DK149335B - α-acetolactate decarboxylase and a process for its preparation - Google Patents
α-acetolactate decarboxylase and a process for its preparation Download PDFInfo
- Publication number
- DK149335B DK149335B DK266484A DK266484A DK149335B DK 149335 B DK149335 B DK 149335B DK 266484 A DK266484 A DK 266484A DK 266484 A DK266484 A DK 266484A DK 149335 B DK149335 B DK 149335B
- Authority
- DK
- Denmark
- Prior art keywords
- enzyme
- activity
- acetolactate decarboxylase
- bacillus
- acetolactate
- Prior art date
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
i 149335in 149335
Opfindelsen angår en hidtil ukendt a-acetolactat-decarboxylase og en fremgangsmåde til dens fremstilling.This invention relates to a novel α-acetolactate decarboxylase and to a process for its preparation.
Ved fermenteringen af alkoholiske produkter, f.eks. øl eller vin, dannes der ofte små mængder diacetyl.In the fermentation of alcoholic products, e.g. beer or wine, small amounts of diacetyl are often formed.
5 Dannelsen af diacetyl er højst ufordelagtig p.g.a. dens stærke og ubehagelige lugt, og i tilfælde af øl har selv små mængder diacetyl på ca. 0,10 - 0,15 mg/liter en negativ indflydelse på øllets aroma og smag. Diacetyl i øl forårsages delvist af en infektion med en Pediococeus stamme, der 10 direkte producerer diacetyl (E. Geiger, Diacetyl in Bier, Brauwelt 46, 1680 - 1692, 1980), og delvist af det faktum, at ølgær ud fra pyruvat danner α-acetolactat, der ved en ikke-enzymatisk, men temperaturafhængig reaktion omdannes til diacetyl. Under modningen af øl omdannes diacetyl til 15 acetoin ved hjælp af reduktaser i gærcellerne. Acetoin er med hensyn til smag og aroma acceptabel i øl i meget højere koncentrationer end diacetyl.The formation of diacetyl is highly disadvantageous because its strong and unpleasant odor, and in the case of beer even has small amounts of diacetyl of approx. 0.10 - 0.15 mg / liter adversely affects the beer's aroma and taste. Diacetyl in beer is caused partly by an infection with a Pediococeus strain that directly produces diacetyl (E. Geiger, Diacetyl in Bier, Brauwelt 46, 1680 - 1692, 1980), and partly by the fact that beer yeast from pyruvate forms α -acetolactate which, in a non-enzymatic but temperature dependent reaction, is converted to diacetyl. During the maturation of beer, diacetyl is converted to 15 acetoin by reductases in the yeast cells. In terms of taste and aroma, acetoin is acceptable in beer at much higher concentrations than diacetyl.
En anden mulighed for at reducere diacetylmængden i øl er direkte at omdanne α-acetolactat til acetoin ved 20 hjælp af acetolactatdecarboxylase, jfr. dansk fremlæggelsesskrift nr. 145.502 . Acetolactatdecarboxylasen kan tilsættes under hovedfermenteringen af øllet eller under modningsprocessen.Another possibility of reducing the amount of diacetyl in beer is to directly convert α-acetolactate to acetoin by acetolactate decarboxylase, cf. Danish submission no. 145.502. The acetolactate decarboxylase can be added during the main fermentation of the beer or during the ripening process.
Enzymet, der er et intracellulært enzym, udvindes 25 ifølge den kendte teknik fortrinsvis fra mikroorganismen Klebsiella pneumonia (Juni E., J.Biol.Chem. 195, 715 - 726, 1952) . Da Klebsiella pneumonia er en patogen mikroorganisme er den imidlertid ikke velegnet til industriel anvendelse.The enzyme, which is an intracellular enzyme, is preferably recovered by the prior art from the microorganism Klebsiella pneumonia (June E., J. Biol. Chem. 195, 715- 726, 1952). However, since Klebsiella pneumonia is a pathogenic microorganism, it is not suitable for industrial use.
Den acetolactatdecarboxylase, der produceres af denne mikro-30 organisme, har desuden en dårlig stabilitet under betingelserne for dens påtænkte anvendelse, hvilket i tilfælde af øl er en pH-værdi på ca. 4,3 og en temperatur på ca. 10°C.In addition, the acetolactate decarboxylase produced by this microorganism has poor stability under the conditions of its intended use, which in the case of beer is a pH of approx. 4.3 and a temperature of approx. 10 ° C.
Formålet med den foreliggende opfindelse er at tilvejebringe et hidtil ukendt a-acetolactatdecarboxylase-35 enzym, der har en bedre stabilitet under de ovennævnte betingelser, og som yderligere kan udvindes fra ikke-pato-gene mikroorganismer i forbedret udbytte.The object of the present invention is to provide a novel α-acetolactate decarboxylase enzyme which has a better stability under the above conditions and which can be further recovered from non-pathogenic microorganisms in improved yield.
2 1493352 149335
Opfindelsen er baseret på den overraskende erkendelse, at en hidtil ukendt α-acetolactatdecarboxylase med sådanne egenskaber fremstilles i høje udbytter af mikroorganismer, der hører til arten Bacillus brevis. Det er i 5 ovennævnte danske fremlæggelsesskrift nr. 145.502 antydet, at α-acetolactatspaltende enzymer kan fås fra andre kilder end Klebsiella pneumonia. Dette er imidlertid ikke dokumenteret, og det fremgår ikke af fremlæggelsesskriftet, at en α-acetolactatdecarboxylase med de fordelagtige egenskaber af 10 enzymet ifølge den foreliggende opfindelse kan fremstilles i høje udbytter ud fra Bacillus brevis.The invention is based on the surprising realization that a novel α-acetolactate decarboxylase with such properties is produced in high yields of microorganisms belonging to the species Bacillus brevis. It is suggested in 5 Danish Patent Specification No. 145,502 that α-acetolactate cleavage enzymes can be obtained from sources other than Klebsiella pneumonia. However, this is not documented and it is not apparent from the disclosure that an α-acetolactate decarboxylase having the beneficial properties of the enzyme of the present invention can be prepared in high yields from Bacillus brevis.
Ifølge sit første aspekt tilvejebringer den foreliggende opfindelse en hidtil ukendt, stabil a-acetolactat-decarboxylase, der er ejendommelig ved, at den har et pH-15 optimum i området 5 til 7 og et temperaturoptimum i området 35° til 55°C og er identisk med den a-acetolactatdecarboxy-lase der dannes ved dyrkning af Bacillus brevis ATCC 11031 i et egnet næringsmedium, der indeholder carbon- og nitrogenkilder og uorganiske salte.In its first aspect, the present invention provides a novel, stable α-acetolactate decarboxylase which is characterized in that it has a pH optimum in the range of 5 to 7 and a temperature optimum in the range of 35 ° to 55 ° C and is identical to the α-acetolactate decarboxylase formed by growing Bacillus brevis ATCC 11031 in a suitable nutrient medium containing carbon and nitrogen sources and inorganic salts.
20 Alpha-acetolactatdecarboxylasen kan være i fast eller flydende form og har sædvanligvis i fast form en aktivitet i området fra 0,1 til 10 NE (som defineret i det følgende) per mg protein.The alpha-acetolactate decarboxylase may be in solid or liquid form and usually has in solid form an activity in the range of 0.1 to 10 NE (as defined below) per mg protein.
Ifølge et yderligere aspekt tilvejebringer den 25 foreliggende opfindelse en fremgangsmåde til fremstillingen af denne α-acetolactatdecarboxylase, hvilken fremgangsmåde er ejendommelig ved, at den omfatter dyrkning af en a-aceto-lactatdecarboxylase-producerende Bacillus brevis-stamme i et egnet næringsmedium, der indeholder carbon- og nitro-30 genkilder og uorganiske salte, hvorpå a-acetolactat-decarboxylasen udvindes fra cellerne i kulturvæsken.According to a further aspect, the present invention provides a process for the preparation of this α-acetolactate decarboxylase, characterized in that it comprises culturing an α-acetolactate decarboxylase-producing Bacillus brevis strain in a suitable nutrient medium containing carbon. and nitrogen sources and inorganic salts upon which the α-acetolactate decarboxylase is recovered from the cells in the culture fluid.
Ifølge en foretrukket udførelsesform for fremgangsmåden ifølge den foreliggende opfindelse er Bacillus brevis-stammen ATCC 11031 eller en mutant eller 35 variant heraf med væsentligt de samme egenskaber som denne. Den foretrukne mikroorganisme, der er i stand til at producere a-acetolactatdecarboxylasen ifølge opfindelsen, 149335 blev udvalgt på grundlag af dens evne til at omdanne a-acetolactat til acetoin, som derpå påvises.According to a preferred embodiment of the method of the present invention, the Bacillus brevis strain is ATCC 11031 or a mutant or variant thereof having substantially the same properties as this one. The preferred microorganism capable of producing the α-acetolactate decarboxylase of the invention, 149335, was selected based on its ability to convert α-acetolactate to acetoin, which is then detected.
Mere end 300 Bacillus stammer er blevet undersøgt ifølge den følgende procedure: 5 Stammerne blev dyrket i rystekolber ved 30°C og 37°C i 24 timer på følgende BCM-substrat: K2hpo4 1 gMore than 300 Bacillus strains have been tested according to the following procedure: 5 The strains were grown in shake flasks at 30 ° C and 37 ° C for 24 hours on the following BCM substrate: K2hpo4 1 g
NaH2P04, 2H20 1 g (NH4)2S04 2,5 g 10 NaCl 0,25 gNaH 2 PO 4, 2H 2 O 1 g (NH 4) 2 SO 4 2.5 g NaCl 0.25 g
MgS04,7H20 0,2 gMgSO4.7H2 O 0.2 g
FeCl3,6H20 0,04 gFeCl3.6H2 O 0.04 g
MnS04,H20 0,25 mgMnSO 4, H 2 O 0.25 mg
Glucose 10 g 15 Gærekstrakt 3 gGlucose 10 g 15 Yeast extract 3 g
Vand op til 1000 gWater up to 1000 g
Efter dyrkning blev cellerne høstet ved centrifugering, vasket i 0,03 M phosphat/citratpuffer (pH 6,0) og resuspenderet i samme puffer indtil OD(450) 40. Prøver på 2 20 ml blev derpå underkastet en ultralydbehandling eller en behandling med 1 mg lysozym per ml ved 37°C i 30 min. og blev derpå centrifugeret.After culture, the cells were harvested by centrifugation, washed in 0.03 M phosphate / citrate buffer (pH 6.0) and resuspended in the same buffer until OD (450) 40. Samples of 2 20 ml were then subjected to ultrasound or 1 mg of lysozyme per ml at 37 ° C for 30 min. and then centrifuged.
Alpha-acetolactatdecarboxylaseaktiviteten af supernatanterne blev bestemt ifølge proceduren beskrevet i 25 det følgende.The alpha-acetolactate decarboxylase activity of the supernatants was determined according to the procedure described below.
Screeningsproceduren afslørede, at kun et fåtal af de ca. 300 undersøgte mikroorganismer producerer a-acetolac-tatdecarboxylase i målelige mængder. Disse mikroorganismer er opstillet i den følgende tabel I sammen med enzymaktivi-30 teten bestemt ifølge ovennævnte procedure.The screening procedure revealed that only a few of the approx. 300 microorganisms investigated produce α-acetolacetate decarboxylase in measurable amounts. These microorganisms are listed in the following Table I together with the enzyme activity determined according to the above procedure.
4 1493354 149335
Tabel ITable I
Resultat af screeningsprocedurenResult of the screening procedure
Stamme Stamme Aktivitet Protein (NOVOsamling (NE) pr. mg/ml 5 nr.) mg protein B. brevis A 303 0,13 3“ B. coagulans A 345 0,007 3 B. pumilus A 185 0,008 2 10 B^ pumilus' A 328 0,011 3 B. pumilus A 329 0,004 2 B. subtilis A 518 0,005 3 B. subtilis C 601 0,06 1 B. licheni- 15 formxs A 446 0,11 3 B. licheni- formis C 600 0,19 2 B. licheni- formis A 88 0,15 2 20 B^ licheni- formis A 105 0,13 2 B. licheni- formis A 106 0,15 2 B. Ixcheni- 25 formis A 200 0,15 2 B. licheni- formis A 203 0,25 2 B. licheni- formis A 244 0,11 2 30 B^ licheni- formis A 248 0,14 2 B. licheni- formis A 1240 0,13 2Strain Strain Activity Protein (NOVO Collection (NE) per mg / ml 5 no) mg protein B. brevis A 303 0.13 3 "B. coagulans A 345 0.007 3 B. pumilus A 185 0.008 2 10 B. pumilus' A 328 0.011 3 B. pumilus A 329 0.004 2 B. subtilis A 518 0.005 3 B. subtilis C 601 0.06 1 B. licheniformx A 446 0.11 3 B. licheniformis C 600 0.19 2 B licheniformis A 88 0.15 2 20 B. licheniformis A 105 0.13 2 B. licheniformis A 106 0.15 2 B. Ixcheniformis A 200 0.15 2 B. licheniformis A 203 0.25 2 B. licheniformis A 244 0.11 2 30 B. licheniformis A 248 0.14 2 B. licheniformis A 1240 0.13 2
Stammerne C 600 og C 601 er blevet deponeret 35 af ansøgerne ved National Collection of Industrial Bacteria, Torry Research Station, Aberdeen, Scotland den 27. maj 1983 og fik referencenumrene NCIB 11868 og NCIB 11869.Strains C 600 and C 601 were deposited 35 by the applicants at the National Collection of Industrial Bacteria, Torry Research Station, Aberdeen, Scotland on May 27, 1983 and were given reference numbers NCIB 11868 and NCIB 11869.
De resterende stammer blev opnået fra forskellige kultursamlinger, som det fremgår af følgende liste: 5 149335 NOVO nr. Deponeringsnr.The remaining strains were obtained from different cultural collections, as shown in the following list: 5 149335 NOVO no.
A 303 ATCC 11031 A 345 NRS 83 A 185 ATCC 71 5 A 328 ATCC 4520 (B^ Mesentericus var flavus) A 329 ATCC 7065 A 518 IAM 1109 (B^ natto) A 446 NRRL B-3751 (Bestemt af ansøgerne til at være en B^ licheniformis) 10 A 88 ATCC 12759 A 105 ATCC 12713 = NRRL B-1001 A 106 ATCC 11946 A 200 NCIB 6816 A 203 NCIB 8537 15 A 244 NCTC 2120 A 248 NCTC 8721 A 1240 ATCC 27326A 303 ATCC 11031 A 345 NRS 83 A 185 ATCC 71 5 A 328 ATCC 4520 (B ^ Mesentericus was flavus) A 329 ATCC 7065 A 518 IAM 1109 (B ^ natto) A 446 NRRL B-3751 (Determined by applicants to be and B ^ licheniformis) 10 A 88 ATCC 12759 A 105 ATCC 12713 = NRRL B-1001 A 106 ATCC 11946 A 200 NCIB 6816 A 203 NCIB 8537 15 A 244 NCTC 2120 A 248 NCTC 8721 A 1240 ATCC 27326
Ifølge den kendte teknik (Juni E., ibid.) er cellefri ekstrakter af Bacillus subtilis i stand til at 20 decarboxylere α-acetolactat til dannelse af acetoin. Den kendte teknik beskriver imidlertid ikke anvendelsen af sådanne ekstrakter. Opfinderne har undersøgt 69 forskellige Bacillus subtilis-stammer. Af disse udviste kun 5 a-aceto-lactatdecarboxylaseaktivitet, og disse 5 stammer var desuden 25 meget dårlige enzymproducenter. Bacillus coagulans og Bacillus pumilus-stammer viste sig også at være for dårlige enzymproducenter til industriel anvendelse.According to the prior art (June E., ibid.), Cell-free extracts of Bacillus subtilis are capable of decarboxylating α-acetolactate to form acetoin. However, the prior art does not disclose the use of such extracts. The inventors have examined 69 different Bacillus subtilis strains. Of these, only 5 α-aceto-lactate decarboxylase showed activity, and these 5 strains were also 25 very poor enzyme producers. Bacillus coagulans and Bacillus pumilus strains also proved to be too poor enzyme producers for industrial use.
Af de undersøgte Bacillus licheniformis-stammer producerede 13 ikke α-acetolactatdecarboxylase i målelige 30 mængder, 21 stammer producerede enzymet i meget lave mængder, og 11 stammer producerede enzymet i høje mængder.Of the Bacillus licheniformis strains studied, 13 did not produce α-acetolactate decarboxylase in measurable 30 amounts, 21 strains produced the enzyme in very low amounts, and 11 strains produced the enzyme in high amounts.
Ved tandemkrydset immunoelektroforese viste det sig, at alle de nævnte Bacillus licheniformis-stammer producerer et a-acetolactatdecarboxylaseenzym, der er immunologisk identisk 35 med det enzym, der produceres af Bacillus licheniformis-stamme C 600.Upon tandem cross-immunoelectrophoresis, it was found that all of the Bacillus licheniformis strains mentioned produce an α-acetolactate decarboxylase enzyme which is immunologically identical to the enzyme produced by Bacillus licheniformis strain C 600.
Bacillus brevis-stammerne blev dyrket på tre forskellige medier i rystekolber. Kun én stamme, A 303 (ATCC 11031) udviste a-acetolactatdecarboxylaseaktivitet på alle 40 tre medier. De resterende 11 stammer udviste ikke a-aceto-lactatdecarboxylaseaktivitet i målelige mængder på nogen af 6 149335 de tre anvendte medier, a-acetolactatdecarboxylaseenzymet produceret af Bacillus brevis A 303 viste sig, m.h.t. immumokemiske egenskaber, at være ikke-identisk med det enzym, der produceres af Bacillus licheniformis-stammen C 5 600. Det faktum, at a-acetolactatdecarboxylaseenzymerne fra de forskellige Bacillus licheniformis-stammer udviser immunokemisk identitet, giver imidlertid grund til at tro, at andre a-acetolactatdecarboxylase-producerende Bacillus brevis-stammer end de undersøgte vil producere essentielt 10 det samme enzym som Bacillus brevis A 303. Med hensyn til "immunokemisk identitet" henvises der til N.H. Axelsen et al., "A Manual of Quantitative Immunoelectrophoresis" (Oslo 1973) kapitel 10.The Bacillus brevis strains were grown on three different media in shake flasks. Only one strain, A 303 (ATCC 11031), exhibited α-acetolactate decarboxylase activity on all 40 three media. The remaining 11 strains did not exhibit α-acetolactate decarboxylase activity in measurable amounts on any of the three media used, the α-acetolactate decarboxylase enzyme produced by Bacillus brevis A 303 was found to be m.h. immunochemical properties, not being identical to the enzyme produced by Bacillus licheniformis strain C 5 600. However, the fact that the α-acetolactate decarboxylase enzymes from the various Bacillus licheniformis strains exhibit immunochemical identity gives reason to believe that others α-acetolactate decarboxylase-producing Bacillus brevis strains than those studied will produce essentially the same enzyme as Bacillus brevis A 303. For "immunochemical identity", reference is made to NH. Axelsen et al., "A Manual of Quantitative Immunoelectrophoresis" (Oslo 1973) Chapter 10.
Bacillus brevis-stammen udmærker sig i forhold 15 til Bacillus licheniformis, ved at a-acetolactatdecarboxyla-sen.fra Bacillus brevis dannes uden uønskede bi-aktiviteter, især ferrulinsyredecarboxylaseaktivitet, der produceres af alle de undersøgte Bacillus licheniformis-stammer. Ferrulin-syredecarboxylase decarboxylerer ferrulinsyre, som findes i 20 gærende øl, til den meget ilde smagende forbindelse 4- vinylguajacol. Ferrulinsyredecarboxylase må derfor fjernes fra dyrkningsmediet fra Bacillus licheniformis under oparbej dningsproceduren.The Bacillus brevis strain is distinguished in relation to Bacillus licheniformis in that the α-acetolactate decarboxylase is formed from Bacillus brevis without undesirable bi-activities, especially ferrulinic acid decarboxylase activity produced by all the Bacillus licheniformis strains examined. Ferrulin acid decarboxylase decarboxylates ferrulinic acid, found in 20 fermented beers, to the very bad-tasting compound 4- vinylguajacol. Ferrulinic acid decarboxylase must therefore be removed from the culture medium of Bacillus licheniformis during the work-up procedure.
Bacillus brevis-stammen udmærker sig desuden i 25 forhold til Bacillus licheniformis, fordi Bacillus brevis producerer et enzym, der omdanner de normale precursorer for 2,3-pentandion i øl til 3-hydroxy-2-pentanon, hvorved mængden af dårligt smagende pentandioner formindskes til et akceptabelt lavt niveau. Bacillus licheniformis-stammer 30 producerer ikke et sådant enzym.The Bacillus brevis strain also stands out in relation to Bacillus licheniformis because Bacillus brevis produces an enzyme that converts the normal precursors of 2,3-pentanedione in beer into 3-hydroxy-2-pentanone, thereby reducing the amount of poor-tasting pentanedions to an acceptable low level. Bacillus licheniformis strains 30 do not produce such an enzyme.
Endelig giver Bacillus brevis-stammen bedre samlede udbytter i oprensningsproceduren på grund af mindre autolytisk aktivitet sammenlignet med Bacillus licheniformis-st ammer.Finally, the Bacillus brevis strain provides better overall yields in the purification procedure due to less autolytic activity compared to Bacillus licheniformis breastfeeding.
35 En NOVO enhed (NE) er defineret som den mængde enzym, der producerer et pmol acetoin pr. minut ved 20°C og pH 6.0 (pufferO,05 M MES (2(N-morpholino)-ethansul-phonsyre) , 0,05 mM MgC^ og 0,86 M NaCl) ved inkubering af 7 149335 en enzymholdig forsøgsprøve med et a-acetolactatsubstrat i følgende assay:35 A NOVO unit (NE) is defined as the amount of enzyme that produces one pmol of acetoin per liter. per minute at 20 ° C and pH 6.0 (Buffer O, 05 M MES (2 (N-morpholino) -ethanesulfonic acid), 0.05 mM MgCl 2 and 0.86 M NaCl) by incubating an enzyme-containing assay with an α-acetolactate substrate in the following assay:
Substratsubstrate
Alpha-acetolactatsubstratet blev fremstillet umid-5 delbart før anvendelsen ved hydrolyse af o-acetoxy-a- methyl-acetoeddikesyreethylester. 30 μΐ af diesteren (0,165 m mol), 240 μΐ vand og 330 μΐ 1 M NaOH blev blandet og opbevaret på is i 15 minutter. Derpå blev der tilsat 5,4 ml vand, og det opnåede hydrolysat blev anvendt til prøven.The alpha-acetolactate substrate was prepared immediately before use by hydrolysis of o-acetoxy-α-methyl-acetoacetic acid ethyl ester. 30 μΐ of the diester (0.165 m mol), 240 μΐ of water and 330 μΐ of 1 M NaOH were mixed and stored on ice for 15 min. Then 5.4 ml of water was added and the resulting hydrolyzate was used for the sample.
10 AssayAssay
Puffer og forsøgsprøve med en enzymaktivitet på ca. 0,006 - 0,3 NE blev blandet og tempereret ved 20°C i nogle få minutter (rumfang 10,0 ml). Ved t = 0 blev der tilsat 400 μΐ hydrolysat, og prøver på 1 ml blev udtaget ved 15 t = 3, 6, 9, 20 og 50 minutter. Enzymreaktionen blev stoppet ved at anbringe prøverne på is og tilsætning af 200 μΐ 1M NaOH.Buffer and test sample with an enzyme activity of approx. 0.006 - 0.3 NE was mixed and tempered at 20 ° C for a few minutes (volume 10.0 ml). At t = 0, 400 μΐ of hydrolyzate was added and samples of 1 ml were taken at 15 t = 3, 6, 9, 20 and 50 minutes. The enzyme reaction was stopped by placing the samples on ice and adding 200 μΐ 1M NaOH.
Den dannede mængde acetoin måles ifølge W.W.The amount of acetoin formed is measured according to W.W.
Westerfeld (A Colorimetric Determination of Blood Acetoin, 20 J.Biol.Chem. 161, 495 - 502, 1945) ved tilsætning af 0,2 ml 0,5% creatin og 0,2 ml 5% a-naphthol i 2,5 N NaOH (frisk fremstillet) til 1,2 ml af de ovennævnte prøver. Efter 60 minutters reaktionstid blev E(524) målt. Som blindprøve blev der anvendt puffer i stedet for celleekstrakt. En standard-25 kurve aftegnes med 0, 0,5, 2 og 4 μg/ml acetoin.Westerfeld (A Colorimetric Determination of Blood Acetoin, 20 J. Biol. Chem. 161, 495-502, 1945) by adding 0.2 ml of 0.5% creatine and 0.2 ml of 5% α-naphthol in 2.5 N NaOH (freshly prepared) to 1.2 ml of the above samples. After 60 minutes reaction time, E (524) was measured. As a blank, buffer was used instead of cell extract. A standard curve is plotted with 0, 0.5, 2 and 4 μg / ml acetoin.
En Bacillus-stamme, der er i stand til at fremstille a-acetolactatdecarboxylaseenzymet ifølge den foreliggende opfindelse, propageres sædvanligvis i et egnet fast næringsmedium ved ca. 30°C, før den dyrkes under aerobe 30 betingelser i et egnet dyrkningsmedium. Dyrkningsmediet indeholder assimilerbare carbonkilder (f.eks. glucose) og en basal saltblanding omfattende f.eks. ammoniumsulphat som nitrogenkilde. Dyrkningen udføres ved ca. 30°C og ved pH ca.A Bacillus strain capable of producing the α-acetolactate decarboxylase enzyme of the present invention is usually propagated in a suitable solid nutritional medium at about 100%. 30 ° C before growing under aerobic conditions in a suitable culture medium. The culture medium contains assimilable carbon sources (e.g. glucose) and a basal salt mixture comprising e.g. ammonium sulphate as a source of nitrogen. The cultivation is carried out at approx. 30 ° C and at pH approx.
7, der holdes omtrent konstant ved hjælp af automatiske 35 hjælpemidler. Beluftning og omrøring justeres til opnåelse af et positivt oxygentryk. Efter dyrkningen høstes cellerne 8 149335 ved centrifugering og vask i en egnet puffer. Cellerne lyseres ved ultralydbehandling, behandling med en French presse, lysozymbehandling, Manton-Gaulin-behandling eller en kombination heraf.7, held approximately constant by means of automatic aids. Aeration and agitation are adjusted to obtain a positive oxygen pressure. After culture, cells 8 are harvested by centrifugation and washing in a suitable buffer. The cells are lysed by ultrasound treatment, treatment with a French press, lysozyme treatment, Manton-Gaulin treatment or a combination thereof.
5 Efter centrifugering opnås en rå ekstrakt, der kan underkastes et yderligere oprensningstrin som beskrevet i det følgende.After centrifugation, a crude extract is obtained which can be subjected to a further purification step as described below.
Alpha-acetolactatdecarboxylaseenzymet ifølge den foreliggende opfindelse kan oprenses fra den rå ekstrakt ved 10 en kombination af et eller flere af følgende trin: a) ammoniumsulphatudfældning b) polyethylenglycoludfældning c) DE 52-anionbytterchromatografi og dialyse, d) syrefældning og dialyse, 15 e) hydroxyapatitchromatografi og dialyse f) lyophilisering.The alpha-acetolactate decarboxylase enzyme of the present invention can be purified from the crude extract by a combination of one or more of the following steps: a) ammonium sulfate precipitation b) polyethylene glycol precipitation c) DE 52 anion exchange chromatography and dialysis, d) acid precipitation and dialysis, e) hydroxy and dialysis f) lyophilization.
g) phenyl-sepharose chromatografi h) chromatofocusering pH- og temperaturafhængigheden af aktiviteten 20 af Bacillus brevis a-acetolactatdecarboxylasen blev bestemt på ekstrakter af Bacillus brevis-stamme A 303 ved forskellige pH-værdier og temperaturer ved hjælp af metoden til bestemmelse af a-acetolactatdecarboxylaseaktivitet beskrevet ovenfor, idet der anvendtes følgende puffersystem: 25 0,005 M MES (2(N-morpholino)-ethansulphonsyre 0,5 mM MgCl2 0,85 M NaCl pH 6.0 På tegningen viser fig. 1 grafisk den relative 30 aktivitet afbildet ved 30°C mod pH, og fig. 2 viser grafisk den relative aktivitet ved pH 6 afbildét mod temperaturen.g) phenyl-sepharose chromatography h) chromatofocusing The pH and temperature dependence of activity 20 of the Bacillus brevis α-acetolactate decarboxylase were determined on extracts of Bacillus brevis strain A 303 at various pH values and temperatures by the method of determining α-acetolactate decarboxylase activity. described above, using the following buffer system: 0.005 M MES (2 (N-morpholino) ethanesulfonic acid 0.5 mM MgCl 2 0.85 M NaCl pH 6.0) In the drawing, Figure 1 graphically shows the relative activity depicted at 30 ° C. versus pH, and Figure 2 graphically shows the relative activity at pH 6 plotted against the temperature.
Bacillus brevis-enzymets 'pH-optimum viste sig at ligge i området fra 5 til 7, og temperaturoptimet fandtes at ligge i området fra 35 til 55°C. 1The pH optimum of the Bacillus brevis enzyme was found to be in the range of 5 to 7, and the temperature optimum was found to be in the range of 35 to 55 ° C. 1
Stabiliteten af en rå,ekstrakt af Bacillus brevis- enzymet blev undersøgt under anvendelsesbetingelserne, d.v.s.The stability of a crude extract of the Bacillus brevis enzyme was investigated under the conditions of use, i.e.
9 149335 ved 10°C og i fermenteret, men ikke modnet øl. Stabiliteten fremgår af følgende tabel.9 149335 at 10 ° C and in fermented but not ripened beer. The stability is shown in the following table.
Tabel IITable II
Stabilitetstest 5 Stamme Halveringstid i dage A 303 11Stability test 5 Strain Half-life in days A 303 11
Da Klebsiella pneumonia-enzymet har en halveringstid på kun 2-3 timer udviser enzymet ifølge den foreliggen-10 de opfindelse en betydelig forbedret stabilitet under anvendelsesbetingelserne for ølbrygning i forhold til det kendte enzym.Since the Klebsiella pneumonia enzyme has a half-life of only 2-3 hours, the enzyme of the present invention exhibits a significantly improved stability under the conditions of use for beer brewing relative to the known enzyme.
Stabiliteten af Bacillus brevis A 303 enzymet fremgår desuden af følgende tabeller III og IV:Furthermore, the stability of the Bacillus brevis A 303 enzyme is shown in the following Tables III and IV:
15 Tabel IIITable III
Restaktivitet (NE/ml) efter inkubering ved forskel- lige temperaturer __Residual activity (NE / ml) after incubation at different temperatures __
Inkuberings- Restaktivitet (NE/ml) tid (timer) TemperaturIncubation Residual activity (NE / ml) time (hours) Temperature
20 _ 30°C 40°C 50°C20 _ 30 ° C 40 ° C 50 ° C
0,05 M MES, pH 6,4 0 5,3 + 10“3M Mg++ 1 5,2 4,8 4,1 2 4,8 5,3 3,4 _4_4,7 4,0 0,2 25 0 5,1 0,05 M acetat, 1 4,9 4,4 3,6 pH 4,8 + 10"3M Mg++ 2 5,5 3,7 3,9 4 5,8 3,3 3,7 ίο 1493350.05 M MES, pH 6.4 0 5.3 + 10 “3M Mg ++ 1 5.2 4.8 4.1 2 4.8 5.3 3.4 _4_4.7 4.0 0.2 25 0 5.1 0.05 M acetate, 4.9 4.9 3.6 3.6 pH 4.8 + 10 "3M Mg ++ 2 5.5 3.7 3.9 4 5.8 3.3 3.7 ellο 149335
Tabel IVTable IV
Restaktivitet i NE/ml efter inkubering ved 50°C med -H- varierende Mg -koncentrationer_Residual activity in NE / ml after incubation at 50 ° C with -H- varying Mg concentrations_
Inkuberings- Restaktivitet (NU/ml) 5 tid (timer) Ingen 10 ^M 10 ^M 10 tilsæt- Mg++ Mg++ EDTA ning __afs Mg+*___ 0 5,7 6,2 5,8 5,8 10 0,05 M MES, pH 6,5 1 4,8 5,2 5,0 1,4 2 4,2 4,6 3,3 0,3 _4_0^5_0,4 0,2 0 0 6,0 6,2 6,5 5,8 0,05 M acetat, pH 4,5 1 5,3 5,6 5,8 0,1- 15 2 5,2 5,0 5,3 0 4 4,9 5,1 5,8 0Incubation Residual Activity (NOW / ml) 5 Time (Hours) None 10 µM 10 µM 10 Add-Mg ++ Mg ++ EDTA __of Mg + * ___ 0 5.7 6.2 5.8 5.8 10 0.05 M MES pH 6.5 1 4.8 5.2 5.0 1.4 2 4.2 4.6 3.3 0.3 _4_0 ^ 5_0.4 0.2 0 0 6.0 6.2 6.5 5.8 0.05 M acetate, pH 4.5 1 5.3 5.6 5.8 0.1-15.2 5.2 5.0 5.3 0 4 4.9 5.1 5.8 0
Det fremgår af det ovennævnte, at Bacillus brevis-enzymet bevarer fra ca. 60 - 90% af sin aktivitet efter 2 timers forløb, idet enzymet er mere stabilt ved en 20 pH-værdi på 4,5. Desuden har Mg++ ioner en stabiliserende effekt på aktiviteten, medens enzymet inaktiveres af EDTA.It is evident from the above that the Bacillus brevis enzyme retains from ca. 60 - 90% of its activity after 2 hours, the enzyme being more stable at a pH of 4.5. In addition, Mg ++ ions have a stabilizing effect on the activity while the enzyme is inactivated by EDTA.
pi-bestemmelse pi af Bacillus brevis A 303-enzymet fandtes at være 7,6 og 7,0 bestemt ved chromatofocuseringstekn-iken 25 beskrevét af PHARMACIA (PHARMACIA TECHNICAL BULLETIN:pi determination pi of the Bacillus brevis A 303 enzyme was found to be 7.6 and 7.0 determined by the chromatofocusing technique 25 described by PHARMACIA (PHARMACIA TECHNICAL BULLETIN:
TM TMTM TM
CHROMATOFOCUSING with POLYBUFFER and PBE ; PHARMACIA FINE CHEMICALS)..Aktiviteten elueres som to toppe, hvilket indicerer, at «-acetolactatdecarboxylaseaktiviteten kan bestå af to proteiner med forskellig pi.CHROMATOFOCUSING with POLYBUFFER and PBE; PHARMACIA FINE CHEMICALS) .. The activity is eluted as two peaks, indicating that the? -Acetolactate decarboxylase activity may consist of two proteins with different pI.
30 Km-bestemmelse30 Km determination
Km blev bestemt for A 303 på α-acetolactat (DL) i ikke-modnet øl ved 10°C til at være 3,8 mM.Km was determined for A 303 on α-acetolactate (DL) in unripened beer at 10 ° C to be 3.8 mM.
11 14933511 149335
Immunologiske egenskaberImmunological properties
En oprenset fraktion af a-acetolactatdecarboxy-lasen fra stamme C 600 (Bacillus licheniformis) blev anvendt til at immunisere kaniner ifølge proceduren beskrevet af 5 Harboe og Ingild i: N.H. Axelsen: Handbook of Immunoprecipi-tation-in-Gel Techniques, Blackwell Scientific Publications. London 1983.A purified fraction of the α-acetolactate decarboxylase from strain C 600 (Bacillus licheniformis) was used to immunize rabbits according to the procedure described by Harboe and Ingild in: N.H. Axelsen: Handbook of Immunoprecipitation-in-Gel Techniques, Blackwell Scientific Publications. London 1983.
Det antistof, der blev produceret på denne måde. imod Bacillus licheniformis-enzymet, blev anvendt til at 10 udføre krydset immunoelektroforese og tandemkrydset immuno-elektroforese som beskrevet af A.O. Grubb og J. Krøll, i den ovennævnte publikation.The antibody produced in this way. against the Bacillus licheniformis enzyme was used to perform cross immunoelectrophoresis and tandem cross immunoelectrophoresis as described by A.O. Grubb and J. Krøll, in the above publication.
Da antigenet er inhomogent, er det dannede antistof polyspecifikt og producerer op til 15 bånd ved 15 krydset immunoelektrophorese, af hvilket ét er a-acetolac-tatdecarboxylaseudfældningsbåndet. For at identificere dette bånd blev der anvendt en overlægningsteknik baseret på enzymaktiviteten: efter immunoelektroforesen blev pladen ikke fikseret og farvet som sædvanlig, men blev inkuberet i 20 5 minutter i 30 ml af den følgende blanding i låget af en petriskål med en diameter på 14 cm: 150 μΐ ethyl-2-acetoxy-2-methyl-acetoacetat, 12 00 μΐ og 1650 μΐ IN NaOH blev blandet og inkuberet ved stuetemperatur i 15 minutter. Derpå blev der fyldt op med vand til 30 ml.Since the antigen is inhomogeneous, the antibody formed is polyspecific and produces up to 15 bands at 15 crossed immunoelectrophoresis, one of which is the α-acetolacetate decarboxylase precipitation band. To identify this band, a coating technique based on enzyme activity was used: after the immunoelectrophoresis, the plate was not fixed and stained as usual, but incubated for 20 5 minutes in 30 ml of the following mixture in the lid of a petri dish of 14 cm diameter : 150 μΐ ethyl 2-acetoxy-2-methyl-acetoacetate, 12 00 μΐ and 1650 μΐ IN NaOH were mixed and incubated at room temperature for 15 minutes. Then, water was made up to 30 ml.
25 Efter inkubering fik blandingen lov til at dryppe af fra pladen, som blev vredet i en Vita-Wrap plastfolie og i aluminiumfolie og inkuberet i 30 minutter ved stuetemperatur.After incubation, the mixture was allowed to drip off the plate, which was twisted in a Vita-Wrap plastic film and in aluminum foil and incubated for 30 minutes at room temperature.
Pladen blev derpå anbragt i låget af en petriskål 30 med en diameter på 14 cm og dækket med følgende blanding: 30 ml 2% LSA-agarose (H2o) 3 ml 1% kreatin (H^O) 6 ml 5% naphten i 2,5 N NaOH (blandet ved 55°C) 35 Den overdækkede plade blev inkuberet ved stuetem peratur i ca. 1 time. Båndet med a-acetolactatdecarboxy-laseudfældningeri viste en rød farve og kunne identificeres.The plate was then placed in the lid of a petri dish 30 14 cm in diameter and covered with the following mixture: 30 ml of 2% LSA agarose (H 2 O) 3 ml of 1% creatine (H 2 O) 6 ml of 5% naphthen in 2, 5 N NaOH (mixed at 55 ° C) The covered plate was incubated at room temperature for approx. 1 hour. The band of α-acetolactate decarboxylase precipitates showed a red color and could be identified.
12 14933512 149335
Som nævnt ovenfor viste tandemkrydset immunoelek-troforese af enzymet fra alle de omtalte Bacillus licheni-formis-stammer mod C 600 a-acetolactatdecarboxylase-antistof, at Bacillus licheniformisenzymerne er immunokemisk 5 identiske, medens a-acetolactatdecarboxylasen fra Bacillus brevis ikke krydsbinder med C 600 a-acetolactatdecarboxy-laseantistoffet, hvilket viser, at Bacillus licheniformis-og Bacillus brevis-stammerne producerer forskellige typer af a-acetolactatdecarboxylaseenzymet.As mentioned above, tandem cross-linked immunoelectrophoresis of the enzyme from all of the mentioned Bacillus licheniform strains against the C 600 α-acetolactate decarboxylase antibody showed that the Bacillus licheniform enzymes are immunochemically identical, while the -acetolactate decarboxylase antibody, showing that the Bacillus licheniformis and Bacillus brevis strains produce different types of the α-acetolactate decarboxylase enzyme.
10 Opfindelsen skal forklares nærmere ved hjælp af de efterfølgende eksempler.The invention will be explained in more detail by means of the following examples.
Eksempel 1Example 1
Stamme A 303 (Bacillus brevis, ATCC 11031) blev propageret på et TY-medium (20 g trypticase, 5 g gæreks-. 15 trakt, 7 mg FeCl3, 6h20, 1 mg MnCl2, 4H20, 15 mg MgS04, 7H20 og destilleret vand op til 1000 ml) i rystekolber ved 30°C, indtil cellerne var i den midterste logaritmiske fase. 600 ml af denne kultur blev overført til en Biotec-gærings-beholder, der indeholdt 8 liter af følgende medium: 20 (NH4)2S04 2,5 g/liter k2hpo4 1Strain A 303 (Bacillus brevis, ATCC 11031) was propagated on a TY medium (20 g trypticase, 5 g yeast extract, 7 mg FeCl 3, 6h 2 O, 1 mg MnCl 2, 4 H 2 O, 15 mg MgSO 4, 7 H 2 O and distilled water up to 1000 ml) in shake flasks at 30 ° C until the cells were in the middle logarithmic phase. 600 ml of this culture was transferred to a Biotec fermentation container containing 8 liters of the following medium: 20 (NH 4) 2 SO 4 2.5 g / liter k2hpo4 1
NaH2P04,2H20 1NaH 2 PO 4,2H 2 O 1
NaCl 0,25 -NaCl 0.25 -
ZnS04,7H20 0,125 - 25 MgS04,7H20 0,125 -0.125 - MgSO4.7H2 O 0.125 -
Spormetalopl. * 0,7 ml/liter Gærekstrakt 6 g/literSpormetalopl. * 0.7 ml / liter Yeast extract 6 g / liter
Pluronic 0,13 ml/literPluronic 0.13 ml / liter
Dextrose 31,25 g/liter 30 *Spormetalopl.: H3B03 500 mg/100 mlDextrose 31.25 g / liter 30 * Trace metal solution: H3B03 500 mg / 100 ml
CuS04, 5H20 63 mg/100 mlCuSO 4, 5H 2 O 63 mg / 100 ml
Kl 100 mg/100 mlAt 100 mg / 100 ml
FeCl3,6H20 333 mg/100 ml 35 MnS04,H20 448 mg/100 mlFeCl 3,6H 2 O 333 mg / 100 ml 35 MnSO 4, H 2 O 448 mg / 100 ml
NaMo04,2H20 200 mg/100 mlNaMoO4.2H2O 200 mg / 100 ml
ZnS04,7H20 712 mg/100 ml 13 149335712 mg / 100 ml 13 149335
Under dyrkningen blev pH holdt ved 7,0 ved tilsætning af NaOH, temperaturen var 35°C, og omrøring og beluft-ning blev indstillet til opnåelse af et positivt oxygentryk.During cultivation, the pH was maintained at 7.0 by the addition of NaOH, the temperature was 35 ° C and stirring and aeration were adjusted to obtain a positive oxygen pressure.
På det optimale tidspunkt blev cellerne høstet ved 5 centrifugering.At the optimum time, the cells were harvested by centrifugation.
Forløbet af gæringen fremgår af følgende tabel V.The process of fermentation is shown in the following table V.
Tabel VTable V
Aktivitet målt under gæringenActivity measured during fermentation
Gæringstid i timer_NE/ml kultur_OD45QFermentation time in hours_NE / ml culture_OD45Q
10 1 0,005 2,4 2 0,01 4,1 3 0,02 7,5 4 0,18 15,3 5 0,47 17,5 15 6 0,41 22,2 7 0,17 24,0 8 0,13 24,010 1 0.005 2.4 2 0.01 4.1 3 0.02 7.5 4 0.18 15.3 5 0.47 17.5 15 6 0.41 22.2 7 0.17 24.0 8 0.13 24.0
Eksempel 2Example 2
Stamme A 303 (Bacillus brevis) blev propageret og 20 dyrket som beskrevet i eksempel 1. Cellerne blev høstet ved OD45 0 = 8,°*Strain A 303 (Bacillus brevis) was propagated and cultured as described in Example 1. The cells were harvested at OD 45 0 = 8 °
Cellerne blev suspenderet i 20 mM K-phosphat-puffer, pH 6,8 og ledt gennem en Manton-Gaulin-type homo-genisator ved et tryk på ca. 400 Bar. En fraktioneret 25 fældning af aktiviteten med ammoniumsulfat blev udført som beskrevet i eksempel 1.The cells were suspended in 20 mM K-phosphate buffer, pH 6.8 and passed through a Manton-Gaulin-type homogenizer at a pressure of approx. 400 bar. A fractionated precipitation of the activity with ammonium sulfate was carried out as described in Example 1.
Det aktivitetholdige bundfald blev opløst i den ovennævnte K-phosphatpuffer, dialyseret mod den samme puffer og til slut koncentreret i en Amicon-trykdialyserende celle 30 til en proteinkoncentration på ca. 10 mg/ml.The activity-containing precipitate was dissolved in the above K-phosphate buffer, dialyzed against the same buffer, and finally concentrated in an Amicon pressure dialyzing cell 30 to a protein concentration of ca. 10 mg / ml.
150 ml af denne ekstrakt var udgangsmaterialet for den følgende oprensningsprocedure, som vist i tabel IX.150 ml of this extract was the starting material for the following purification procedure, as shown in Table IX.
150 ml DE 52 forcirkuleret ionbytter ækvilibreret i 20 mM K-phosphatpuffer, pH 6,8 blev sat til ekstrakten.150 ml of DE 52 pre-circulated ion exchanger equilibrated in 20 mM K-phosphate buffer, pH 6.8 was added to the extract.
35 Opslemningen blev filtreret på en Buchnertragt.The slurry was filtered on a Buchner funnel.
Aktiviteten fandtes i filtratet, der blev dialyseret mod 25 mM histidin-HClpuffer, pH 6,2.The activity was found in the filtrate dialyzed against 25 mM histidine HCl buffer, pH 6.2.
14 14933514 149335
Til denne ekstrakt blev der sat 40 ml PBE94 (Pharmacia chromatofocusing agent) ækvilibreret i den ovennævnte histidinpuffer. Opslemningen blev filtreret på en Buchnertragt.To this extract was added 40 ml of PBE94 (Pharmacia chromatofocusing agent) equilibrated in the above histidine buffer. The slurry was filtered on a Buchner funnel.
5 Aktiviteten fandtes i filtratet, der blev dialyse ret mod 20 mM K-phosphat, pH 6,8, 20% mættet med ammonium-sulphat. En kolonne blev pakket med 200 ml phenylsepharose, der var ækvilibreret i denne puffer. Aktiviteten i det dialyserede filtrat blev tilledt kolonnen og elueret med en 10 gradient i 20 mM K-phosphat, pH 6,8 gående fra 20%'s mætning til 0%'s mætning med ammoniumsulphat og fra 0% ethylenglycol til 50% ethylenglycol.The activity was found in the filtrate, which was dialyzed against 20 mM K-phosphate, pH 6.8, 20% saturated with ammonium sulphate. A column was packed with 200 ml of phenylsepharose equilibrated in this buffer. The activity of the dialyzed filtrate was charged to the column and eluted with a 10 gradient in 20 mM K-phosphate, pH 6.8 ranging from 20% saturation to 0% saturation with ammonium sulfate and from 0% ethylene glycol to 50% ethylene glycol.
Aktivitetstoppen blev fundet, samlet, koncentreret og dialyseret mod 20 mM K-phosphat, pH 6,8, og blev 15 opbevaret i frossen tilstand.The peak of activity was found, pooled, concentrated and dialyzed against 20 mM K-phosphate, pH 6.8, and stored in the frozen state.
Tabel VITable VI
149335 15149335 15
Fraktion Rumfang Protein Aktivitet NE pr. Oprens- Udbytte ml mg NE pr. NE mg pro- nings- % (til- ml total tein faktor synela-5 _dende)Fraction Volume Protein Activity NE per Purification Yield ml mg NE per ml. NE mg of percent (to total total factor of 5)
Ekstrakt 150 1890 2,4 365 0,19 1 100Extract 150 1890 2.4 365 0.19 1 100
Filtrat efter 140 510 1,9 262 0,51 2,7 72 DE52-be-10 handlingFiltrate after 140 510 1.9 262 0.51 2.7 72 DE52 treatment
Filtrat efter 135 263 2.02 273 1,04 5,4 75 PBE94- behandling 15 Pool efter phenylse- 165 25 0,95 157 6,3 32 43 pharosebe- handlingFiltrate after 135 263 2.02 273 1.04 5.4 75 PBE94 treatment 15 Pool after phenylse 165 25 0.95 157 6.3 32 43 Pharose treatment
Pool efter 20 koncentre- 34 4,8 4,7 158 33 171 43 ring og dialysePool after 20 concentrations 34 4.8 4.7 158 33 171 43 ring and dialysis
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK266484A DK149335C (en) | 1983-06-03 | 1984-05-30 | ALPHA-ACETOLACTATE DECARBOXYLASE AND PROCEDURES FOR PREPARING THEREOF |
DK457085A DK150496C (en) | 1983-06-03 | 1985-10-08 | ALPHA-ACETOLACTATE DECARBOXYLASE AND PROCEDURES FOR PREPARING THEREOF |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK2524/83A DK252483D0 (en) | 1983-06-03 | 1983-06-03 | ALPHA-ACETOLACTATE DECARBOXYLASEEMZYM PRODUCT AND PREPARATION thereof |
DK252483 | 1983-06-03 | ||
DK266484 | 1984-05-30 | ||
DK266484A DK149335C (en) | 1983-06-03 | 1984-05-30 | ALPHA-ACETOLACTATE DECARBOXYLASE AND PROCEDURES FOR PREPARING THEREOF |
Publications (4)
Publication Number | Publication Date |
---|---|
DK266484D0 DK266484D0 (en) | 1984-05-30 |
DK266484A DK266484A (en) | 1984-12-04 |
DK149335B true DK149335B (en) | 1986-05-05 |
DK149335C DK149335C (en) | 1986-10-20 |
Family
ID=26066577
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK266484A DK149335C (en) | 1983-06-03 | 1984-05-30 | ALPHA-ACETOLACTATE DECARBOXYLASE AND PROCEDURES FOR PREPARING THEREOF |
DK457085A DK150496C (en) | 1983-06-03 | 1985-10-08 | ALPHA-ACETOLACTATE DECARBOXYLASE AND PROCEDURES FOR PREPARING THEREOF |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK457085A DK150496C (en) | 1983-06-03 | 1985-10-08 | ALPHA-ACETOLACTATE DECARBOXYLASE AND PROCEDURES FOR PREPARING THEREOF |
Country Status (1)
Country | Link |
---|---|
DK (2) | DK149335C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016191169A1 (en) | 2015-05-22 | 2016-12-01 | Dupont Nutrition Biosciences Aps | Acetolactate decarboxylase |
WO2016191170A1 (en) | 2015-05-22 | 2016-12-01 | Dupont Nutrition Biosciences Aps | Aldc production methods |
WO2018050649A1 (en) | 2016-09-16 | 2018-03-22 | Dupont Nutrition Biosciences Aps | Acetolactate decarboxylase variants having improved specific activity |
-
1984
- 1984-05-30 DK DK266484A patent/DK149335C/en not_active IP Right Cessation
-
1985
- 1985-10-08 DK DK457085A patent/DK150496C/en not_active IP Right Cessation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016191169A1 (en) | 2015-05-22 | 2016-12-01 | Dupont Nutrition Biosciences Aps | Acetolactate decarboxylase |
WO2016191170A1 (en) | 2015-05-22 | 2016-12-01 | Dupont Nutrition Biosciences Aps | Aldc production methods |
EP3805384A1 (en) | 2015-05-22 | 2021-04-14 | DuPont Nutrition Biosciences ApS | Aldc production methods |
WO2018050649A1 (en) | 2016-09-16 | 2018-03-22 | Dupont Nutrition Biosciences Aps | Acetolactate decarboxylase variants having improved specific activity |
US11578316B2 (en) | 2016-09-16 | 2023-02-14 | Dupont Nutrition Biosciences Aps | Acetolactate decarboxylase variants having improved specific activity |
Also Published As
Publication number | Publication date |
---|---|
DK150496C (en) | 1987-10-05 |
DK149335C (en) | 1986-10-20 |
DK266484D0 (en) | 1984-05-30 |
DK457085D0 (en) | 1985-10-08 |
DK150496B (en) | 1987-03-09 |
DK266484A (en) | 1984-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0131276B1 (en) | Novel strain of rhodococcus rhodochrous producing nitrile hydraatase | |
EP0128714B1 (en) | Alpha-acetolactate decarboxylase enzyme and preparation thereof | |
EP0006035B1 (en) | Bacterial beta-galactosidase, immobilized forms thereof, process for their preparation and use in the hydrolysis of lactose, and novel bacteria | |
McCord et al. | Development of malolactic fermentation process using immobilized whole cells and enzymes | |
Rossi et al. | L-malic acid catabolism by polyacrylamide gel entrapped Leuconostoc oenos | |
Dagley et al. | Citric acid metabolism of Aerobacter aerogenes | |
Gao et al. | The degradation of malic acid by high density cell suspensions of Leuconostoc oenos | |
DK149335B (en) | α-acetolactate decarboxylase and a process for its preparation | |
EP0242007B1 (en) | Process for preparing a catalase-free oxidase and a catalase-free oxidase-containing yeast, and use thereof | |
US4824781A (en) | Microbiologically produced d(-)-mandelate-dehydrogenase process for obtaining it and its use | |
JP3126730B2 (en) | ALDC derivatives and uses thereof | |
Krieger et al. | Effect of medium composition on growth rate, growth yield and malolactic activity of Leuconostoc oenos LoZH1-t7-1 | |
US3592739A (en) | Purification of lactase | |
Hasegawa | Distribution in organisms and stereospecificity of β-hydroxyisobutyrate dehydrogenase | |
CA1156570A (en) | Glucose-6-phosphate dehydrogenase and process for preparation thereof | |
DK143714B (en) | METHOD FOR HYDROLYSE OF LACTOSE UNDER GLUCOSE AND GALACTOSE CREATION | |
El-Gendy et al. | Acetoin and diacetyl production by Lactobacillus casei subsp. pseudoplantarum | |
CA1160170A (en) | Uricase production method | |
CA1309678C (en) | Urease and method of producing the same | |
SU1270171A1 (en) | Streptococcus lactis 977 2-c-15 strain used in production of hard rennet cheeses with low temperature of second heating | |
FI83972B (en) | α-acetolactate decarboxylase enzyme and preparation thereof | |
Bibb et al. | Studies on the amino acid decarboxylases of oral lactobacilli | |
SU1117034A1 (en) | Strain streptococcus diacetilactis 11/8 used in yeasts for margarine and sour milk products | |
GB2218099A (en) | Process for preparing a catalase-free oxidase | |
JPH0732696B2 (en) | Must wine manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUP | Patent expired |