DK148513B - Process for obtaining an immobilized enzyme preparation, using a cross-linking agent - Google Patents

Process for obtaining an immobilized enzyme preparation, using a cross-linking agent Download PDF

Info

Publication number
DK148513B
DK148513B DK442883A DK442883A DK148513B DK 148513 B DK148513 B DK 148513B DK 442883 A DK442883 A DK 442883A DK 442883 A DK442883 A DK 442883A DK 148513 B DK148513 B DK 148513B
Authority
DK
Denmark
Prior art keywords
enzyme
glutaraldehyde
cross
carrier
enzyme preparation
Prior art date
Application number
DK442883A
Other languages
Danish (da)
Other versions
DK148513C (en
DK442883D0 (en
DK442883A (en
Inventor
Shmuel Amotz
Original Assignee
Novo Industri As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novo Industri As filed Critical Novo Industri As
Priority to DK442883A priority Critical patent/DK148513C/en
Publication of DK442883D0 publication Critical patent/DK442883D0/en
Publication of DK442883A publication Critical patent/DK442883A/en
Publication of DK148513B publication Critical patent/DK148513B/en
Application granted granted Critical
Publication of DK148513C publication Critical patent/DK148513C/en

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

1 1485131 148513

Enzymer, der er inunobiliserede ved hjælp af et tværbindingsmiddel, er nogle af de mest udbredte udførelsesformer for inunobiliserede enzymer. Por at fremstille sådanne inunobiliserede enzymer har man udviklet et antal metoder. Ved en metode af denne art aktiverer man først en bærer med tværbindingsmidlet, og derpå behandles den med enzymet, som således bliver solidt knyttet til bæreren. En sådan aktivering kan omfatte en imprægnering af bæreren med en polyamin og en påfølgende behandling med et overskud af glutaraldehyd, som beskrevet i US patentskrift nr.Enzymes inunobilized by a crosslinking agent are some of the most widespread embodiments of ununobilized enzymes. In order to produce such ununobilized enzymes, a number of methods have been developed. In a method of this kind, a carrier is first activated with the cross-linking agent and then treated with the enzyme, which thus becomes firmly attached to the carrier. Such activation may include impregnating the carrier with a polyamine and subsequent treatment with an excess of glutaraldehyde, as described in U.S. Pat.

4.292.199, eller i Biotechnology and Bioengineering 22, side 271 - 287, 1980. En anden aktivering af denne art kan omfatte en overtrækning af en bærer med adsorptionsfremmende, uopløselig polymer, påfølgende adsorption af enzymet på den polymere, og en yderligere immobilisering ved tværbinding in situ, som beskrevet i US patentskrift nr. 3.705.084. En anden aktivering af denne art er beskrevet i US patentskrift nr. 4.069,106: En keratinholdig bærer aktiveres ved reduktion af kerat'inet og tværbinding af enzymet dertil via S-S grupper. En anden aktivering af denne art er beskrevet i US patentskrift nr. 3.802.909: Man sønderdeler glas i nærværelse af et protein, hvorved der fremkommer frisk fremstillede, aktive centre til at binde proteinet. En anden aktivering af denne art er beskrevet i US patentskrift nr. 3.519.538: Man behandler glas med kemikalier i en bestemt rækkefølge til frembringelse af de ønskede aktive centre. En anden fremgangsmåde til fremstilling af et immobiliseret enzym er beskrevet i Biochemical and Biophysical Research Communications, bind 36, side 235 - 242, 1969: Enzymet adsorberes på kolloidalt silica, uden forudgående aktivering, og derpå stabiliseres det yderligere ved tværbinding med glutaraldehyd.No. 4,292,199, or in Biotechnology and Bioengineering 22, pp. 271 - 287, 1980. Another activation of this kind may include coating a carrier with adsorption-insoluble polymer, subsequent adsorption of the enzyme onto the polymer, and further immobilization by in situ crosslinking, as described in U.S. Patent No. 3,705,084. Another activation of this kind is described in U.S. Patent No. 4,069,106: A keratin-containing carrier is activated by reduction of the keratin and crosslinking of the enzyme thereto via S-S groups. Another activation of this kind is described in U.S. Patent No. 3,802,909: Glass breaks down in the presence of a protein, thereby producing freshly made, active centers for binding the protein. Another activation of this kind is described in U.S. Patent No. 3,519,538: Glass is treated with chemicals in a specific order to produce the desired active centers. Another method of preparing an immobilized enzyme is described in Biochemical and Biophysical Research Communications, Vol. 36, pages 235 - 242, 1969: The enzyme is adsorbed on colloidal silica, without prior activation, and then further stabilized by cross-linking with glutaraldehyde.

Alle de ovenfor angivne metoder udmærker sig ved, at et tyndt lag af enzymmolekyler bliver direkte tilknyttet til de aktive centre på en bærer, og at mængden af immobi- 2 148513 liseret enzym således bestemmes af antallet af de aktive centre.All of the above methods are distinguished by the fact that a thin layer of enzyme molecules is directly associated with the active centers of a carrier and that the amount of immobilized enzyme is thus determined by the number of the active centers.

En helt anden problemtilnærmelse omfatter, at man tilvejebringer et meget tykkere lag, der er knyttet til overfladen af bæreren, hvorved kun en lille brøkdel af enzymmolekylerne er i direkte kontakt med bæreren. På denne måde er det ikke overfladearealet af bæreren, der bestemmer mængden af immobiliseret enzym, og denne problemtilnærmelse muliggør, at man kan optimere mængden af bundet enzym, afhængigt af procesparametrene ved den sluttelige anvendelse. Denne problemtilnærmelse er imidlertid vanskeligere at gennemføre, fordi den relativt store enzymmængde gør det vanskeligt at holde enzymet på plads under immobiliseringen. Derfor har man publiceret relativt lidt i forbindelse med denne problemtilnærmelse, på trods af dens klare fordele. Et forslag, der er beskrevet i de canadiske patentskrifter nr. 1.011.671 og 1.011.672, er anvendelsen af en vandig opløsning af et vandopløseligt, organisk opløsningsmiddel som tværbindingsmediet, hvorved koncentrationen af det organiske opløsningsmiddel bliver holdt på en. værdi, der er tilstrækkeligt høj til at holde enzymet i uopløst tilstand, men alligevel tilstrækkeligt lille til ikke at interferere for meget med tværbindingsreaktionen. Den største ulempe i forbindelse med denne metode er kravet omfattende relativt store mængder af organiske opløsningsmidler, hvilket er ledsaget af eksplosionsrisici, som nødvendiggør omfattende sikkerhedsforanstaltninger. Det produkt, der fremkommer på denne måde, er heller ikke helt tilfredsstillende hvad angår fysisk stabilitet og aktivitetsudbytte, sandsynligvis på grund af den relativt høje koncentration af det organiske opløsningsmiddel, som er nødvendig for at holde enzymet ude af opløsning under immobiliseringen. En anden fremgangsmåde, der har relation til dette problem, er foreslået i US patentskrift nr. 4.116.771: Enzymet behandles med glutar-aldehyd og et indifferent protein i et begrænset volumen af vand, før det hurtigt tilsættes til bæreren, hvorefter man 3 148513 lader blandingen gelere, hvorpå der granuleres og slutteligt tørres. Den største ulempe ved denne fremgangsmåde er den høje koncentration af tværbindingsmiddel, som er en følge af den begrænsede vandmængde. Mange enzymer er meget følsomme overfor høje koncentrationer af tværbindingsmidler, enten fordi de bliver inaktiveret eller fordi de gøres utilgængelige ved den senere anvendelse på grund af den udstrakte tværbinding, eller på grund af begge disse forhold. Dette illustrerer den største vanskelighed, som forekommer, når man gør brug af en stor mængde enzym i forhold til en bærer:A completely different problem approach involves providing a much thicker layer attached to the surface of the support, whereby only a small fraction of the enzyme molecules are in direct contact with the support. In this way, it is not the surface area of the carrier that determines the amount of immobilized enzyme and this problem approximation allows one to optimize the amount of bound enzyme, depending on the process parameters of the final application. However, this problem approximation is more difficult to implement because the relatively large amount of enzyme makes it difficult to hold the enzyme in place during immobilization. Therefore, relatively little has been published in connection with this approach, despite its clear advantages. One suggestion described in Canadian Patent Nos. 1,011,671 and 1,011,672 is the use of an aqueous solution of a water-soluble organic solvent as the crosslinking medium, whereby the concentration of the organic solvent is kept at one. value sufficiently high to keep the enzyme in undissolved state, yet small enough not to interfere too much with the crosslinking reaction. The main disadvantage of this method is the requirement of relatively large quantities of organic solvents, which is accompanied by explosion risks which necessitate extensive safety measures. The product thus obtained is also not completely satisfactory in terms of physical stability and yield, probably due to the relatively high concentration of the organic solvent necessary to keep the enzyme out of solution during immobilization. Another method related to this problem is proposed in U.S. Patent No. 4,116,771: The enzyme is treated with glutaraldehyde and an inert protein in a limited volume of water before being rapidly added to the carrier, followed by 3,88513 the mixture gels, and then granulated and finally dried. The major disadvantage of this process is the high concentration of crosslinking agent, which is a consequence of the limited amount of water. Many enzymes are very sensitive to high concentrations of cross-linking agents, either because they become inactivated or because they become inaccessible in later use because of the extended cross-linking, or because of both of these conditions. This illustrates the greatest difficulty that occurs when using a large amount of enzyme relative to a carrier:

For at opnå en tilstrækkelig lav koncentration af tværbindingsmidlet behøver man relativt store mængder af medium, som gør det umuligt at forhindre enzymet i at opløses i mediet, før tværbindingen bliver effektiv, hvorimod høj koncentration af tværbindingsmidlet, som kan forhindre enzymet i at blive opløst, er uønsket, som forklaret i det foregående.To obtain a sufficiently low concentration of the cross-linking agent, relatively large amounts of medium are required which make it impossible to prevent the enzyme from dissolving in the medium before the cross-linking becomes effective, whereas high concentration of the cross-linking agent which can prevent the enzyme from being dissolved. is undesirable, as explained above.

En helt anden problemtilnærmelse er den fuldstændige undgåelse af det vandige medium og anvendelse af en gasfase i stedet; dette er beskrevet i The Journal of Society of Chemical Industry, bind 18, side 16 - 20 (1899), i forbindelse med fremstilling af uopløselige gelatinefibre, og i japansk patentskrift J 57002683 i forbindelse med immobilisering af enzymer. Denne metode vil imidlertid kræve et meget gennemført ventilationssystem, og den vil yderligere kræve specielle midler til forhindring af dannelsen af uopløselige aflejringer inden i ventilationssystemet.A completely different problem approach is the complete avoidance of the aqueous medium and the use of a gas phase instead; this is disclosed in The Journal of the Society of Chemical Industry, vol. However, this method will require a highly implemented ventilation system, and it will further require special means to prevent the formation of insoluble deposits within the ventilation system.

Det er således opfindelsens formål at tilvejebringe en fremgangsmåde til fremstilling af et immobiliseret enzympræparat ved hjælp af et tværbindingsmiddel, hvilken metode skal være simpel at gennemføre, f.eks. uden nødvendigheden af omstændelige sikkerhedsforanstaltninger, og ved hvis hjælp det immobiliserede enzym kan fremstilles med højt enzymudbytte og med god fysisk stabilitet.It is thus the object of the invention to provide a process for preparing an immobilized enzyme preparation by means of a crosslinking agent, which method should be simple to carry out, e.g. without the need for cumbersome safety precautions, and with the help of which the immobilized enzyme can be prepared with high enzyme yield and with good physical stability.

Ifølge opfindelsen har det nu vist sig, at det er muligt at opfylde opfindelsens formål ved hjælp af visse 4 148513 salte i en specificeret minimalkoncentration. Selvom den tidligere anførte, kendte teknik udelukkénde har relation til immobiliserede enzympræparater på bærere, kan der ved fremgangsmåden ifølge opfindelsen også fremstilles immobili-serede enzympræparater uden nogen bærer.According to the invention, it has now been found that it is possible to fulfill the object of the invention by means of certain salts at a specified minimum concentration. Although the aforementioned prior art relates exclusively to immobilized enzyme preparations on carriers, immobilized enzyme preparations without any carrier can also be produced by the process of the invention.

Fremgangsmåden ifølge opfindelsen, der er af den i indledningen til krav 1 angivne art, er således ejendommelig ved det i den kendetegnende del af krav 1 angivne.The method according to the invention, which is of the kind specified in the preamble of claim 1, is thus characterized by the characterizing part of claim 1.

I tilfælde af, at det færdige, immobiliserede enzym indeholder et overskud af glutaraldehyd, kan dette sidste fjernes ved vaskning.In case the final immobilized enzyme contains an excess of glutaraldehyde, this can be removed by washing.

Det må forstås, at enzympræparatet kan være et enzym i fast eller opløst tilstand; desuden kan enzympræparatet foreligge i høj renhed, eller dét kan indeholde indifferente additiver (f.eks. fyldstoffer, forstærkningsmidler, bindemidler eller granuleringsmidler). Det må også forstås, at den rækkefølge, i hvilken bestanddelene bringes sammen, er vilkårlig, med det forbehold, at enzymudbyttet vil synke, . hvis salttilsætningen forsinkes urimeligt meget, i det tilfælde, at enzympræparatet og tværbindingsmidlet bringes sammen før salttilsætningen.It is to be understood that the enzyme preparation may be a solid or dissolved enzyme; in addition, the enzyme preparation may be in high purity, or it may contain inert additives (eg fillers, reinforcing agents, binders or granulating agents). It is also to be understood that the order in which the constituents are brought together is arbitrary, with the proviso that the enzyme yield will decrease,. if the salt addition is delayed excessively, in the event that the enzyme preparation and cross-linking agent are brought together before the salt addition.

Den ovenfor angivne kategori af salte (hvorved en specifik kategori af salte kan tildeles til hver kombination af et specifikt enzym og et specifikt tværbindingsmiddel) omfatter sædvanligvis billige salte. Det må forstås, at et eller flere enzymer, et eller flere tværbindingsmidler og et eller flere salte kan anvendes ved fremgangsmåden ifølge opfindelsen.The above-mentioned category of salts (whereby a specific category of salts can be assigned to each combination of a specific enzyme and a specific crosslinking agent) usually comprises cheap salts. It is to be understood that one or more enzymes, one or more crosslinking agents and one or more salts can be used in the process of the invention.

En foretrukket udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 2 angivne. Skønt fremgangsmåden ifølge opfindelsen kan gennemføres uden bærer, jfr. eksempel 15, foretrækkes det sædvanligvis at anvende en bærer, hovedsageligt på grund af den mulighed, som bæreren frembyder hvad angår fremstilling af en partikel med overlegne strømningsegenskaber, som er fordelagtige i forbindelse med anvendel 5 U8513 sen af sammenpakkede masser. Uanset, om enzymet foreligger i fast eller opløst tilstand, er det i dette tilfælde fast bundet til bæreren; i fast tilstand kan enzymet være et overtrækslag på bæreren, og i opløst tilstand kan enzymopløsningen imprægnere den (porøse) bærer.A preferred embodiment of the method according to the invention is characterized by the characterizing part of claim 2. Although the process according to the invention can be carried out without a carrier, cf. Example 15, it is usually preferable to use a carrier, mainly because of the possibility presented by the carrier with respect to the preparation of a particle having superior flow properties which is advantageous in the use of packed masses. Regardless of whether the enzyme is in solid or dissolved state, in this case it is firmly bound to the carrier; in the solid state, the enzyme may be a coating layer on the support, and in the dissolved state, the enzyme solution may impregnate the (porous) carrier.

En foretrukket udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 3 angivne. Herved muliggøres det, at man kan producere et enzympræparat med enhver ønsket enzymladning indenfor brede grænser ved at variere tykkelsen af enzymlaget.A preferred embodiment of the method according to the invention is characterized by the characterizing part of claim 3. This makes it possible to produce an enzyme preparation with any desired enzyme charge within wide limits by varying the thickness of the enzyme layer.

En foretrukket udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af kra/ 4 angivne. Herved tilvejebringes der en meget simpel fremgangsmåde til fremstilling af det immobili-serede enzympræparat ifølge opfindelsen.A preferred embodiment of the method according to the invention is characterized by that described in the characterizing part of claim 4. This provides a very simple process for preparing the immobilized enzyme preparation of the invention.

En foretrukket udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 5 angivne. Glutaraldehyd er relativt billigt, og sundhedsmyndighederne rejser ikke indvendinger imod glutaraldehyd. Hertil kommer, at glutaraldehyd overfor mange enzymer er et meget effektivt og dog mildt tværbindingsmiddel.A preferred embodiment of the method according to the invention is characterized by the characterizing part of claim 5. Glutaraldehyde is relatively inexpensive and health authorities do not object to glutaraldehyde. In addition, glutaraldehyde to many enzymes is a very effective yet mild crosslinking agent.

En foretrukket udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 6 angivne. Som det fremgår af eksemplerne senere i denne beskrivelse afhænger enzymaktivitetsudbyttet af koncentrationen af glutaraldehyd, og sædvanligvis vil den glutaraldehydkoncentration, der svarer til et maksimalt enzymaktivitetsudbytte, findes indenfor de ovenfor angivne intervaller. Det procentiske indhold af glutaraldehyd (w/v) beregnes i henhold til formlen 6 148513 vægt af glutaraldehyd, g x 100 volumen af (saltopløsning og glutaraldehyd), mlA preferred embodiment of the method according to the invention is characterized by the characterizing part of claim 6. As will be seen from the examples later in this specification, the enzyme activity yield depends on the concentration of glutaraldehyde, and usually the glutaraldehyde concentration corresponding to a maximum enzyme activity yield will be found within the above ranges. The percentage content of glutaraldehyde (w / v) is calculated according to formula 6 148513 weight of glutaraldehyde, g x 100 volume of (saline and glutaraldehyde), ml

En foretrukket udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendtegnen-de del af krav 7 angivne. Sædvanligvis er disse salte billige og genvindelige, og de frembyder mulighed for fremstilling af et immobiliseret enzympræparat med højt enzymaktivitet s udbyt te.A preferred embodiment of the method according to the invention is characterized in that according to the characterized part of claim 7. Usually these salts are inexpensive and recyclable, and they offer the possibility of producing an immobilized enzyme preparation with high enzyme activity yielding tea.

En foretrukket udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved det i den kendetegnende del af krav 8 angivne. Som det fremgår af eksemplerne senere i denne beskrivelse er det muligt at vælge en glutar-aldehydkoncentration og en saltmolaritet indenfor de ovenfor angivne intervaller, som svarer til et meget højt enzymaktivitetsudbytte .A preferred embodiment of the method according to the invention is characterized by the characterizing part of claim 8. As will be seen from the examples later in this specification, it is possible to select a glutaraldehyde concentration and a salt molarity within the ranges indicated above which correspond to a very high enzyme activity yield.

Selvom man anvender de ovenfor angivne salte i lavere koncentrationer end hvad der er nødvendigt til bund-fældning af enzymerne, vil man således herved i praksis forhindre enzymet i at gå i opløsning i tværbindingsmediet (saltopløsningen), mens det holdes fuldt ud tilgængeligt for tværbindingsmidlet, hvis enzymet foreligger i fast tilstand, eller man vil forhindre enzymet i at blandes med saltopløsningen, hvis enzymet er opløst. På denne måde kan man anvende én optimal koncentration af tværbindingsmidlet, som kun vil beskadige enzymet i minimalt omfang, og alligevel meddele en tilstrækkeligt god fysisk stabilitet. Det har således vist sig, at man for at reducere koncentrationen af tværbindingsmiddel må forøge saltkoncentrationen for at holde enzymaktivitetsudbyttet på det optimale niveau. Ifølge opfindelsen bør man undgå anvendelsen af salte, som reagerer med enten enzymet eller tværbindingsmidlet, såsom sølveller kviksølvsalte, som kan inaktivere enzymet, eller ammoniumsalte eller primære aminsalte eller sulfitsalte, der har tendens til at reagere med mange forskellige tværbindingsmidler. De salte, som kan anvendes til opfindelsen, 7 148513 varierer i høj grad hvad angår deres effektivitet, og hertil kommer, at denne effektivitet har tendens til at variere fra et enzym til et andet. Nogle generelle retningslinier hvad angår valget af salt kan dog opstilles, nemlig følgende. Det er tilrådeligt at vælge det mest opløselige salt, når to salte iøvrigt er identiske hvad angår deres egenskaber.Thus, even if the salts listed above are used at lower concentrations than necessary for precipitation of the enzymes, the enzyme will in practice prevent the enzyme from dissolving in the cross-linking medium (the saline solution) while being fully accessible to the cross-linking agent. if the enzyme is in solid state or the enzyme will be prevented from mixing with the saline solution if the enzyme is dissolved. In this way one can use one optimal concentration of the cross-linking agent, which will only damage the enzyme to a minimal extent, and yet provide a sufficiently good physical stability. Thus, it has been found that in order to reduce the concentration of cross-linking agent, the salt concentration must be increased in order to keep the enzyme activity yield at the optimum level. According to the invention, the use of salts which react with either the enzyme or crosslinking agent such as silver or mercury salts which can inactivate the enzyme or ammonium salts or primary amine salts or sulfite salts which tend to react with many different crosslinking agents should be avoided. The salts which can be used for the invention vary greatly in their efficiency, and in addition, this efficiency tends to vary from one enzyme to another. However, some general guidelines regarding the choice of salt can be drawn up, namely the following. It is advisable to choose the most soluble salt when two salts are otherwise identical in their properties.

Således foretrækker man sædvanligvis Na2S0^ fremfor I^SO^ , fordi det først anførte salt har langt højere opløselighed.Thus, Na2 SO4 is usually preferred over I2 SO4, because the first mentioned salt has much higher solubility.

Det har også vist sig, at det sædvanligvis gælder, at salte af multivalente anioner, såsom sulfater, phosphater, carbo-nater, citrater og lignende, er mere effektive end salte af de monovalente anioner, såsom chlorider og nitrater. Det modsatte gælder sædvanligvis for kationerne: De monovalente kationer, såsom Na+, K+ eller tetramethylammonium, er mere effektive end de multivalente kationer, såsom Mg++ eller Ca++. De foretrukne salte er derfor alkalimetalsaltene af sulfater, phosphater og citrater, især natriumsulfat, natri-umphosphat, kaliumphosphat, kaliumcitrat og tetramethylam-moniumsulfat.It has also been found that it is usually the case that salts of multivalent anions such as sulfates, phosphates, carbonates, citrates and the like are more effective than salts of the monovalent anions such as chlorides and nitrates. The opposite usually applies to the cations: The monovalent cations, such as Na +, K + or tetramethylammonium, are more effective than the multivalent cations such as Mg ++ or Ca ++. Therefore, the preferred salts are the alkali metal salts of sulfates, phosphates and citrates, especially sodium sulfate, sodium phosphate, potassium phosphate, potassium citrate and tetramethyl ammonium sulfate.

Saltkoncentrationen holdes sædvanligvis på en så lav værdi som muligt. Dette minimum afhænger på den ene side af det pågældende enzym, fordi forskellige enzymer ofte kræver forskellige koncentrationer, og på den anden side af koncentrationen af tværbindingsmidlet: Jo højere denne sidste er, desto mindre salt kræves der, og vice versa. Koncentrationen af tværbindingsmiddel holdes også på et miminum, da de fleste enzymer er følsomme overfor tværbindingsmidler. Dog bør koncentrationen være tilstrækkelig høj til at sikre en effektiv immobilisering. Man bør dog udvise særlig omhu, når man etablerer de optimale betingelser for tværbindingsreaktionen ved meget høje saltkoncentrationer, især med effektive salte. Det har således vist sig, at aktivitetsudbytterne ved høje koncentrationer af f.eks.The salt concentration is usually kept as low as possible. This minimum depends on one side of the enzyme in question because different enzymes often require different concentrations, and on the other hand the concentration of the cross-linking agent: the higher the latter, the less salt is required, and vice versa. The concentration of crosslinking agent is also kept at a minimum, since most enzymes are sensitive to crosslinking agents. However, the concentration should be high enough to ensure effective immobilisation. However, special care should be taken when establishing the optimal conditions for the crosslinking reaction at very high salt concentrations, especially with effective salts. Thus, it has been found that the activity yields at high concentrations of e.g.

Na SO eller kaliumphosphat reduceres i betydeligt omfang i sai&meAligning med aktivitetsudbytterne ved moderate koncentrationer. Dette skyldes formentligt den meget solide 8 1485 13 tværbinding, som gør enzymmolekylerne partielt utilgængelige.Na SO or potassium phosphate is significantly reduced in weight with the activity yields at moderate concentrations. This is probably due to the very solid crosslinking which makes the enzyme molecules partially inaccessible.

En yderligere fordel ved at anvende disse salte i tværbindingsmediet er, at man forhindrer de enzymholdige - partikler i at aggregere under immobiliseringsreaktionen, hvis enzymet foreligger i fast tilstand. En sådan aggregering er uønsket, fordi den resulterer i lavere effektiviteter og i underlegne strømningsegenskaber under anvendelsen. Det har også vist sig, at salte afviger meget fra hinanden, i denne henseende.A further advantage of using these salts in the crosslinking medium is that the enzyme-containing particles are prevented from aggregating during the immobilization reaction if the enzyme is in the solid state. Such aggregation is undesirable because it results in lower efficiencies and inferior flow characteristics during use. It has also been found that salts differ widely in this respect.

Fremgangsmåden ifølge opfindelsen 3.an gennemføres i et antal trin, hvis rækkefølge ikke er kritisk. Ved en foretrukken udførelsesform ifølge opfindelsen behandler man således først en bærer med en enzymopløsning, man tørrer, og derefter behandles i en opløsning indeholdende et tværbindingsmiddel og salt, hvorpå der vaskes og eventuelt tørres. Ved en variation af den samme proces kan en del af den totale saltmængde foreligge i enzymopløsningen. Ved en anden variation behandles enzymet først med tværbindingsmidlet og umiddelbart derefter med saltet. Til visse anvendelser, f.eks. når det er ønskværdigt, at det immobiliserede enzym skal være let og fibrøst, kan mængden af bæreren være meget lille, eller bæreren kan fuldstændig undgås, og enzymet behandles i et koaguleringsbad med tværbindingsmidlet og saltet. Enzymet kan således opløses i en opløsning, som koaguleres i et saltbad, hvorved tværbindingsmidlet tilsættes til enzymopløsningen eller til badet, enten før eller efter koagulering. Saltet kan også tilsættes som et tørt pulver, i stedet for en opløsning, når det ønskes at begrænse mængden af vand. Den rækkefølge, i hvilken de forskellige komponenter bringes sammen, eller deres tilstand, d.v.s. om de foreligger i en opløsning eller i tør tilstand, er således ikke kritisk for fremgangsmåden ifølge opfindelsen.The process of the invention 3.an is carried out in a number of steps, the order of which is not critical. Thus, in a preferred embodiment of the invention, a carrier is first treated with an enzyme solution which is dried, and then treated in a solution containing a crosslinking agent and salt, which is then washed and optionally dried. By varying the same process, a portion of the total amount of salt may be present in the enzyme solution. In another variation, the enzyme is first treated with the crosslinking agent and immediately thereafter with the salt. For certain applications, e.g. when it is desirable that the immobilized enzyme be light and fibrous, the amount of the carrier may be very small or the carrier can be completely avoided and the enzyme treated in a coagulation bath with the crosslinking agent and salt. Thus, the enzyme can be dissolved in a solution which is coagulated in a salt bath, whereby the cross-linking agent is added to the enzyme solution or to the bath either before or after coagulation. The salt can also be added as a dry powder, instead of a solution, when it is desired to limit the amount of water. The order in which the various components are brought together, or their state, i.e. thus, whether in a solution or in a dry state is not critical to the process of the invention.

pH, temperaturen og varigheden af tværbindingsreaktionen kan have en dybtgående virkning på aktivitetsbyttet, afhængigt af enzymet og indifferente additiver, hvis 9 U8S13 sådanne er tilstede. Sædvanligvis har det vist sig, at et pH-interval fra ca. 4 til ca. 9 er velegnet. Det temperaturinterval, der i de fleste tilfælde er velegnet, ligger mellem ca. 15°C og ca. 30°C, skønt højere temperaturer med fordel kan anvendes i visse tilfælde, f.eks. når det ønskes at forkorte varigheden af tværbindingsreaktionen, og lavere temperaturer med fordel kan anvendes i tilfælde af meget temperaturfølsomme enzymer. Varigheden af tværbindingsreaktionen kan variere i vidt omfang, fra nogle få minutter til nogle få dage, i afhængighed af typen og koncentrationen af tværbindingsmidlet, typen og koncentrationen af saltet, enzymet, pH og temperaturen, og den bør derfor bestemmes i hvert individuelt tilfælde. For glutaraldehyd og de fleste enzymer synes imidlertid intervallet fra ca. 10 minutter til adskillige timer ved stuetemperatur at være velegnet.The pH, temperature and duration of the crosslinking reaction can have a profound effect on the activity exchange, depending on the enzyme and inert additives if 9 U8S13 are present. Usually, it has been found that a pH range of about 4 to approx. 9 is suitable. The temperature range which is most suitable in most cases is between approx. 15 ° C and approx. 30 ° C, although higher temperatures may advantageously be used in some cases, e.g. when it is desired to shorten the duration of the crosslinking reaction, and lower temperatures may advantageously be used in the case of highly temperature sensitive enzymes. The duration of the crosslinking reaction can vary widely, from a few minutes to a few days, depending on the type and concentration of the crosslinking agent, the type and concentration of the salt, enzyme, pH and temperature, and it should therefore be determined in each individual case. However, for glutaraldehyde and most enzymes, the range seems to be from ca. 10 minutes to several hours at room temperature to be suitable.

I det følgende er der henvist til forskellige NOVO-referencer. Kopier af alle disse referencer kan rekvireres fra NOVO Industri A/S, Novo Alle, 2880 Bagsværd,Various NOVO references are referred to below. Copies of all these references can be obtained from NOVO Industri A / S, Novo Alle, 2880 Bagswaard,

Danmark.Denmark.

Fremgangsmåden ifølge opfindelsen skal nu illustreres ved de følgende eksempler.The process according to the invention will now be illustrated by the following examples.

I den følgende del af beskrivelsen omfattende eksemplerne er der angivet værdier for trykfaldet (fysisk styrke) under søjledrift. Denne værdi bestemmes i overensstemmelse med AF 166/2, der er en beskrivelse af en NOVO-laboratoriemetode. Nogle teoretiske betragtninger i forbindelse med denne trykfaldsbestemmelse er beskrevet i Starch/St’årke 31 (1979) nr. 1, side 13 - 16. Med henblik på sammenligning med kendte, kommercielle produkter kan det anføres, at de bedste værdier for trykfaldet for de immobi-liserede glucoseisomerasepræparater SWEETZYME er ca. 10 g/cm2 . Det fremgår af eksemplerne, at trykfald med de immo-biliserede enzympræparater produceret ved hjælp af fremgangsmåden ifølge opfindelsen kan være så små som 2 g/cm2, og at alle værdier er betydeligt lavere end 10 g/cm2, hvorved den tekniske fordel ved opfindelsen er tydeligt påvist.In the following part of the description comprising the examples, values of the pressure drop (physical strength) are indicated during column operation. This value is determined in accordance with AF 166/2, which is a description of a NOVO laboratory method. Some theoretical considerations in relation to this pressure drop determination are described in Starch / St'årke 31 (1979) Nos. 1, pages 13 - 16. For comparison with known commercial products, it may be stated that the best values for the pressure drop for the immobilized glucose isomerase preparations SWEETZYME is approx. 10 g / cm 2. It can be seen from the Examples that pressure drops with the immobilized enzyme preparations produced by the method of the invention can be as small as 2 g / cm 2 and that all values are significantly lower than 10 g / cm 2, the technical advantage of the invention being clearly demonstrated.

10 U851310 U8513

Eksempel 1Example 1

Portioner på 20 g af tørre bærepartikler, der er overtrukket med et partielt renset glucoseisomerasepræparat i en udstrækning svarende til 28% w/w og fremstillet i henhold til den metode, der er beskrevet i eksempel 12 i den samtidigt verserende danske ansøgning nr. 4427/83, blev suspenderet og holdt under moderat omrøring ved stuetemperatur i 500 ml opløsning indeholdende 0,06 M natriumphosphat, 1,4 M Na2SO^ og forskellige mængder glutaraldehyd, indstillet på pH 7,0. Efter 1 times forløb blev partiklerne fjernet og suspenderet i 1 time i 0,06 M natriumphosphatopløsning indstillet på pH 7,0. Denne vaskning blev gentaget 3 gange, og derpå blev partiklerne overladt til sig selv natten over i phosphatopløsningen, hvorpå deres aktivitet blev bestemt i henhold til NOVO analyseforskrift AF 189/1. Resultaterne er vist på fig. 1, som er en afbildning, hvor den procentiske mængde glutaraldehyd er afbildet mod enzymaktivitetsudbyttet udtrykt som enzymenheder/g, og som viser følsomheden af enzymet overfor glutaraldehyd.20g portions of dry carrier particles coated with a partially purified glucose isomerase composition to an extent equal to 28% w / w and prepared according to the method described in Example 12 of the co-pending Danish Application No. 4427 / 83, was suspended and kept under moderate stirring at room temperature in 500 ml of solution containing 0.06 M sodium phosphate, 1.4 M Na 2 SO 4 and various amounts of glutaraldehyde adjusted to pH 7.0. After 1 hour, the particles were removed and suspended for 1 hour in 0.06 M sodium phosphate solution adjusted to pH 7.0. This washing was repeated 3 times and then the particles were left to themselves overnight in the phosphate solution, after which their activity was determined according to NOVO assay specification AF 189/1. The results are shown in FIG. 1, which is a plot in which the percent amount of glutaraldehyde is plotted against the enzyme activity yield expressed as enzyme units / g and showing the sensitivity of the enzyme to glutaraldehyde.

Eksempel 2 (sammenligning)Example 2 (Comparison)

Man fremstillede partikler som i eksempel 1, men man tilsatte dog ikke noget salt, med undtagelse af en minimal mængde phosphat, der tjente som stødpude (0,06 M natriumphosphat, pH 6,5). Den procentiske mængde glutaraldehyd blev afbildet mod enzymaktivitetsudbyttet i enheder/g, jfr. fig. 2, der viser, at tværbindingsmidlet har to modsatte virkninger: På den ene side forøger det udbyttet ved at forhindre enzymet i at gå i opløsning, og på den anden side reducerer det udbyttet ved at inaktivere enzymet. Den optimale værdi ligger i dette tilfælde ved ca. 1% glutaraldehyd. Ved at sammenligne fig. 1 med fig. 2 viser det sig, at den optimale værdi for glutaraldehydkoncentrationen er ca.Particles were prepared as in Example 1, but no salt was added, except for a minimal amount of phosphate which served as a buffer (0.06 M sodium phosphate, pH 6.5). The percentage amount of glutaraldehyde was plotted against the enzyme activity yield in units / g, cf. FIG. 2, which shows that the crosslinking agent has two opposite effects: on the one hand, it increases the yield by preventing the enzyme from dissolving, and on the other hand it reduces the yield by inactivating the enzyme. In this case, the optimum value is at approx. 1% glutaraldehyde. By comparing FIG. 1 with FIG. 2 it appears that the optimum value for the glutaraldehyde concentration is approx.

40 gange så høj som med 1,4 M natriumsulfat, og at udbyttet i dette tilfælde kun er ca. 60% af udbyttet med saltet.40 times as high as with 1.4 M sodium sulfate, and the yield in this case is only approx. 60% of the yield with the salt.

11 14851311 148513

Eksempel 3Example 3

Man fremstillede partikler som i eksempel 1, men i dette tilfælde anvendte man kaliumphosphat som saltet, og saltkoncentrationen blev varieret, mens man holdt glutaral-dehydkoncentrationen konstant på tre niveauer og mens pH blev holdt på 6,5. Den procentiske mængde af kaliumphosphat blev afbildet mod enzymaktivitetsudbyttet i enheder/g, jfr. fig. 3, hvoraf den fordelagtige virkning ved at forøge saltkoncentrationen tydeligt fremgår, især ved en lav glu-taraldehydkoncentration.Particles were prepared as in Example 1, but in this case potassium phosphate was used as the salt and the salt concentration was varied while keeping the glutaraldehyde concentration constant at three levels and maintaining the pH of 6.5. The percent amount of potassium phosphate was plotted against the enzyme activity yield in units / g, cf. FIG. 3, which clearly shows the beneficial effect of increasing the salt concentration, especially at a low glutaraldehyde concentration.

Eksempel 4Example 4

Forsøget i eksempel 3 blev gentaget, med undtagelse af, at man her anvendte natriumsulfat i stedet for kaliumphosphat. Molariteten af Na2S04 blev afbildet mod enzymaktivitetsudbyttet i enheder/g, jfr. fig. 4, hvoraf den fordelagtige virkning af saltet tydeligt fremgår. Som det også fremgår af fig. 4 foreligger der en optimal værdi for salteffekten, hinsides hvilken aktivitetsudbyttet reduceres, hvorved dette optimum afhænger af glutaraldehydkoncentratio-nen.The experiment in Example 3 was repeated, except that sodium sulfate was used instead of potassium phosphate. The molarity of Na 2 SO 4 was plotted against the enzyme activity yield in units / g, cf. FIG. 4, which shows the beneficial effect of the salt. As can also be seen from FIG. 4, there is an optimal value for the salt effect, beyond which the activity yield is reduced, whereby this optimum depends on the glutaraldehyde concentration.

Eksempel 5Example 5

Det i eksempel 3 beskrevne forsøg gentages, med undtagelse af, at saltkoncentrationen forøges. Molariteten af kaliumphosphat blev afbildet mod enzymaktivitetsudbyttet i enheder/g, jfr. fig. 5. En sammenligning mellem fig. 4 og fig. 5 viser, at Na2S04 og kaliumphosphat opfører sig på lignende måde.The experiment described in Example 3 is repeated, except that the salt concentration is increased. The molarity of potassium phosphate was plotted against the enzyme activity yield in units / g, cf. FIG. 5. A comparison of FIG. 4 and FIG. 5 shows that Na2 SO4 and potassium phosphate behave similarly.

Eksempel 6Example 6

Det i eksempel 1 beskrevne forsøg gentages, med undtagelse af, at man anvendte kaliumcitrat, pH 7,0, i stedet for phosphat og sulfat i tværbindingsmediet. På fig.The experiment described in Example 1 is repeated except that potassium citrate, pH 7.0, is used instead of phosphate and sulfate in the crosslinking medium. In FIG.

6 er glutaraldehydkoncentrationen afbildet mod aktiviteten i 12 168513 enzymenheder/g, og det er tydeligt, at resultaterne ligner resultaterne i eksempel 1.6, the concentration of glutaraldehyde is plotted against the activity in enzyme units / g and it is evident that the results are similar to those of Example 1.

Eksempel 7 20 g tørrede bærerpartikler fremstillet som i eksempel 4 i den samtidigt verserende danske patentansøgning nr. 4427/83 blev fluidiseret i en fluidiseret masse af laboratorietypen. 45,8 g 11,0% w/w homogeniseret celleslam (fermenteret som angivet i eksempel 1 af dansk patentansøgning nr. 5190/79, slam produceret som angivet i eksempel 4 af dansk patentansøgning nr. 5190/79) indeholdende 80,1 enheder/g thermophil lactase fra Bacillus sp. NRRL B-11.229 blev sprøjtet på bærerpartiklerne ved 30 - 40°C, og man lod de overtrukne partikler tørre. Lactaseaktivitetsenheden er defineret som den mængde lactase, som vil spalte 1 μπιοί lactose/minut under følgende reaktionsbetingelser: substratkoncentration = 10% lactose, temperatur = 60°C, pH = 6,5 og reaktionstid =30 minutter. Enzymaktivitetsudbyttet var 79,8%. 10 g overtrukne kugler blev derpå behandlet i 250 ml opløsning indeholdende 0,06 M Na2HP04, 1,4 M Na2S04 og 0,1% w/v glutaraldehyd ved pH 7,5. Efter 1 time ved stuetemperatur blev partiklerne fjernet og vasket grundigt med 0,06 M K2HPC>4 ved pH = 7,5. Aktivitetsudbyttet under tværbindingstrinnet var 17,2%.Example 7 20 g of dried carrier particles prepared as in Example 4 of the co-pending Danish patent application No. 4427/83 were fluidized in a laboratory type fluidized mass. 45.8 g 11.0% w / w homogenized cell sludge (fermented as in Example 1 of Danish Patent Application No. 5190/79, sludge produced as indicated in Example 4 of Danish Patent Application No. 5190/79) containing 80.1 units / g thermophilic lactase from Bacillus sp. NRRL B-11,229 was sprayed onto the carrier particles at 30-40 ° C and the coated particles were allowed to dry. The lactase activity unit is defined as the amount of lactase that will cleave 1 μπιοί lactose / minute under the following reaction conditions: substrate concentration = 10% lactose, temperature = 60 ° C, pH = 6.5 and reaction time = 30 minutes. The enzyme activity yield was 79.8%. 10 g of coated beads were then treated in 250 ml of solution containing 0.06 M Na 2 HPO 4, 1.4 M Na 2 SO 4 and 0.1% w / v glutaraldehyde at pH 7.5. After 1 hour at room temperature, the particles were removed and washed thoroughly with 0.06 M K 2 HPC> 4 at pH = 7.5. The activity yield during the cross-linking step was 17.2%.

Eksempel 8 24 g tørrede bærerpartikler fremstillet som i eksempel 4 i samtidigt verserende dansk patentansøgning nr. 4427/83 blev udblødt i 20,2 g opløsning af en 39,6% w/w delvist renset amyloglucosidase fra A. niger fremstillet ved ultrafiltrering af det kommercielle produkt AMG 200 L (beskrevet i NOVO-brochuren NOVO ENZYMES AMG, B020 g-GB) for at fjerne lavmolekylære bestanddele til et tørstofindhold af 39,6% w/w (aktivitet 2610 IAG/g, hvorved aktivitetsenheden er defineret i NOVO Analyseforskrift AF 159/2). Man gjorde brug af vacuum i 1 time. Det således fremkomne produkt 13 1A8513 indeholdt 25 vægt% tørstof af delvist renset amyloglucosida-se med et enzymaktivitetsudbytte på 77,9%.Example 8 24 g of dried carrier particles prepared as in Example 4 of co-pending Danish Patent Application No. 4427/83 were soaked in 20.2 g of a 39.6% w / w partially purified A. niger amyloglucosidase solution prepared by ultrafiltration of it. commercial product AMG 200 L (described in NOVO brochure NOVO ENZYMES AMG, B020 g-GB) to remove low molecular weight constituents to a solids content of 39.6% w / w (activity 2610 IAG / g, whereby the activity unit is defined in NOVO Assay Specification AF 159/2). Vacuum was used for 1 hour. The product thus obtained 13AA8513 contained 25 wt% solids of partially purified amyloglucosidase with an enzyme activity yield of 77.9%.

20 g partikler med 71,8% tørstof blev derpå behandlet i 1600 ml af en opløsning af 0,06 M NaH^PO^, 1,4 M Na2SC>4 og 0,2% glutaraldehyd ved pH = 4,5. Efter 1 time blev partiklerne fjernet ved filtrering og vasket med 0,06 M NaH2P04 ved pH = 4,5.20 g of particles with 71.8% solids were then treated in 1600 ml of a solution of 0.06 M NaH4 PO4, 1.4 M Na2SC> 4 and 0.2% glutaraldehyde at pH = 4.5. After 1 hour, the particles were removed by filtration and washed with 0.06 M NaH 2 PO 4 at pH = 4.5.

Enzymaktivitetsudbyttet under tværbindingstrinnet var 55,1%.The enzyme activity yield during the cross-linking step was 55.1%.

Eksempel 9 40 g bærerpartikler fremstillet som angivet i eksempel 4 i samtidigt verserende dansk patentansøgning nr. 4427/83 og med et tørstofindhold på 98,8% og 24 g under vacuum behandlet delvist renset glucoseisomerasekoncentrat fra Bacillus coagulans, hvortil der var tilsat 5% glucose og 8% natriumsulfat (tørstof 41,8%) blev blandet, og man lod væsken fortrænge luften i porerne af partiklerne ved vacuum-behandling. Vægt efter blanding var 63,22 g. Tørstofprocenten var 79,2.Example 9 40 g carrier particles prepared as set forth in Example 4 in co-pending Danish Patent Application No. 4427/83 and having a solids content of 98.8% and 24 g under vacuum treated partially purified glucose isomerase concentrate from Bacillus coagulans to which 5% glucose was added and 8% sodium sulfate (dry matter 41.8%) were mixed and the liquid was allowed to displace the air in the pores of the particles by vacuum treatment. Weight after mixing was 63.22 g. The solids content was 79.2.

18 g portioner af dette præparat ( 14 g tørstof) blev behandlet i 1 time ved stuetemperatur med 375 ml af en opløsning, der i alle tilfælde indeholdt 1,5 M natriumsulfat, 5% glucose og 0,06 M natriumphosphat, indstillet på pH 7,5, og som yderligere enten indeholdt 0,1 eller 0,2 eller 0,3% glutaraldehyd.18 g portions of this preparation (14 g dry matter) were treated for 1 hour at room temperature with 375 ml of a solution containing in all cases 1.5 M sodium sulfate, 5% glucose and 0.06 M sodium phosphate adjusted to pH 7 , 5, and which further contained either 0.1 or 0.2 or 0.3% glutaraldehyde.

Efter denne behandling blev portionerne vasket 5 gange med ca. 150 ml 1% natriumphosphat, pH 7,5.After this treatment, the portions were washed 5 times with ca. 150 ml of 1% sodium phosphate, pH 7.5.

Enzymaktiviteten blev bestemt i henhold til AF 189/1 efter at væsken var løbet bort fra partiklerne. Man bestemte også tørstof på de drænede partikler.The enzyme activity was determined according to AF 189/1 after the liquid had run out of the particles. Dry matter was also determined on the drained particles.

14 148513 tørstoffer, enhe- enhe- Udbytte, Irmtob.14 148513 Solids, Unit Yield, Irmtob.

% dsr/g der/g % udbytte, % våd tør% dsr / g there / g% yield,% wet dry

Enzymkoncentrat 41,8 1415 3385 -Enzyme Concentrate 41.8 1415 3385 -

Enzymkoncentrat 79,2 463 585 86 + bærerEnzyme Concentrate 79.2 463 585 86 + Carrier

Inniobiliseret m. 32,5 158 486 72 83Inniobilized m. 32.5 158 486 72 83

0,1% GA0.1% GA

Inniobiliseret m. 38,9 141 362 53 62 0,2% (¾Inniobilized m. 38.9 141 362 53 62 0.2% (¾

Inniobiliseret m. - 117 333 49 57 0,3%Inniobilized m. - 117 333 49 57 0.3%

Man undersøgte portioner, som svarede til 5 g tørstof, for trykfald.Portions corresponding to 5 g of dry matter were examined for pressure drop.

Glutaraldehyd- Trykfald koncentration 25 timer 50 timer under immobilisering OTTI 3 5 0,2% 1 3 0,3% 2 3Glutaraldehyde - Pressure drop concentration 25 hours 50 hours during immobilization OTTI 3 5 0.2% 1 3 0.3% 2 3

Eksempel 10Example 10

Dette eksempel beskriver en fremgangsmåde til fremstilling af et immobiliseret enzymprodukt baseret på aktivt kul fra Norit som bærer.This example describes a process for the preparation of an immobilized active carbon based carrier from Norit as a carrier.

Man udblødte således 20 g Norit Rox 0,8 aktivt kul af type Ά-3397 i 33 g opløsning af 39,2% w/w delvist renset glucoseisomerase fra Bacillus coagulans (aktivitet 3950 enheder/g tørstof, hvorved aktivitetsenheden er defineret i NOVO "Analyseforskrift" AF 189/1).Thus, 20 g of Norit Rox 0.8 activated carbon of type 33-3397 was soaked in 33 g of solution of 39.2% w / w partially purified glucose isomerase from Bacillus coagulans (activity 3950 units / g dry substance, whereby the activity unit is defined in NOVO " Analysis Specification "AF 189/1).

Man vacuumbehandlede i 20 timer ved 4°C, idet man dog i denne periode afbrød vacuet 4 gange. Det således 15 U8513 fremkomne produkt indeholc.t 35 vægt% partielt renset glucoseisomerasetørstof med 97% enzymaktivitetsudbytte.Vacuum was treated for 20 hours at 4 ° C, however during this period the vacuum was interrupted 4 times. The product thus obtained contained 35 wt% partially purified glucose isomerase solids with 97% enzyme activity yield.

98% af det ovenfor angivne, som et aggregat foreliggende produkt blev derpå immobiliseret i 890 ml af en opløsning af 0,06 M KH2P04, 1,4 M Na2S04 og 0,18% glutaral-dehyd, indstillet til pH 7,5 med 4 N NaOH. Efter 2 timers forløb ved stuetemperatur under forsigtig omrøring blev partiklerne fjernet ved filtrering og vasket grundigt med 0,06 M KH2P04, pH 8,0.98% of the above product as an aggregate present was then immobilized in 890 ml of a solution of 0.06 M KH 2 PO 4, 1.4 M Na 2 SO 4 and 0.18% glutaraldehyde adjusted to pH 7.5 with 4 N NaOH. After 2 hours at room temperature with gentle stirring, the particles were removed by filtration and washed thoroughly with 0.06 M KH 2 PO 4, pH 8.0.

Aktivitetsudbyttet under tværbindingstrinnet var 31%.The activity yield during the cross-linking step was 31%.

Eksempel 11Example 11

Dette eksempel beskriver en fremgangsmåde til fremstilling af et immobiliseret enzympræparat med en bærer bestående af silica-kugler med en diameter på ca. 2 mm.This example describes a process for preparing an immobilized enzyme preparation with a carrier consisting of silica spheres having a diameter of approx. 2 mm.

A. 20 g af silica-kuglerne blev fluidiseret i en fluidiseret masse af laboratorietypen, og 40 g opløsning af 15% w/w delvist renset glucoseiso-merase fra Bacillus coagulans (aktivitet 3306 enheder/g tørstof, hvorved aktiviteten er defineret i NOVO analyseforskrift AF 189/1) blev sprøjtet på kuglerne ved 25 - 30°C, og man lod de overtrukne kugler tørre. Det således opnåede produkt indeholdt 23 vægt% delvist renset glucose-isomerase med 78% aktivitetsudbytte.A. 20 g of the silica beads were fluidized in a laboratory-type fluidized mass, and 40 g of solution of 15% w / w partially purified glucose isomerase from Bacillus coagulans (activity 3306 units / g of dry matter, the activity being defined in NOVO assay specification AF 189/1) was sprayed onto the balls at 25-30 ° C and the coated balls were allowed to dry. The product thus obtained contained 23 wt% partially purified glucose isomerase with 78% activity yield.

95% af de overtrukne kugler blev derpå behandlet i 500 ml opløsning indeholdende 0,06 M F^HPO^, 1,4 M Na^SO^ og 0,1% w/v glutaraldehyd, indstillet til pH 7,5 med 4 N NaOH; efter en time ved stuetemperatur blev partiklerne fjernet og vasket grundigt med 0,06 M KH2P04 ved pH 8,0.95% of the coated beads were then treated in 500 ml of solution containing 0.06 MF ^ HPO 2, 1.4 M Na 2 SO 2 and 0.1% w / v glutaraldehyde adjusted to pH 7.5 with 4 N NaOH ; after one hour at room temperature, the particles were removed and washed thoroughly with 0.06 M KH 2 PO 4 at pH 8.0.

Derpå bestemtes aktiviteten. Aktivitetsudbyttet under tværbindingstrinnet var 55%.Then the activity was determined. The activity yield during the crosslinking step was 55%.

16 148513 B. 20 g af silica-kuglerne blev udblødt i 15 g opløsning af 40% w/w delvist renset glucose-isomerase fra Bacillus coagulans (aktivitet 3270 enheder/g tørstof), idet der var tilsat 0,56 M Na^SO^. Man vacuumbehandlede i 20 minutter, idet vacuet dog blev afbrudt fire gange i dette tidsrum. Det således fremkomne produkt indeholdt 20 vægt% delvist renset glucoseisomerase med 90% enzymaktivitetsudbytte. 75% af de overtrukne kugler blev derpå behandlet som beskrevet i del A i dette eksempel. Aktivitetsudbyttet under tværbindingstrinnet var 45%.B. 20 g of the silica beads were soaked in 15 g solution of 40% w / w partially purified glucose isomerase from Bacillus coagulans (activity 3270 units / g dry matter), with 0.56 M Na 2 SO added. ^. Vacuum was treated for 20 minutes, but the vacuum was interrupted four times during this time. The product thus obtained contained 20 wt% partially purified glucose isomerase with 90% enzyme activity yield. 75% of the coated balls were then treated as described in Part A of this example. The activity yield during the cross-linking step was 45%.

I nogle tilfælde, hvor enzymet er særligt vanskeligt at tværbinde, er tilstedeværelsen af salte ikke blot fordelagtig, men snarere absolut nødvendig, hvis enzymet skal tværbindes i ren tilstand. Et godt eksempel er den amyloglucosidase, som produceres af NOVO (og som f.eks. sælges under varemærket AMG 200 L, jfr. brochuren NOVO ENZYMES AMG, B 020 g-GB 2500 July, 1982), og som er praktisk taget umulig at immobilisere med glutaraldehyd, når den foreligger i ren tilstand: det har vist sig umuligt at uopløseliggøre denne amyloglucosidase selv ved så høj en glutaraldehydkoncentration som 50% w/w. Ved hjælp af de salte, der anvendes ved fremgangsmåden ifølge opfindelsen (ganske vist i ret høje koncentrationer), er det imidlertid muligt på effektiv måde at insolubilisere enzymet, selv ved • en glutaraldehydkoncentration, der er så lav som 0,05% w/v, som vist i de følgende eksempler 12 - 17. De således fremkomne præparater, som har udmærket filtrerbarhed, men som alligevel let kan bringes i suspension, kan med fordel anvendes ved fremstillingen af f.eks. øl med lavt kalorieindhold.In some cases where the enzyme is particularly difficult to cross-link, the presence of salts is not only advantageous but rather imperative if the enzyme is to be cross-linked in its pure state. A good example is the amyloglucosidase produced by NOVO (and sold, for example, under the trademark AMG 200 L, cf. the NOVO ENZYMES AMG brochure, B 020 g-GB 2500 July, 1982), which is practically impossible to immobilize with glutaraldehyde when in pure state: it has been found impossible to insolubilize this amyloglucosidase even at as high a glutaraldehyde concentration as 50% w / w. However, with the salts used in the process of the invention (albeit at fairly high concentrations), it is possible to efficiently insolubilize the enzyme, even at a glutaraldehyde concentration as low as 0.05% w / v , as shown in the following Examples 12 - 17. The compositions thus obtained which have excellent filterability but which can still be easily suspended can advantageously be used in the preparation of e.g. low calorie beer.

17 14851317 148513

Eksempel 12Example 12

Kommercielt NOVO AMG 200 L fortyndet til et tørstofindhold af 30% w/v blev blandet med Hiflo Celite og tørret, hvorved man opnåede et præparat, der indeholdt 21% w/w tørstof hidrørende fra AMG-præparatet. 1 g portioner af præparatet blev derpå tilsat til en opløsning indeholdende 2,4 M Na2S04, 0,06 M kaliumphosphat ved pH 6,5 og glutaral-dehyd i forskellige koncentrationer ved 32°C, og hele blandingen blev overladt til sig selv ved denne temperatur i 20 timer. Partiklerne blev derpå filtreret og skyllet tre gange med afioniseret vand, og aktivitetsudbyttet blev målt. Resultaterne viser det sædvanlige mønster omfattende de to modsat rettede virkninger af glutaraldehyd med et optimum på 0,05%, jfr. fig. 7.Commercial NOVO AMG 200 L diluted to a solids content of 30% w / v was mixed with Hiflo Celite and dried to obtain a composition containing 21% w / w solids derived from the AMG preparation. 1 g portions of the preparation were then added to a solution containing 2.4 M Na 2 SO 4, 0.06 M potassium phosphate at pH 6.5 and glutaraldehyde at various concentrations at 32 ° C and the whole mixture was left to itself at this temperature for 20 hours. The particles were then filtered and rinsed three times with deionized water, and the activity yield was measured. The results show the usual pattern comprising the two opposite effects of glutaraldehyde with an optimum of 0.05%, cf. FIG. 7th

Eksempel 13Example 13

Man gentog den samme metode som i eksempel 12, men anvendte dog forskellige koncentrationer af Na2S04· Aktivitetsudbyttet med dette enzym er yderst følsomt overfor mængden af tilstedeværende salt, jfr. fig. 8.The same method was repeated as in Example 12, but different concentrations of Na 2 SO 4 were used. The activity yield with this enzyme is highly sensitive to the amount of salt present, cf. FIG. 8th

Eksempel 14Example 14

Fremgangsmåden i eksempel 12 blev gentaget, med undtagelse af, at man her anvendte et AMG-præparat, der kun indeholdt halvt så meget enzym. Som resultat heraf kunne man tydeligt iagttage en forskydning af glutaraldehyd-optimet til en lavere koncentration, jfr. fig. 9.The procedure of Example 12 was repeated except that an AMG preparation containing only half as much enzyme was used here. As a result, one could clearly observe a shift of the glutaraldehyde optimum to a lower concentration, cf. FIG. 9th

Eksempel 15 NOVO AMG 200 L blev sprøjtetørret, og det resulterende pulver blev anvendt som udgangsmateriale, hvorved metoden blev varieret i et vist omfang: 0,5 g af AMG-pulver blev tilsat til 100 ml af en opløsning indeholdende 2,5 M Na2S04, 0,1 M kaliumphosphat, pH 6,5, og 1% w/v glutaraldehyd ved 32°C, og blandingen blev overladt til sig selv ved denne temperatur i 1 time med lejlighedsvis rystning. De 18 148513 således dannede, uopløselige partikler blev derpå filtreret og inkuberet igen i det samme medium, blot uden glutaralde-hyd, og ved den samme temperatur i yderligere 20 timer.Example 15 NOVO AMG 200 L was spray dried and the resulting powder was used as starting material, varying the method to a certain extent: 0.5 g of AMG powder was added to 100 ml of a solution containing 2.5 M Na 2 SO 4, 0.1 M potassium phosphate, pH 6.5, and 1% w / v glutaraldehyde at 32 ° C, and the mixture was left to itself at this temperature for 1 hour with occasional shaking. The insoluble particles thus formed were then filtered and incubated again in the same medium, simply without glutaraldehyde, and at the same temperature for a further 20 hours.

Derpå blev det filtreret og skyllet tre gange med afioniseret vand. Disse let filtrerede mikrokugler havde en diameter på ca. 10 - 100 μιίι, og de bibeholdt 19% af den oprindelige aktivitet.Then it was filtered and rinsed three times with deionized water. These lightly filtered microspheres had a diameter of approx. 10 - 100 μιίι and retained 19% of the original activity.

Eksempel 16Example 16

Man fulgte en fremgangsmåde, der var identisk med fremgangsmåden i eksempel 15, med undtagelse af, at glutar-aldehydet blev tilsat til saltopløsningen efter at enzympul-veret var blevet tilsat dertil. På denne måde fremkom der et lignende produkt med 34% af den oprindelige aktivitet.A procedure identical to that of Example 15 was followed except that the glutaraldehyde was added to the saline solution after the enzyme powder was added thereto. In this way, a similar product was obtained with 34% of the original activity.

Eksempel 17Example 17

Også i dette tilfælde fulgte man metoden i eksempel 15, med undtagelse af, at man kun anvendte 0,4% w/v glutaraldehyd, og at den totale inkubation blev forkortet til 3 timer. På denne måde fremstilledes et produkt med 37% af den oprindelige aktivitet.Also in this case, the method of Example 15 was followed except that only 0.4% w / v glutaraldehyde was used and that the total incubation was shortened to 3 hours. In this way, a product was prepared with 37% of the original activity.

Eksempel 18Example 18

Dette eksempel illustrerer anvendeligheden af fremgangsmåden ifølge opfindelsen i forbindelse med andre tværbindingsmidler end glutaraldehyd, nemlig multivalente kationer. I dette tilfælde anvendtes Sn++++ som tværbindingsmidlet. Man tilsatte således langsomt og under omrøring 0,5 g af Celite-AMG-præparatet fra eksempel 12 i den tilstand, hvori det forelå før tværbinding, til en 100 ml opløsning indeholdende 2 M Na2S04, 0,4 M kaliumacetat (pH 4,35) og 0,086 M SnCl4, 5 H20, og man overlod blandingen til sig selv ved stuetemperatur i 5 minutter med lejlighedsvis rystning. De således dannede partikler blev filtreret og tilført til 100 ml 0,2 M kaliumacetat, pH 4,35,. og suspensionen blev holdt under omrøring i 5 minutter. Denne proce- 19 1 <485 13 dure blev gentaget 3 gange. Slutproduktet udviste et enzymaktivitetsudbytte på 43%.This example illustrates the utility of the process of the invention in connection with cross-linking agents other than glutaraldehyde, namely, multivalent cations. In this case, Sn ++++ was used as the crosslinking agent. Thus, 0.5 g of the Celite-AMG preparation of Example 12, in the state in which it was pre-crosslinking, was slowly added with stirring to a 100 ml solution containing 2 M Na 2 SO 4, 0.4 M potassium acetate (pH 4.35 ) and 0.086 M SnCl4, 5 H2 O, and the mixture was left to itself at room temperature for 5 minutes with occasional shaking. The particles thus formed were filtered and fed to 100 ml of 0.2 M potassium acetate, pH 4.35. and the suspension was stirred for 5 minutes. This procedure was repeated 3 times. The final product showed an enzyme activity yield of 43%.

Eksempel 19 I dette eksempel fremstillede man et produkt i henhold til den metode, der er beskrevet i eksempel 18, med undtagelse af, at koncentrationerne af acetat og stannisalt blev fordoblet til henholdsvis 0,8 M og 0,017 M. Der fremkom et lignende produkt, hvorved enzymaktivitetsudbyttet var 65%.Example 19 In this example, a product was prepared according to the method described in Example 18 except that the concentrations of acetate and stannic salt were doubled to 0.8 M and 0.017 M. A similar product was obtained, whereby the enzyme activity yield was 65%.

Eksempel 20Example 20

Også i dette eksempel gentog man metodeh fra eksempel 18; men her var acetatkoncentrationen reduceret til halvdelen, d.v.s. 0,2 M. Også i dette tilfælde fremkom der et lignende produkt med et enzymaktivitetsudbytte på 48%.Also in this example, method 18 from Example 18 was repeated; but here the acetate concentration was reduced to half, i.e. 0.2 M. Also in this case a similar product was obtained with an enzyme activity yield of 48%.

Eksempel 21 I dette eksempel beskrives anvendelsen af et yderligere tværbindingsmiddel, nemlig benzoquinon. Man tilsatte således 0,5 g af et tørret Celite-AMG-præparat som i eksempel 12 til 75 ml af en blanding indeholdende 2,1 M Na2SO^ og 0,05 M natriumacetat, og derpå tilsattes 5 ml af en opløsning af 20% w/v benzoquinon i rent ethanol, og hele blandingen blev overladt til sig selv ved stuetemperatur i 80 minutter med lejlighedsvis omrøring. De således blandede partikler blev derpå filtreret, indført i 75 ml 0,1 M kaliumacetat-stødpude, pH 4,4, holdt under omrøring i 5 minutter og igen filtreret. Denne procedure blev gentaget 3 gange, og derpå blev aktiviteten bestemt. Enzymaktivitetsudbyttet var 14%.Example 21 This example describes the use of a further crosslinking agent, namely benzoquinone. Thus, 0.5 g of a dried Celite-AMG preparation was added as in Example 12 to 75 ml of a mixture containing 2.1 M Na 2 SO 4 and 0.05 M sodium acetate and then 5 ml of a 20% solution was added. w / v benzoquinone in pure ethanol and the whole mixture was left to itself at room temperature for 80 minutes with occasional stirring. The particles thus mixed were then filtered, introduced into 75 ml of 0.1 M potassium acetate buffer, pH 4.4, kept under stirring for 5 minutes and again filtered. This procedure was repeated 3 times and then the activity was determined. The enzyme activity yield was 14%.

Claims (4)

20 14851320 148513 1. Fremgangsmåde til fremstilling af et immobiliseret enzympræparat ved hjælp af et tværbindingsmiddel, kendetegnet ved, at følgende komponenter bringes sammen i et vandigt medium: a) et enzympræparat i fast eller opløst tilstand, b) et tværbindingsmiddel og c) et vandopløseligt salt, som ikke reagerer med tværbindingmidlet eller inaktiverer enzymet, i en koncentration, der er tilstrækkelig til at forhindre, at nogen væsentlig del af enzymet opløses i eller blandes med saltopløsningen, medens tværbindingsreaktionen finder sted, hvorpå det immobiliserede enzympræparat udvindes.A process for preparing an immobilized enzyme preparation by means of a crosslinking agent, characterized in that the following components are brought together in an aqueous medium: a) a solid or dissolved enzyme preparation, b) a crosslinking agent and c) a water-soluble salt which does not react with the cross-linking agent or inactivate the enzyme, at a concentration sufficient to prevent any substantial part of the enzyme from dissolving in or mixing with the saline solution while the cross-linking reaction takes place, upon which the immobilized enzyme preparation is recovered. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at enzympræparatet omfatter en bærer.Process according to claim 1, characterized in that the enzyme preparation comprises a carrier. 3. Fremgangsmåde ifølge krav 2, kendetegnet ved, at enzympræparatet er en bærer, der er overtrukket med et lag af fast enzym.Process according to claim 2, characterized in that the enzyme preparation is a carrier coated with a layer of solid enzyme. 4. Fremgangsmåde ifølge krav 2, kendetegnet ved, at enzympræparatet er en porøs bærer, der er imprægneret med en enzymopløsning.Process according to claim 2, characterized in that the enzyme preparation is a porous carrier impregnated with an enzyme solution.
DK442883A 1982-10-06 1983-09-28 PROCEDURE FOR THE PREPARATION OF AN IMMOBILIZED ENZYME PREPARATION USING A CROSS-BONDING AGENT DK148513C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK442883A DK148513C (en) 1982-10-06 1983-09-28 PROCEDURE FOR THE PREPARATION OF AN IMMOBILIZED ENZYME PREPARATION USING A CROSS-BONDING AGENT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DK443182 1982-10-06
DK443182 1982-10-06
DK442883A DK148513C (en) 1982-10-06 1983-09-28 PROCEDURE FOR THE PREPARATION OF AN IMMOBILIZED ENZYME PREPARATION USING A CROSS-BONDING AGENT
DK442883 1983-09-28

Publications (4)

Publication Number Publication Date
DK442883D0 DK442883D0 (en) 1983-09-28
DK442883A DK442883A (en) 1984-04-07
DK148513B true DK148513B (en) 1985-07-22
DK148513C DK148513C (en) 1985-12-23

Family

ID=26067478

Family Applications (1)

Application Number Title Priority Date Filing Date
DK442883A DK148513C (en) 1982-10-06 1983-09-28 PROCEDURE FOR THE PREPARATION OF AN IMMOBILIZED ENZYME PREPARATION USING A CROSS-BONDING AGENT

Country Status (1)

Country Link
DK (1) DK148513C (en)

Also Published As

Publication number Publication date
DK148513C (en) 1985-12-23
DK442883D0 (en) 1983-09-28
DK442883A (en) 1984-04-07

Similar Documents

Publication Publication Date Title
FI85284C (en) Process for the preparation of an immobilized enzyme preparation using a crosslinking agent
DK160843B (en) Process for preparing a particulate, immobilized product, and use of the immobilized enzyme which is prepared thereby
DK146481B (en) PROCEDURE FOR THE PREPARATION OF AN IMMOBILIZED ENZYME PRODUCT
DK164819B (en) PROCEDURE FOR THE PREPARATION OF AN IMMOBILIZED ENZYM CONJUGATE AND THE PROCEDURE IMMOBILIZED ENZYM CONJUGATE
US4950600A (en) Method of immobilizing enzymes or microbes with alginate having a low mannuronic acid to guluronic acid ratio
DK146446B (en) VANDU-SOLUBLE ENZYME PREPARATION AND PROCEDURE FOR ITS PREPARATION
Mansour et al. Immobilization of invertase on celite and on polyacrylamide by an absorption procedure
JPS59113889A (en) Preparation of immobilized enzyme or immobilized microbial cell
Wahba Calcium pectinate-agar beads as improved carriers for β-d-galactosidase and their thermodynamics investigation
CA1215336A (en) Immobilization of catalytically active microorganisms in agar gel fibers
DK148513B (en) Process for obtaining an immobilized enzyme preparation, using a cross-linking agent
GB2129809A (en) Method for production of an immobilized enzyme preparation by means of a crosslinking agent
US5093253A (en) Method for microbial immobilization by entrapment in gellan gum
Cabral et al. Influence of coupling conditions on activity and operational stability of glucoamylase immobilized on titanium (IV)-activated controlled pore glass
NO144633B (en) PROCEDURE FOR THE PREPARATION OF 6-AMINOPENICILLANIC ACID
EP0340378B1 (en) Method for microbial immobilization
DK145104B (en) WATER SOLUBLE ENZYM CONJUGATE AND PROCEDURE FOR ITS PREPARATION
JPH0313868B2 (en)
Hoshino et al. A study on the thermostability of microencapsulated glucose oxidase
JPS59109173A (en) Preparation of immobilized biocatalyst
JP2824902B2 (en) Method for producing enzyme-immobilizing carrier
Ribeiro et al. Anion exchange resin as support for invertase immobilization
SU1472505A1 (en) Method of immobilizing enzymes
JPH04211373A (en) Included immobilized biocatalyst and production thereof
SU749847A1 (en) Method of preparing carrier for immobilizing biologically active substances

Legal Events

Date Code Title Description
AHS Application shelved for other reasons than non-payment
PUP Patent expired