DK149432B - PROCEDURE FOR PREPARING ALFA-L-ASPARTYL-L-PHENYLALANINE METHYL ESTER - Google Patents

PROCEDURE FOR PREPARING ALFA-L-ASPARTYL-L-PHENYLALANINE METHYL ESTER Download PDF

Info

Publication number
DK149432B
DK149432B DK577977AA DK577977A DK149432B DK 149432 B DK149432 B DK 149432B DK 577977A A DK577977A A DK 577977AA DK 577977 A DK577977 A DK 577977A DK 149432 B DK149432 B DK 149432B
Authority
DK
Denmark
Prior art keywords
aspartyl
phenylalanine
apm
reaction
approx
Prior art date
Application number
DK577977AA
Other languages
Danish (da)
Other versions
DK149432C (en
DK577977A (en
Inventor
Gerald Lee Bachman
Billy Dale Vineyard
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Publication of DK577977A publication Critical patent/DK577977A/en
Publication of DK149432B publication Critical patent/DK149432B/en
Application granted granted Critical
Publication of DK149432C publication Critical patent/DK149432C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06104Dipeptides with the first amino acid being acidic
    • C07K5/06113Asp- or Asn-amino acid
    • C07K5/06121Asp- or Asn-amino acid the second amino acid being aromatic or cycloaliphatic
    • C07K5/0613Aspartame

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Seasonings (AREA)

Description

i 149432in 149432

Opfindelsen angår en fremgangsmåde af den i krav l's indledning anførte art til fremstilling af a-L-aspartyl-L-phenylalanin-methylester (α-ΑΡΜ, II), der er kendt for sin anvendelighed som sødemiddel.The invention relates to a process of the kind set forth in the preamble of claim 1 for the preparation of α-L-aspartyl-L-phenylalanine methyl ester (α-ΑΡΜ, II), which is known for its utility as a sweetener.

5 En sådan fremgangsmåde er kendt fra USA patentskrift nr. 3 933 781, og kan illustreres ved følgende generelle reaktionssekvens:Such a method is known from U.S. Patent No. 3,933,781, and can be illustrated by the following general reaction sequence:

CEUCOOHCEUCOOH

0 I0 I

ii Oii O

1) CH -C I 11 I 2 ^0 + NHo-CH-COOH-? CH-C-NH-CH-COOH og /p-form7 PH- C·^ ** * * * ./ II CH0 X-NH CHp x-nh o Γ2 /a-form71) CH -C I 11 I 2 ^ 0 + NHo-CH-COOH-? CH-C-NH-CH-COOH and / p-form7 PH-C · ^ ** * * * ./ II CH0 X-NH CHp x-nh o Γ2 / a-form7

CH5COOH CH2C00HCH5COOH CH2C00H

i 0 I o 2) CH-C-NH-CH-COOH a^bloker:Lng ) CH-C-NH-CH-COOH (I) 1 i * * X-NH CH« NH? CH« 6 6 CH2C00H gh2cooh I s -I? 3) CH-C-NH-CH-COOH + CH^OH-* CH-C-NH-CH-COCH-zi 0 I o 2) CH-C-NH-CH-COOH a ^ block: Lng) CH-C-NH-CH-COOH (I) 1 i * * X-NH CH «NH? CH «6 6 CH2C00H gh2cooh I s -I? 3) CH-C-NH-CH-COOH + CH 2 OH- * CH-C-NH-CH-COCH-z

I I J T I DI I J T I D

NHp CHp NH« CH2 ό ό II, ./ά-ΑΡΜ7 i · I de ovenfor angivne formler repræsenterer X en amino-be-skyttelsesgruppe.NHp CHp NH «CH2 ό ό II, ./ά-ΑΡΜ7 i · In the above formulas, X represents an amino protecting group.

10 Som vist i reaktionsskema 1) er udgangsreaktanterne 2 149432 et N-beskyttet L-asparaginsyreanhydrid og L-phenylalanin, der omsættes til dannelse af N-beskyttet a-L-aspartyl-L-phenylalanin. Aminobeskyttelsesgruppen kan være enhver af de sædvanligvis anvendte, som f.eks. formyl, acetyl, 5 benzoyl, substitueret og usubstitueret carbobenzoxy, t-butoxycarbonyl og hydrohalogenidsaltet. Især foretrækker man N-formyl-L-asparaginsyreanhydrid.As shown in Scheme 1), the starting reactants 2 149432 are an N-protected L-aspartic anhydride and L-phenylalanine which react to form N-protected α-L-aspartyl-L-phenylalanine. The amino protecting group may be any of the commonly used, e.g. formyl, acetyl, benzoyl, substituted and unsubstituted carbobenzoxy, t-butoxycarbonyl and the hydrohalide salt. Particularly preferred is N-formyl-L-aspartic anhydride.

Det N-beskyttede a-L-aspartyl-L-phenylalanin kan separeres fra det N-beskyttede β-L-aspartyl-L-phenylalanin 10 og behandles for at fjerne den beskyttende gruppe til opnåelse af a-L-aspartyl-L-phenylalanin (I) som angivet i reaktionsskema 2). Den tidligere proces omfattende isoleringen af a-L-aspartyl-L-phenylalanin (I), som derpå blev esterificeret med methanol, som angivet i 15 reaktionsskema 5, til dannelse af II eller a-APM.The N-protected α-aspartyl-L-phenylalanine can be separated from the N-protected β-L-aspartyl-L-phenylalanine 10 and treated to remove the protecting group to give α-aspartyl-L-phenylalanine (I) as indicated in Reaction Scheme 2). The prior process comprising the isolation of α-L-aspartyl-L-phenylalanine (I), which was then esterified with methanol, as indicated in Reaction Scheme 5, to form II or α-APM.

Som beskrevet i USA patentskrift nr. 3 933 781 gennemførtes esterificeringsreaktionen I + CHjOH-^II fortrinsvis i nærvær af så lidt vand som muligt. Esterificeringsreaktionen blev således fortrinsvis gennemført 20 i methanol i nærværelse af hydrogenchlorid, idet det var opfattelsen, at tilstedeværelsen af enhver betydende vandmængde under esterificeringen ville have tendens til at reducere den ønskede esterificering ved at fremkalde uønskede deesterificerings-reaktioner.As described in U.S. Patent No. 3,933,781, the esterification reaction I + CH₂OH-- II was preferably carried out in the presence of as little water as possible. Thus, the esterification reaction was preferably carried out in methanol in the presence of hydrogen chloride, believing that the presence of any significant amount of water during the esterification would tend to reduce the desired esterification by inducing unwanted deesterification reactions.

25 En foretrukken metode til-udvinding af a-APM, fremstillet ved fremgangsmåden ifølge USA patentskrift nr.A preferred method of recovering α-APM, prepared by the method of U.S. Pat.

3 933 781, var at konvertere det til HCl-saltet, der blev udvundet som et fast stof, som derpå blev konverteret til a-APM.3,933,781, was to convert it to the HCl salt which was recovered as a solid which was then converted to α-APM.

30 Et sådant HCl-salt af a-APM er også beskrevet i USA patentskrift nr. 3 798 207, hvori det anvendtes i en 3 149432 rensningsmetode til fremstilling af a-APM ved separation fra β-ΑΡΜ og andre uønskede biprodukter. I begge de tidligere metoder dannedes HCl-saltet som et middel til udvinding af a-APM efterj at det var fremstillet.Such an HCl salt of α-APM is also disclosed in United States Patent No. 3,798,207, in which it was used in a purification method to prepare α-APM in separation from β-ΑΡΜ and other unwanted by-products. In both of the previous methods, the HCl salt was formed as a means of recovering α-APM after it was prepared.

5 Det er opfindelsens formål at tilvejebringe en fremgangs måde til fremstilling af a-APM, som er forbedret i den forstand, at den ikke - som den fra USA patentskrift nr. 3 933 781 kendte fremgangsmåde - omfatter anvendelsen af et organisk opløsningsmiddel, men gennemføres i vandigt 10 medium, således at alle ulemper i forbindelse med det organiske opløsningsmiddel, herunder regenereringen deraf og brand- og explosionsrisikoen derved, totalt elimineres, samtidig med at man alligevel kan opnå næsten lige så gode eller endog bedre udbytter af det ønske-15 de slutprodukt II.It is an object of the invention to provide a process for the preparation of α-APM which is improved in the sense that it does not, as is known in the process of US Patent No. 3,933,781, employ the use of an organic solvent, but is carried out. in aqueous medium, so that all the disadvantages of the organic solvent, including its regeneration and the fire and explosion risk thereof, are totally eliminated, while still achieving almost as good or even better yields of the desired final product II.

Fremgangsmåden ifølge opfindelsen, der er af den i indledningen til krav 1 angivne art, er ejendommelig ved det i den kendetegnende del af krav 1 angivne.The method according to the invention, which is of the kind set forth in the preamble of claim 1, is characterized by the method of claim 1.

Det har overraskende vist sig, at denne fremgangsmåde 20 opfylder opfindelsens formål. Overraskelsesmomentet fremtræder særdeles tydeligt, på baggrund af USA patent-skrift nr. 3 933 781, i henhold til hvilket vandmængden i reaktionsblandingen skulle være så lille som muligt, idet hovedparten var organisk opløsningsmiddel.Surprisingly, it has been found that this method 20 fulfills the object of the invention. The moment of surprise appears very clearly, on the basis of U.S. Patent No. 3,933,781, according to which the amount of water in the reaction mixture should be as small as possible, the bulk being organic solvent.

25 Ifølge opfindelsen er der således tilvejebragt en forbedret fremgangsmåde til fremstilling af a-APM, som omfatter, at man kontakter a-L-aspartyl-L-phenylalanin eller et N-beskyttet derivat deraf med et reaktionsmedium omfattende vand, methanol og hydrogenhalogenid, som er hydro-30 genchlorid og/eller hydrogenbromid til dannelse, af et fast hydrogenhalogenidsalt af a-APM, at man fraseparerer 4 149432 det faste hydrogenhalogenidsalt, og at man konverterer det fraseparerede salt af a-APM til a-APM.According to the invention, there is thus provided an improved process for the preparation of α-APM which comprises contacting aL-aspartyl-L-phenylalanine or an N-protected derivative thereof with a reaction medium comprising water, methanol and hydrogen halide which is hydro -30 gene chloride and / or hydrogen bromide to form a solid hydrogen halide salt of α-APM, to separate the solid hydrogen halide salt and to convert the separated salt of α-APM to α-APM.

En særlig foretrukken udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kende-5 tegnende del af krav 2 angivne. Herved opnås et særligt højt udbytte.A particularly preferred embodiment of the method according to the invention is characterized by the characterizing part of claim 2. This results in a particularly high yield.

En særligt foretrukken udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 3 angivne. Herved opnås en særlig 10 simpel fremgangsmåde, der normalt kan gennemføres uden varmetilførsel, og som tillige frembringer et fuldt ud tilfredsstillende udbytte.A particularly preferred embodiment of the method according to the invention is characterized by the characterizing part of claim 3. This provides a particularly simple process, which can normally be carried out without heat supply, and which also produces a fully satisfactory yield.

α-L-aspartyl-L-phenylalaninet (I) kan fremstilles ved behandling af N-beskyttet a-L-aspartyl-L-phenylalanin 15 for at fjerne N-beskyttelsesgruppen (reaktionsskema 2)). Enhver velegnet metode til fjernelse af beskyttelsesgrupper fra aminer kan anvendes. Eksempler på sådanne metoder er katalytisk hydrogenering og behandling med mineralsyrer eller baser. Det foretrækkes at fjerne 20 beskyttelsesgruppen, der især er formyl-gruppen, ved sur hydrolyse. Denne hydrolyse kan f.eks. gennemføres i en fortyndet, vandig saltsur opløsning. Omdannelsen til α-L-aspartyl-L-phenylalanin (I) er sædvanligvis meget høj, d.v.s. af størrelsesordenen 95 % eller der-25 over, i forhold til den N-beskyttede a-L-aspartyl-L- phenylalanin. Et andet egnet medium til denne behandling er en vandig opløsning af eddikesyre-saltsyre.The α-L-aspartyl-L-phenylalanine (I) can be prepared by treating N-protected α-L-aspartyl-L-phenylalanine 15 to remove the N-protecting group (Scheme 2). Any suitable method for removing protecting groups from amines can be used. Examples of such methods are catalytic hydrogenation and treatment with mineral acids or bases. It is preferred to remove the protecting group, which is especially the formyl group, by acid hydrolysis. This hydrolysis can e.g. is carried out in a dilute aqueous hydrochloric acid solution. The conversion to α-L-aspartyl-L-phenylalanine (I) is usually very high, i.e. of the order of 95% or more, relative to the N-protected α-L-aspartyl-L-phenylalanine. Another suitable medium for this treatment is an aqueous solution of acetic acid-hydrochloric acid.

α-L-aspartyl-L-phenylalanin (I) kan derpå udvindes ved bundfældning og væske-faststof separation. En sådan 30 bundfældning kan f.eks. fremkaldes ved pH-indstilling, når beskyttelsesgruppen er blevet fjernet i en sur op- 5 149432 løsning.α-L-aspartyl-L-phenylalanine (I) can then be recovered by precipitation and liquid-solid separation. Such a precipitate may e.g. is induced by pH adjustment when the protecting group has been removed in an acidic solution.

Det er også muligt ved fremgangsmåden ifølge opfindelsen at anvende N-beskyttet α-L-aspartyl-L-phenylalanin til dannelse af α-L-aspartyl-L-phenylalaninet (I) in situ 5 i reaktionsmediet eller at danne a-L-aspartyl-L-pheny1- alaninet (I) i et reaktionsmedium uden nødvendigheden af isolation. Et særligt foretrukket N-beskyttet Oi-L-aspartyl-L-phenylalanin, der er anvendeligt på denne sidst angivne måde, er som anført N-formyl-a-L-aspartyl-10 L-phenylalanin.It is also possible in the process of the invention to use N-protected α-L-aspartyl-L-phenylalanine to form the α-L-aspartyl-L-phenylalanine (I) in situ 5 in the reaction medium or to form aL-aspartyl-L -phenyl-alanine (I) in a reaction medium without the need for isolation. A particularly preferred N-protected O 1 -L-aspartyl-L-phenylalanine useful in this last manner is, as stated, N-formyl-α-L-aspartyl-10 L-phenylalanine.

Den mængde hydrogenhalogenid, der er anvendelig i reaktionsmediet, ligger fra ca. 0,1 mol til ca. 0,8 mol per 100 gram reaktionsmedium. En særlig anvendelig mængde hydrogenhalogenid ligger mellem ca. 0,3 mol og ca. 0,7 15 mol per 100 gram reaktionsmedium. Den mængde methanol, der er anvendelig i reaktionsmediet, ligger fra ca.The amount of hydrogen halide useful in the reaction medium ranges from approx. 0.1 mole to approx. 0.8 moles per 100 grams of reaction medium. A particularly useful amount of hydrogen halide is between about 0.3 mol and approx. 0.7 moles per 100 grams of reaction medium. The amount of methanol useful in the reaction medium ranges from approx.

0,1 til ca. 1,1 mol per 100 gram reaktionsmedium. En særlig anvendelig mængde methanol ligger fra ca. 0,4 til ca. 0,8 mol per 100 gram reaktionsmedium.0.1 to approx. 1.1 moles per 100 grams of reaction medium. A particularly useful amount of methanol ranges from approx. 0.4 to approx. 0.8 moles per 100 grams of reaction medium.

20 Hydrogenhalogenidet er til stede i reaktionsmediet i en mængde fra 1,0 til ca. 20,0 mol hydrogenhalogenid per mol α-L-aspartyl-L-phenylalanin (I), som kontaktes.The hydrogen halide is present in the reaction medium in an amount of from 1.0 to ca. 20.0 moles of hydrogen halide per mole of α-L-aspartyl-L-phenylalanine (I) contacted.

En særlig foretrukken mængde ligger fra ca. 1,15 til ) ca. 10,0 mol per mol α-L-aspartyl-L-phenylalanin (I).A particularly preferred amount ranges from approx. 1.15 to) approx. 10.0 moles per mole of α-L-aspartyl-L-phenylalanine (I).

25 Hydrogenchlorid er det foretrukne hydrogenhalogenid.Hydrogen chloride is the preferred hydrogen halide.

Reaktionsmediet indeholder også mindst 1,0 mol methanol per mol α-L-aspartyl-L-phenylalanin.The reaction medium also contains at least 1.0 mole of methanol per mole of α-L-aspartyl-L-phenylalanine.

De anvendte reaktionstemperaturer er fra ca. 0 °C til ca. 6 °C, især fra ca. 20 °C til ca. 40 °C. Skønt den 25 mest foretrukne temperatur er i nærheden af omgivelsernes temperatur, skal det bemærkes, at højere temperaturer 6 149432 har tendens til at forøge dannelseshastigheden for a-APM, men har de ulemper, at de fremkalder dekompositions-reaktioner og forøger opløseligheden af hydrogenhaloge-nidsaltene af a-APM. På den anden side har lavere tem-5 peraturer tendens til at reducere dannelseshastigheden for a-APM, inhibere dekompositionsreaktioner og frembringe højere mængder af faste hydrogenhalogenidsalte af a-APM.The reaction temperatures used are from ca. 0 ° C to approx. 6 ° C, especially from approx. 20 ° C to approx. 40 ° C. Although the 25 most preferred temperature is in the vicinity of ambient temperature, it should be noted that higher temperatures tend to increase the rate of formation of α-APM, but have the disadvantages of inducing decomposition reactions and increasing the solubility of hydrogen halide. the salt salts of α-APM. On the other hand, lower temperatures tend to reduce the rate of formation of α-APM, inhibit decomposition reactions and produce higher amounts of solid hydrogen halide salts of α-APM.

Fagmanden vil erkende nødvendigheden af at afbalancere disse betragtninger til opnåelse af den mest økonomiske 10 temperatur til de involverede koncentrationer.Those skilled in the art will recognize the need to balance these considerations in order to achieve the most economical temperature for the concentrations involved.

Den reaktion, der finder sted ved fremgangsmåden ifølge opfindelsen, fører til dannelsen af følgende uønskede biprodukter: 0The reaction which occurs in the process of the invention leads to the formation of the following undesired by-products:

IIII

CHo-C-O-CH,CHO C-O-CH

SS

NHo-CH-C-NH-CH-C-0-CH, O CE0 6 (heri kaldet "diesteren") og 0NHo-CH-C-NH-CH-C-O-CH, O CE0 6 (hereinafter referred to as "the diester") and 0

IIII

CH2-C-0-CH3 oCH2-C-O-CH3 o

IIII

NH^-CH-C-NH-CH-C-OHNH ^ CH-C-NH-CH-C-OH

^ II I^ II I

0 CE0 6 15 (heri kaldet "aspartyl-esteren").0 CE0 6 15 (herein called the "aspartyl ester").

7 1494327 149432

Udover disse to uønskede biprodukter kan reaktionsblandingen også indeholde uesterificeret a-L-aspartyl-L-phenylalanin (I) og eventuelt små mængder af β-form-ana-loge, der hidrører fra fremstillingen af udgangsforbin-5 delsen. De reaktioner, der fører til det ønskede produkt og biprodukterne, er alle ligevægtsreaktioner.In addition to these two undesirable by-products, the reaction mixture may also contain unesterified α-L-aspartyl-L-phenylalanine (I) and optionally small amounts of the β-form analogue resulting from the preparation of the starting compound. The reactions leading to the desired product and the by-products are all equilibrium reactions.

Det har vist sig, at fremgangsmåden ifølge opfindelsen tilvejebringer et stort isoleret udbytte af a-APM.It has been found that the process of the invention provides a large isolated yield of α-APM.

For eksempel kan man ved omkring stuetemperatur opnå 10 så meget som ca. 55 til 60 % udbytte af a-APM i forhold til a-L-aspartyl-L-phenylalanin (I).For example, at about room temperature, 10 can be obtained as much as approx. 55 to 60% yield of α-APM relative to α-L-aspartyl-L-phenylalanine (I).

Det faste hydrogenhalogenidsalt af a-APM kan udvindes ved separationsmetoder af væske/faststof-typen. I det væsentlige alle de andre forbindelser forbliver i moder-15 luden. Det separerede salt kan derpå konverteres til i det væsentlige rent a-APM, f.eks., som vist i USA patentskrift nr. 3 798 207 og 3 933 781.The α-APM solid hydrogen halide salt can be recovered by liquid / solid type separation methods. Essentially all the other compounds remain in the mother liquor. The separated salt can then be converted to substantially pure α-APM, for example, as shown in United States Patent Nos. 3,798,207 and 3,933,781.

De følgende eksempler er angivet for at illustrere den foreliggende opfindelse i detaljer.The following examples are given to illustrate the present invention in detail.

20 De materialer og metoder, der anvendes i analyserne omfattende tyndtlagschromatografi (TLC) i eksemplerne, er som følger: A. PladeThe materials and methods used in the thin layer chromatography (TLC) assays of the Examples are as follows: A. Plate

Silicagel F på glasplade leveret af Brinkman 25 Instrument In., Westbury, N.Y. 11590 8 149432 B. Opløsningsmiddelsystemer 1. chloroform 64 ?ό (på volumenbasis) methanol 30 % " eddikesyre 2 % " 5 destilleret vand 4 % " 2. n-propanol 70 % " destilleret vand 10 % " methanol 10 % " myresyre 10 % " 10 C. Sprøjteopløsninger til detektion 1. 0,3 g ninhydrin opløst i en blanding af 100 ml n-butanol og 3 ml iseddikesyre.Silica gel F on glass plate supplied by Brinkman 25 Instrument In., Westbury, N.Y. 11590 8 149432 B. Solvent Systems 1. Chloroform 64? Ό (by volume) methanol 30% "acetic acid 2%" 5 distilled water 4% "2. n-propanol 70%" distilled water 10% "methanol 10%" formic acid 10% "10 C. Syringe Solutions for Detection 1. 0.3 g of ninhydrin dissolved in a mixture of 100 ml of n-butanol and 3 ml of glacial acetic acid.

2. 1 g kaliumiodid og 1 g opløselig stivelse opløst i 100 ml destilleret vand.2. 1 g potassium iodide and 1 g soluble starch dissolved in 100 ml distilled water.

15 D. MetoderD. Methods

Efter pletdannelse og fremkaldelse i det passende opløsningsmiddelsystem blev pladen lufttørret i 30 min.After staining and developing in the appropriate solvent system, the plate was air dried for 30 min.

Ninhydrinsprøjtning -- Pladen blev sprøjtet og holdt i en 100 °C varm ovn i 15 min.Nine Hydrine Injection - The plate was sprayed and kept in a 100 ° C hot oven for 15 min.

20 Stivelse-iodid-sprøjtning - Pladen blev indført i et kammer mættet med t-butyl-hypochlorit-damp i 15 minutter, lufttørret i 30 minutter og derpå sprøjtet med frisk fremstillet stivelse-iodid-opløsning.20 Starch Iodide Spraying - The plate was introduced into a chamber saturated with t-butyl hypochlorite vapor for 15 minutes, air-dried for 30 minutes and then sprayed with freshly prepared starch iodide solution.

EKSEMPEL 1 25 I en passende beholder indførte man 140 ml methanol og 420 ml 9 N saltsyre, der blev afkølet med et isbad.Example 1 25 Into a suitable vessel was introduced 140 ml of methanol and 420 ml of 9 N hydrochloric acid which was cooled with an ice bath.

Til den resulterende opløsning blev der tilført 113,8 U943'2 9 g (0,4 mol) α-L-aspartyl-L-phenylalanin (I) (98,5 % renhed). Bundfældningen begyndte kort tid efter. Den resulterende masse blev fjernet fra isbadet og holdt under omrøring i 30 minutter, hvilket bragte temperaturen 5 til at stige til 20 °C. Den resulterende masse blev igen afkølet med et isbad, holdt under omrøring i 1,5 timer, resulterende i en væsentlig bundfældning, og derpå anbragt i et køleskab natten over.To the resulting solution was added 113.8 U943-29 g (0.4 mol) of α-L-aspartyl-L-phenylalanine (I) (98.5% purity). The settlement began shortly after. The resulting mass was removed from the ice bath and kept under stirring for 30 minutes causing the temperature to rise to 20 ° C. The resulting mass was again cooled with an ice bath, kept under stirring for 1.5 hours, resulting in substantial precipitation, and then placed in a refrigerator overnight.

Den næste morgen blev reaktionsmassen holdt under omrø-10 ring i 1 time i et isbad, og bundfaldet (130,5 g våd kage) blev separeret ved filtrering. Den resulterende kage blev opløst i 750 ml deioniseret vand ved 40 °C, og pH blev indstillet på 4,2 over en 1,5 timer periode med 36,7 g 50 % vandig natriumhydroxid. Den resulterende 15 masse blev afkølet til ca. 5 °C. og holdt ved denne temperatur i 4 timer. Det bundfald, som dannedes, blev separeret ved filtrering og vasket med fem 30 ml portioner af 5 °C deioniseret vand og tørret. Det resulterende produkt var 51,8 g a-APM, svarende til et 44 % udbytte 20 i forhold til a-L-aspartyl-L-phenylalaninet (I). TLC og natriumchloridanalyse bekræftede, at renheden af a-APM produktet var større end 95 %.The next morning, the reaction mass was kept under stirring for 1 hour in an ice bath and the precipitate (130.5 g wet cake) was separated by filtration. The resulting cake was dissolved in 750 ml of deionized water at 40 ° C and the pH was adjusted to 4.2 over a 1.5 hour period with 36.7 g of 50% aqueous sodium hydroxide. The resulting mass was cooled to ca. 5 ° C. and kept at this temperature for 4 hours. The precipitate which formed was separated by filtration and washed with five 30 ml portions of 5 ° C deionized water and dried. The resulting product was 51.8 g of α-APM, corresponding to a 44% yield 20 relative to the α-L-aspartyl-L-phenylalanine (I). TLC and sodium chloride analysis confirmed that the purity of the α-APM product was greater than 95%.

EKSEMPEL 2EXAMPLE 2

Til en under omrøring stående opløsning af 34,2 ml (0,41 25 mol) 37 % saltsyre, 60 ml vand og 40 ml methanol sattes 110 g (0,357 mol) N-formyl-a-L-aspartyl-L-phenylalanin over en 20 minutters periode med en temperaturtilvækst fra 40 °C til 58 °C. Den resulterende masse blev holdt under omrøring ved 58 - 60 °C i 3 timer for at fremkalde 30 fjernelsen af formylgruppen ved hydrolyse.To a stirred solution of 34.2 ml (0.41 mol) of 37% hydrochloric acid, 60 ml of water and 40 ml of methanol was added 110 g (0.357 mol) of N-formyl-αL-aspartyl-L-phenylalanine over a 20 ml solution. minute period with a temperature rise from 40 ° C to 58 ° C. The resulting mass was kept under stirring at 58 - 60 ° C for 3 hours to effect the removal of the formyl group by hydrolysis.

Reaktionsmassen blev afkølet til 25 °C, og der blev tilsat 65,8 ml (0,79 mol) 37 % saltsyre over 10 minutter.The reaction mass was cooled to 25 ° C and 65.8 ml (0.79 mol) of 37% hydrochloric acid was added over 10 minutes.

149432 ίο149432 ίο

Kort tid derefter begynder der at danne sig et bundfald.Shortly thereafter, a precipitate begins to form.

Under omrøring holdt man den resulterende masse i 45 timer ved omgivelsernes temperatur og 1,5 timer ved 5 °C, hvilket bevirkede, at der dannede sig yderligere 5 bundfald. Det faste bundfald blev separeret ved centri fugering, og kagen blev vasket med 100 ml 5 °C varmt, deioniseret vand. Den våde kage (110,2 g) blev opløst i 410 ml 45 °C varmt, deioniseret vand. pH blev over en 10 minutters periode indstillet på 2,5 med 80,1 g 10 4,8 % vandig natriumhydroxid og holdt under omrøring i 1 time ved 40 °C. Mens man holdt temperaturen ved 40 - 42 °C, tilsattes 151,9 g 4,8 % vandig natriumhydroxid over 3 timer for at hæve pH til 4,2. Blandingen blev holdt under omrøring i 1 time ved 0-5 °C, og de re-15 suiterende, fjeragtige krystaller blev separeret ved centrifugering. Kagen blev vasket med 200 ml 5 °C varmt, deioniseret vand og tørret natten over i en vakuumovn ved 55 - 60 °C. Udbyttet af a-APM var 58,3 g (55,5 % i forhold til N-formyl-a-L-aspartyl-L-phenylalanin); 20 20 [a]p : (c=4, 15 N myresyre); TLC analyse - over 98 % rent a-APM.With stirring, the resulting mass was maintained for 45 hours at ambient temperature and 1.5 hours at 5 ° C, causing another 5 precipitates to form. The solid precipitate was separated by centrifugation and the cake was washed with 100 ml of 5 ° C hot deionized water. The wet cake (110.2 g) was dissolved in 410 ml of 45 ° C hot deionized water. The pH was adjusted over a 10 minute period to 2.5 with 80.1 g of 4.8% aqueous sodium hydroxide and kept under stirring for 1 hour at 40 ° C. Keeping the temperature at 40 - 42 ° C, 151.9 g of 4.8% aqueous sodium hydroxide was added over 3 hours to raise the pH to 4.2. The mixture was kept under stirring for 1 hour at 0-5 ° C and the resulting feathery crystals were separated by centrifugation. The cake was washed with 200 ml of 5 ° C hot, deionized water and dried overnight in a vacuum oven at 55 - 60 ° C. The yield of α-APM was 58.3 g (55.5% relative to N-formyl-α-L-aspartyl-L-phenylalanine); [A] p: (c = 4, 15 N formic acid); TLC analysis - over 98% pure a-APM.

EKSEMPEL 3EXAMPLE 3

Idet man i det væsentlige fulgte den samme metode som i eksempel 2, med undtagelse af, at der tilsattes 32,5 25 ml 37 % saltsyre og 33,3 ml vand til reaktionsmassenFollowing essentially the same method as in Example 2, except that 32.5 25 ml of 37% hydrochloric acid and 33.3 ml of water were added to the reaction mass

efter fjernelsen af formylgruppen ved hydrolyse og afkøling til 25 °C, fremkom der et 33,0 % udbytte af a-APMafter removal of the formyl group by hydrolysis and cooling to 25 ° C, a 33.0% yield of α-APM was obtained

i forhold til N-formyl-a-L-aspartyl-L-phenylalanin. on [α]ρ : +15,3° (c=4, 15 N myresyre.relative to N-formyl-α-L-aspartyl-L-phenylalanine. on [α] ρ: + 15.3 ° (c = 4, 15 N formic acid.

30 EKSEMPEL 4EXAMPLE 4

Idet man i det væsentlige følger den samme metode som i eksempel 2, med undtagelse af, at den tid, der medgik 11 149432 til at fjerne formyl-gruppen ved hydrolyse var begrænset til 1 time, fremkom der et 46,2 % udbytte af α-ΑΡΜ i 20 forhold til N-formyl-a-L-aspartyl-L-phenylalanin. [a]p : +15,5° (c=4, 15 N myresyre).Following essentially the same method as in Example 2, except that the time allowed to remove the formyl group by hydrolysis was limited to 1 hour, a 46.2% yield of α was obtained. -ΑΡΜ relative to N-formyl-αL-aspartyl-L-phenylalanine. [α] p: + 15.5 ° (c = 4, 15 N formic acid).

5 EKSEMPEL 5EXAMPLE 5

Idet man i det væsentlige følger den samme metode som i eksempel 2, med undtagelse af, at man anvender 38,7 ml 37 SS saltsyre i udgangsopløsningen i stedet for 34,2 ml 37 % saltsyre, og at man nedsætter den syremængde, 10 der indføres efter hydrolysen, til 61,3 ml 37 % saltsyre, fremkom der et 53,2 % udbytte af a-APM, i forhold 20 til N-formyl-a-L-aspartyl-L-phenylalanin. [a]D : +15,4° (c=4, 15 N myresyre).Following essentially the same method as in Example 2, except that 38.7 ml of 37 SS hydrochloric acid is used in the starting solution instead of 34.2 ml of 37% hydrochloric acid and reducing the amount of acid 10 After the hydrolysis, to 61.3 ml of 37% hydrochloric acid, a 53.2% yield of α-APM relative to N-formyl-αL-aspartyl-L-phenylalanine was obtained. [α] D: + 15.4 ° (c = 4, 15 N formic acid).

EKSEMPEL 6 15 Idet man i det væsentlige følger den samme metode som i eksempel 2, med undtagelse af, at opholdstiden til dannelse af et fast bundfald forøges til 4 dage, opnår man et 59,2 % udbytte af a-APM i forhold til N-formyl- 20 a-L-aspartyl-L-phenylalanin. [α]^ s +15,2° (c=4, 15 20 N myresyre).EXAMPLE 6 Following essentially the same method as in Example 2, except that the residence time to form a solid precipitate is increased to 4 days, a 59.2% yield of α-APM relative to N is obtained. -formyl-αL-aspartyl-L-phenylalanine. [α] 25 S + 15.2 ° (c = 4, 15 N formic acid).

EKSEMPEL 7EXAMPLE 7

Idet man i det væsentlige følger den samme metode som i eksempel 2, med undtagelse af, at holdeperioden for at få et fast bundfald til at dannes sænkes til 1 dag, 25 opnår man et 36,3 % udbytte af a-APM i forhold til N- 20 formyl-a-L-aspartyl-L-phenylalanin. [a]p : +15,5° (c=4, 15 N myresyre).By essentially following the same method as in Example 2, except that the holding period to cause a solid precipitate to form is reduced to 1 day, a 36.3% yield of α-APM is obtained relative to N-formyl-αL-aspartyl-L-phenylalanine. [α] p: + 15.5 ° (c = 4, 15 N formic acid).

Eksempel 1 til 7 er samlet i tabel 1 under anvendelse af de tidligere beskrevne parametre.Examples 1 to 7 are summarized in Table 1 using the previously described parameters.

12 149432 TABEL 112 TABLE 1

Methanol HC1 (mol Mol per mol a-L- (mol per per 100 g aspartyl-L-phe-Methanol HCl (mol mol per mol α-L- (mol per 100 g aspartyl-L-phe-

Eksempel 100 g reak- reaktions- nylalanin (I) 5 nr._ tionsmedium) medium) Methanol HC1 1 0,75 0,65 9,45 10,95 2 0,48 0,56 3,28 2,8 3 0,49 0,45 2,58 2,8 4 0,48 0,56 3,28 2,8 10 5 0,48 0,56 3,28 2,8 6 0,48 0,56 3,28 2,8 7 0,48 0,56 3,28 2,8Example 100 g of Reaction Reaction Nylalanine (I) No. reaction medium) Methanol HCl 1 0.75 0.65 9.45 10.95 2 0.48 0.56 3.28 2.8 30 49 0.45 2.58 2.8 4 0.48 0.56 3.28 2.8 10 5 0.48 0.56 3.28 2.8 6 0.48 0.56 3.28 2.8 7 0.48 0.56 3.28 2.8

DK577977A 1976-12-27 1977-12-23 PROCEDURE FOR PREPARING ALFA-L-ASPARTYL-L-PHENYLALANINE METHYL ESTER DK149432C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US75429776A 1976-12-27 1976-12-27
US75429776 1976-12-27

Publications (3)

Publication Number Publication Date
DK577977A DK577977A (en) 1978-06-28
DK149432B true DK149432B (en) 1986-06-09
DK149432C DK149432C (en) 1987-04-21

Family

ID=25034194

Family Applications (1)

Application Number Title Priority Date Filing Date
DK577977A DK149432C (en) 1976-12-27 1977-12-23 PROCEDURE FOR PREPARING ALFA-L-ASPARTYL-L-PHENYLALANINE METHYL ESTER

Country Status (18)

Country Link
JP (1) JPS6050200B2 (en)
AU (1) AU515038B2 (en)
BE (1) BE862258A (en)
BR (1) BR7708632A (en)
CA (1) CA1100487A (en)
CH (1) CH631435A5 (en)
DE (1) DE2757771A1 (en)
DK (1) DK149432C (en)
FR (1) FR2375194A1 (en)
GB (1) GB1546979A (en)
HU (1) HU179735B (en)
IT (1) IT1088938B (en)
MX (1) MX4704E (en)
NL (1) NL185211C (en)
NO (1) NO148069C (en)
SE (1) SE440506B (en)
SU (1) SU884564A3 (en)
ZA (1) ZA777614B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219258A (en) * 1983-05-28 1984-12-10 Ajinomoto Co Inc Preparation of alpha-l-aspartyl-l-phenylalanine methyl ester or its hydrochloride
US4618695A (en) * 1983-06-02 1986-10-21 Ajinomoto Co., Inc. Method of preparing methyl ester and its hydrochloride
JPS59225152A (en) * 1983-06-02 1984-12-18 Ajinomoto Co Inc Preparation of alpha-l-aspartyl-l-phenylalanine-methyl ester of its hydrochloride
GB8321802D0 (en) * 1983-08-12 1983-09-14 Erba Farmitalia Aspartame synthesis
JPH07636B2 (en) * 1984-12-17 1995-01-11 三井東圧化学株式会社 Process for producing N-formyl-α-aspartyl phenylalanine
ES8703487A1 (en) * 1984-12-27 1987-03-01 Mitsui Toatsu Chemicals Process for the preparation of alpha-L-aspartyl-L-phenylalanine methyl ester.
AU561384B2 (en) * 1985-03-26 1987-05-07 Mitsui Toatsu Chemicals Inc. Preparation of -l-aspartyl-l-phenylalanine methyl ester or hydrochloride thereof
AU586669B2 (en) * 1985-03-29 1989-07-20 Mitsui Toatsu Chemicals Inc. Preparation process of ```-L-aspartyl-L-phenylalanine methyl ester or hydrochloride thereof
DE3600731A1 (en) * 1986-01-13 1987-07-16 Green Cross Korea METHOD FOR PRODUCING (ALPHA) -L-ASPARTYL-L-PHENYLALANINE METHYLESTER
JPS6383098A (en) * 1986-09-27 1988-04-13 Ajinomoto Co Inc Production of alpha-l-aspartyl-l-phenylalanine or derivative thereof
DE3780585T2 (en) * 1986-12-05 1993-03-18 Mitsui Toatsu Chemicals PRODUCTION OF ALPHA-L-ASPARTYL-L-PHENYLALANINE METHYL ESTERS OR THEIR HYDROHALIDES.
JPH0832719B2 (en) * 1986-12-19 1996-03-29 三井東圧化学株式会社 Method for producing α-L-aspartyl-L-phenylalanine methyl ester having low hygroscopicity
JPS6411999U (en) * 1987-07-13 1989-01-23

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232371B2 (en) * 1972-07-20 1977-08-20
US3933781A (en) * 1973-11-05 1976-01-20 Monsanto Company Process for the preparation of α-L-aspartyl-L-phenylalanine alkyl esters
JPS5223001A (en) * 1975-08-14 1977-02-21 Ajinomoto Co Inc Process for elimination of formyl group

Also Published As

Publication number Publication date
BE862258A (en) 1978-06-23
CA1100487A (en) 1981-05-05
CH631435A5 (en) 1982-08-13
FR2375194B1 (en) 1984-04-13
HU179735B (en) 1982-12-28
SE440506B (en) 1985-08-05
DK149432C (en) 1987-04-21
NO148069C (en) 1983-08-03
JPS5382752A (en) 1978-07-21
NL7714351A (en) 1978-06-29
ZA777614B (en) 1978-10-25
DE2757771A1 (en) 1978-07-06
AU515038B2 (en) 1981-03-12
NO774440L (en) 1978-06-28
GB1546979A (en) 1979-06-06
SE7714709L (en) 1978-06-28
FR2375194A1 (en) 1978-07-21
NO148069B (en) 1983-04-25
DK577977A (en) 1978-06-28
IT1088938B (en) 1985-06-10
BR7708632A (en) 1978-08-22
AU3201477A (en) 1979-06-28
NL185211C (en) 1990-02-16
DE2757771C2 (en) 1988-08-25
MX4704E (en) 1982-08-04
NL185211B (en) 1989-09-18
JPS6050200B2 (en) 1985-11-07
SU884564A3 (en) 1981-11-23

Similar Documents

Publication Publication Date Title
US4173562A (en) Process for the preparation of α-L-aspartyl-L-phenylalanine methyl ester
US3933781A (en) Process for the preparation of α-L-aspartyl-L-phenylalanine alkyl esters
DK149432B (en) PROCEDURE FOR PREPARING ALFA-L-ASPARTYL-L-PHENYLALANINE METHYL ESTER
EP0127411B1 (en) Method of preparing alpha-l-aspartyl-l-phenylalanine methyl ester and its hydrochloride
DK149126B (en) METHOD FOR PREPARING C1-4 ALKYL ESTERS OF L-ASPARTYL-L-AMINO ACIDS
SCHOTT et al. THE SYNTHESIS OF l (—)-LEUCYLGLYCYLGLYCINE1
US4293706A (en) Preparation of N-benzyloxycarbonyl aspartic acid
US4348317A (en) Recovery of L-phenylalanine and L-aspartic acid during preparation of α-L-aspartyl-L-phenylalanine methyl ester
NO169126B (en) PROCEDURE FOR THE PREPARATION OF N-FORMYL-ALFA-ASPARTYL-PHENYLALANINE
US4017472A (en) Process for isolation of aspartyl dipeptide esters
EP0058063B1 (en) Process for removing an n-formyl group
CA1137979A (en) PROCESS FOR PRODUCING AN .alpha.-L-ASPARTYL- L-PHENYLALANINE LOWER ALKYL ESTER
US3983162A (en) Optical resolution of alkyl esters of DL-phenylalanine
US4801732A (en) Preparation process of α-L-aspartyl-L-phenylalanine methyl ester
US4673744A (en) Method for conversion of β-aspartylphenylalanine derivatives to .alpha.
US4256897A (en) Process for the preparation of L-aspartic acid N-thiocarboxyanhydride
NO163738B (en) PURIFICATION OF N-L-ALFA-ASPARTYL-L-PHENYL-ALANIN-1-METHYL ESTER
NO174885B (en) Process for the synthesis of optically active amino acids.
US4450284A (en) Method for purifying N-benzyloxycarbonyl aspartic acid
CA1148147A (en) Purification of l-aspartyl-l- phenylalanine alkyl esters
JP2662287B2 (en) Method for separating α-L-aspartyl-L-phenylalanine methyl ester
US2515465A (en) Preparation of 2-alkyl-4-isopropylidene-5(4)-oxazolones
CA1298682C (en) PREPARATION PROCESS OF .alpha.-L-ASPARTYL-L-PHENYL-ALANINE METHYL ESTER OR HYDROHALIDE THEREOF
EP0072015B1 (en) Method for purifying n-benzyloxycarbonyl aspartic acid
JP2728909B2 (en) Method for producing amino acid alkyl ester mineral salts

Legal Events

Date Code Title Description
PUP Patent expired