV.
Žáková et al. The use of Fmoc‐Lys (Pac)‐OH and penicillin G acylase in the preparation of novel semisynthetic insulin analogs
Shui-Tein et al. Stable industrial protease catalyzed peptide bond formation in organic solvent.
DK149616B (en) METHOD OF MANUFACTURING INSULINES
čeřovský et al. Enzymatic semisynthesis of dicarba analogs of calcitonin
FI73239B (en) FOERFARANDE FOER FRAMSTAELLNING AV ETT INSULINDERIVAT.
NO156654B (en) PROCEDURE FOR ENZYMATIC REPLACEMENT OF B-30 AMINO ACID IN INSULINES.
CA2142173A1 (en) Hirudin derivatives and a process for their preparation
CA2069199A1 (en) Process for the clostripain-catalyzed linkage of arg-pro and arg-b (b=proteinogenous and non-proteinogenous amino acids) containing peptides
DK155613B (en) Process for the enzymatic preparation of peptides
YASUTAKE et al. Cyclic Peptides: VIII. Synthesis and Tryptic Hydrolysis of Cyclic Depsidipeptides Containing a Lysine Residue
NO157706B (en) PROCEDURE FOR ENZYMATIC PREPARATION OF PEPTIDES.
JPS6244920B2 (en)
JPS63254994A (en) Production of n-substituted leucine enkephalinamide
EP0537185A1 (en) An enzymatic process for the preparation of derivatives of growth hormone releasing factor and peptides useful as intermediates in the process

Legal Events

Date Code Title Description
PBP Patent lapsed