DK147697B - MICROCapsule comprising a core and a shell comprising a film-forming polycarbodiimide as well as a process for its preparation - Google Patents

MICROCapsule comprising a core and a shell comprising a film-forming polycarbodiimide as well as a process for its preparation Download PDF

Info

Publication number
DK147697B
DK147697B DK204576AA DK204576A DK147697B DK 147697 B DK147697 B DK 147697B DK 204576A A DK204576A A DK 204576AA DK 204576 A DK204576 A DK 204576A DK 147697 B DK147697 B DK 147697B
Authority
DK
Denmark
Prior art keywords
polycarbodiimide
shell
polymer
dissolved
core
Prior art date
Application number
DK204576AA
Other languages
Danish (da)
Other versions
DK204576A (en
Inventor
Guenther Baatz
Manfred Dahm
Walter Schaefer
Original Assignee
Bayer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19752523586 external-priority patent/DE2523586C3/en
Application filed by Bayer Ag filed Critical Bayer Ag
Publication of DK204576A publication Critical patent/DK204576A/en
Publication of DK147697B publication Critical patent/DK147697B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/08Simple coacervation, i.e. addition of highly hydrophilic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/12Making microcapsules or microballoons by phase separation removing solvent from the wall-forming material solution
    • B01J13/125Making microcapsules or microballoons by phase separation removing solvent from the wall-forming material solution by evaporation of the solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

147697 o147697 o

Opfindelsen angår en mikrokapsel omfattende en kerne og en skal, hvor skallen omfatter et filmdannende polycarbodiimid, samt en fremgangsmåde til fremstilling af en sådan mikrokapsel.The invention relates to a microcapsule comprising a core and a shell, the shell comprising a film-forming polycarbodiimide, and a method of making such a microcapsule.

Forskellige typer af mikrokapsler og deres produktion er kendt. Et antal forskellige polymere kan anvendes til skalmaterialet, idet det pågældende valg bestemmes af den kemiske natur af det kernemateriale, der skal indkapsles. Hvis kernematerialet f.eks. er hydrofilt, skal de skaldannende polymere være så hydrofobe som muligt. Hvis på den anden side kernematerialet er hydrofobt, skal de skaldannende polymere være så hydrofile som muligt. Foruden disse krav er frigivelsesegenskaben eller permea-biliteten af skallen med hensyn til det materiale, der skal ind- 2 147697 kapsles, en anden kritisk faktor ved valget af skalmaterialerne. I denne forbindelse er den generelle regel, at kernematerialet og den skaldannende polymer skal have modsatte opløselighedsparametre (f.eks. er hydrofobe skalpolymere mindre permeable over for hydrofile end over for hydrofobe indkapslede materialer). Der er imidlertid adskillige grænsetilfælde, hvor en egnet skaldannende polymer ikke er tilgængelig for et givet kernemateriale. I sådanne tilfælde er det undertiden muligt at fremstille to polymerskaller af forskellige polymere den ene over den anden. Det er imidlertid ikke muligt selv på denne måde at opnå enhver krævet kombination af egenskaber.Various types of microcapsules and their production are known. A variety of polymers can be used for the shell material, the choice in question being determined by the chemical nature of the core material to be encapsulated. For example, if the core material. is hydrophilic, the shell-forming polymers should be as hydrophobic as possible. On the other hand, if the core material is hydrophobic, the shell-forming polymers should be as hydrophilic as possible. In addition to these requirements, the release property or permeability of the shell with respect to the material to be encapsulated is another critical factor in the choice of the shell materials. In this connection, the general rule is that the core material and the shell-forming polymer must have opposite solubility parameters (for example, hydrophobic shell polymers are less permeable to hydrophilic than to hydrophobic encapsulated materials). However, there are several boundary cases where a suitable shell-forming polymer is not available for a given core material. In such cases, it is sometimes possible to make two polymer shells of different polymers one above the other. However, even in this way it is not possible to achieve any required combination of properties.

Polymere, polykondensater og polyadditionsprodukter kan anvendes som polymere med skaldannende egenskaber. Egnede polymere er f.eks. sædvanlige homopolymere og copolymere af ethylen, propylen, vinylchlorid, vinylidenchlorid, vinylacetat, acrylonitril, styren, acrylsyrealkylestere og methacrylsyrealkylestere. Egnede polykondensater er f.eks. polyamider, polysulfonamider, polyestere og polycar-bonater, mens egnede polyadditionsprodukter f.eks. er polyurethaner og polyurixistoffer.Polymers, polycondensates and polyaddition products can be used as polymers with shell-forming properties. Suitable polymers are e.g. common homopolymers and copolymers of ethylene, propylene, vinyl chloride, vinylidene chloride, vinyl acetate, acrylonitrile, styrene, acrylic acid alkyl esters and methacrylic acid alkyl esters. Suitable polycondensates are e.g. polyamides, polysulfonamides, polyesters and polycarbonates, while suitable polyaddition products e.g. are polyurethanes and polyurix substances.

Det har nu vist sig, at filmdannende polycarbodiimider også kan anvendes til fremstillingen af skaller for mikrokapsler. Konventionel indkapslingsteknik kan anvendes til fremstillingen af mikrokapsler med polycarbodiimider. Konventionel indkapslingsteknik er hovedsagelig fysiske og kemiske processer. De fysiske processer omfatter overtrækning af kernematerialerne i form af dråber eller partikler med polymere, der ikke kan blandes med kernematerialer, idet indkapslingsteknikken fysisk induceres på et tidligt trin. Ved den kemiske proces er det standardpraksis at fremstille dispersioner af kernematerialet eller opløsninger af kernematerialet i et ikke-bland-bart dispersionsmedium og derpå at afsætte eller fremstille den skaldannende polymer ved grænsefladen på en sådan måde, at den omgiver kernematerialet i form af en film. Den polymere kan enten dannes direkte fra den indre fase eller fra den ydre fase afhængig af den særlige valgte fremstillingsmetode.It has now been found that film-forming polycarbodiimides can also be used in the preparation of shells for microcapsules. Conventional encapsulation technique can be used for the preparation of microcapsules with polycarbodiimides. Conventional encapsulation techniques are mainly physical and chemical processes. The physical processes include coating the core materials in the form of droplets or particles with polymers that cannot be mixed with core materials, the encapsulation technique being physically induced at an early stage. In the chemical process, it is standard practice to prepare dispersions of the core material or solutions of the core material in an immiscible dispersion medium and then to deposit or prepare the shell forming polymer at the interface in such a way that it surrounds the core material in the form of a film. The polymer can be formed either directly from the inner phase or from the outer phase depending on the particular method of preparation chosen.

Kemiske indkapslingsmetoder kan grovt opdeles i processer for faseadskillelse og processer for grænsefladepolymerisation.Chemical encapsulation methods can be roughly divided into phase separation processes and interface polymerization processes.

Det følgende er eksempler på typiske kemiske indkapslingsmetoder: 1) Koacervering eller kompleks koacerveringsproces. Ved indstilling af den korrekte temperatur og den korrekte pH-værdi afsættes et polymer-koacervat ved grænsefladen og kan derpå hærdnes.The following are examples of typical chemical encapsulation methods: 1) Coacervation or complex coacervation process. By setting the correct temperature and pH, a polymer coacervate is deposited at the interface and can then be cured.

Et typisk eksempel er gelatine/gummi arabicum-systemet, der kan hærdnes med formaldehyd.A typical example is the gelatin / gum arabic system which can be cured with formaldehyde.

3 147697 2) Den reaktive proces. Ved denne proces reagerer to komponenter opløst adskilt i den ydre fase og i den indre fase af dispersionen med hinanden ved grænsefladen til dannelse af den polymer, f.eks. et polykondensat- eller et polyadditionsprodukt.3 147697 2) The reactive process. In this process, two components dissolved separately in the outer phase and in the inner phase of the dispersion react with each other at the interface to form the polymer, e.g. a polycondensate or polyaddition product.

3) Fordampningsprocessen. Kernematerialet indkapsles ved afsætning af den polymere ved afdampning af et opløsningsmiddel for den polymere fra dispersionen.3) The evaporation process. The core material is encapsulated by depositing the polymer by evaporation of a solvent for the polymer from the dispersion.

4) Udfældningsprocessen. Den polymere afsættes ved udfældning fra en polymeropløsning med et ikke-opløsningsmiddel. De individuelle mikroindkapslingsteknikker er beskrevet i yderligere detaljer af J.E. Vandegaer i "Microencapsulation, Processes and Applications", Plenum Press, New York 1974.4) The precipitation process. The polymer is deposited by precipitation from a polymer solution with a non-solvent. The individual microencapsulation techniques are described in further detail by J.E. Hiking in "Microencapsulation, Processes and Applications", Plenum Press, New York 1974.

Den foreliggende opfindelse angår således en mikrokapsel omfattende en kerne og en skal, hvilken mikrokapsel er ejendommelig ved, at skallen omfatter et filmdannende polycarbodiimid, der indeholder gentagne enheder med formlen -R-N = C = N- R- hvori R betyder eventuelt substitueret alkylen, cycloalkylen eller arylen, og hvori endegrupperne er NCO-grupper og/eller omsætningsprodukter af disse NCO-grupper med NCO-reaktive forbindelser.Thus, the present invention relates to a microcapsule comprising a core and a shell, said microcapsule being characterized in that the shell comprises a film-forming polycarbodiimide containing repeating units of the formula -RN = C = N- R- wherein R is optionally substituted alkylene, cycloalkylene or the aryl, and wherein the end groups are NCO groups and / or reaction products of these NCO groups with NCO reactive compounds.

Opfindelsen angår endvidere en fremgangsmåde til fremstilling af de omhandlede mikrokapsler, hvilken fremgangsmåde er ejendommelig ved, at a) polycarbodiimidet opløses i et indifferent opløsningsmiddel, et foreneligt kernemateriale dispergeres i den dannede opløsning, og at den dannede dispersion introduceres i en skæregradient i en ikke--blandbar flydende fase, i hvilken der befinder sig eller til hvilken der sættes en isocyanat-reaktiv polyamin eller b) at polycarbodiimidet opløses i et opløsningsmiddel, der har et kogepunkt under 100°C, eller som danner en azeotrop kogning ved en temperatur under 100°C, et foreneligt kernemateriale dispergeres eller opløses i den dannede opløsning, blandingen dispergeres i en væske, der er ikke-blandbar med polymeropløsningsmidlet, og dispersionen derpå opvarmes til afdampning af opløsningsmidlet, eller c) polycarbodiimidet opløses i et opløsningsmiddel, et kernemateriale dispergeres i den dannede opløsning, og at et udfældnings-middel for polycarbodiimidet tilsættes under omrøring.The invention further relates to a process for preparing the present microcapsules, characterized in that a) the polycarbodiimide is dissolved in an inert solvent, a compatible core material is dispersed in the formed solution and the resulting dispersion is introduced in a cutting gradient - miscible liquid phase in which is or to which isocyanate-reactive polyamine is added or b) dissolves the polycarbodiimide in a solvent having a boiling point below 100 ° C or forming an azeotropic boiling at a temperature below 100 ° C, a compatible core material is dispersed or dissolved in the resulting solution, the mixture is dispersed in a liquid immiscible with the polymer solvent and the dispersion is then heated to evaporate the solvent, or c) dissolve the polycarbodiimide in a solvent, a core material the resulting solution, and that a polycarbo precipitate the diimide is added with stirring.

4 1476974 147697

Anvendelsen af de omhandlede polycarbodiimider til mikroindkapsling giver et antal overraskende fordele.The use of the present polycarbodiimides for microencapsulation provides a number of surprising advantages.

Således kan filmdannende carbodiimider anvendes i opløst form ved afdampningsprocessen og ved udfældningsprocessen. Den reaktive proces kan anvendes med polycarbodiimider, der indeholder frie iso-cyanatgrupper.Thus, film-forming carbodiimides can be used in the dissolved form in the evaporation process and in the precipitation process. The reactive process can be used with polycarbodiimides containing free isocyanate groups.

Mikroindkapslingen kan udføres på adskillige måder under anvendelse af en og samme polymer.The microencapsulation can be performed in several ways using one and the same polymer.

På grund af carbodiimidgruppernes reaktivitet er det muligt før den egentlige indkapsling at modificere polycarbodiimidet kemisk således, at der fås en større variationsbredde med hensyn til opløselighed, molekylvægt, filmdannelse osv. end med rene polyisocyanater. Noget tilsvarende gælder for indkapslingen selv, medens skallen dannes, og naturligvis for den færdige kapselskal efter endt indkapsling. Denne mulighed for tilpasning af polycarbodiimiderne medfører også, at de kan anvendes til indkapsling ifølge meget forskellige metoder.Due to the reactivity of the carbodiimide groups, it is possible to chemically modify the polycarbodiimide prior to the actual encapsulation so as to obtain a greater variation in solubility, molecular weight, film formation, etc. than with pure polyisocyanates. Something similar applies to the enclosure itself while the shell is being formed and, of course, to the finished capsule shell after the encapsulation is completed. This ability to adapt the polycarbodiimides also allows them to be used for encapsulation by very different methods.

På den anden side kan man også indstille de mest forskellige kapselegenskaber, f.eks. høj tæthed eller høj gennemtrængelighed, hydrofili eller hydrofobi, høj eller lav blødgørings- og åbningstemperatur, tæthed over for aromastoffer eller utæthed samt såkaldte "controlled release"-egenskaber.On the other hand, one can also set the most different capsule properties, e.g. high density or high permeability, hydrophilia or hydrophobia, high or low softening and opening temperature, flavor or leakage density and so-called "controlled release" properties.

Carboxylgrupper eller aminogrupper kan f.eks. tilsættes. Det er således muligt yderligere at tværbinde de lineære polycarbodiimid-kæder ved f.eks. reaktion med dicarboxylsyrer, f.eks. adipinsyre, eller at tilsætte en anden skal kemisk knyttet til den første ved reaktion med amino- og carboxylgrupperne af gelatine (eller analoge hydrofile polymere) ved koacervationsmetoderne eller ved den komplekse koacervation.Carboxyl groups or amino groups can e.g. added. Thus, it is possible to further cross-link the linear polycarbodiimide chains by e.g. reaction with dicarboxylic acids, e.g. adipic acid, or adding a second shell, chemically linked to the first by reaction with the amino and carboxyl groups of gelatin (or analogous hydrophilic polymers) by the coacervation methods or by the complex coacervation.

Egenskaberne af polycarbodiimidskallerne kan således i vid udstrækning tilpasses efter ethvert kernemateriale. Følgelig kan i princippet ethvert organofilt, flydende eller fast stof indkapsles i filmdannende polycarbodiimider.Thus, the properties of the polycarbodiimide shells can be widely adapted to any core material. Accordingly, in principle, any organophilic, liquid or solid can be encapsulated in film-forming polycarbodiimides.

Egnede polymere carbodiimider er aromatiske, aliphatiske, cycloaliphatiske og aliphatisk-aromatisk polycarbodiiraider og blandinger deraf.Suitable polymeric carbodiimides are aromatic, aliphatic, cycloaliphatic and aliphatic-aromatic polycarbodiurides and mixtures thereof.

Polycarbodiimiderne kan fremstilles ud fra de tilsvarende iso-cyanater, f.eks. ud fra 2,4- og 2,6-diisocyanatotoluen og deres isomere blandinger, især en isomer blanding bestående af 80% 2,4-og 20% 2,6-diisocyanatotoluen, ud fra 4,4'-diisocyanatodiphenylmethan, ud fra phosgeneringsprodukter af syrekatalyserede anilin-formaldehyd- c 147697 5 kondensater, ud fra 1,3-diisocyanatobenzen, 1,3,5-trimethyl- og 1,3,5-triisopropylbenzen-2,4-diisocyanat, ud fra 1,6-diisocyanato-hexan og ud fra l-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan. Polycarbodiimider egnede til anvendelse ved den beskrevne fremgangsmåde fås imidlertid ikke kun fra de rene isocyanater, fordi det også er muligt at anvende .deres ikke destillerede precur-sorer og også reaktionsprodukter af disse polyisocyanater ved monoalkoholer eller polyalkoholer med et NCO:OH-forhold på større end 1 og modifikationsprodukter af disse polyisocyanater, f.eks. polyisocyanater, der yderligere indeholder biuret-; allophanat-, isocyanurat- og carbodiimidgrupper.The polycarbodiimides can be prepared from the corresponding isocyanates, e.g. from 2,4- and 2,6-diisocyanatotoluene and their isomeric mixtures, in particular an isomeric mixture consisting of 80% 2,4- and 20% 2,6-diisocyanatotoluene, from 4,4'-diisocyanatodiphenylmethane, from phosgenation products of acid-catalyzed aniline-formaldehyde condensates, from 1,3-diisocyanatobenzene, 1,3,5-trimethyl- and 1,3,5-triisopropylbenzene-2,4-diisocyanate, from 1,6-diisocyanato hexane and from 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane. However, polycarbodiimides suitable for use in the described process are obtained not only from the pure isocyanates, because it is also possible to use their non-distilled precursors and also reaction products of these polyisocyanates at monoalcohols or polyalcohols having an NCO: OH ratio of greater than 1 and modification products of these polyisocyanates, e.g. polyisocyanates which further contain biuret; allophanate, isocyanurate and carbodiimide groups.

Til mikroindkapsling ved fordampningsprocessen, udfældningsprocessen og den reaktive proces er det vigtigt, at de anvendte polycarbodiimider skal være opløselige i opløsningsmidler, der er ikke-bland-bare med vand.For microencapsulation in the evaporation process, the precipitation process and the reactive process, it is important that the polycarbodiimides used be soluble in water-immiscible solvents.

Ved den reaktive proces skal disse opløsningsmidler også være indifferente over for isocyanatgrupperne.In the reactive process, these solvents must also be inert to the isocyanate groups.

Ved fordampningsprocessen skal deres kogepunkter være mindre end vands eller alternativt skal opløsningsmidlerne være i stand til at fjernes fra dispersionen i form af en azeotrop med vand og/eller et andet opløsningsmiddel.In the evaporation process, their boiling points must be less than water or, alternatively, the solvents must be capable of being removed from the dispersion in the form of an azeotrope with water and / or another solvent.

Polycarbodiimider egnet til anvendelse ifølge opfindelsen indeholder fortrinsvis frie terminale isocyanatgrupper, dvs. har den idealiserede struktur·Polycarbodiimides suitable for use according to the invention preferably contain free terminal isocyanate groups, i.e. has the idealized structure ·

OCN-[R-N=C=Nx3-R-NCOOCN- [R-N = C = NX3-R-NCO

i hvilken R betyder alkylen, cycloalkylen eller arylen, og x betyder et helt tal fra 2 til 40, R betyder en alkylengruppe med 2-6 carbonatomer, en cycloalkylengruppe med 5-7 carbonatomer eller en arylengruppe med 6-12 carbonatomer.in which R is alkylene, cycloalkylene or aryl and x is an integer from 2 to 40, R is an alkylene group of 2-6 carbon atoms, a cycloalkylene group of 5-7 carbon atoms, or an arylene group of 6-12 carbon atoms.

Nogle af carbodiimidgrupperne kan også omdannes med isocyanat til ureton-imingrupper, og giver således polymere, der imolekylet indeholder den gentagne enhed: -R-N = C- lj[-R-— N — C = 0 6 147697Some of the carbodiimide groups can also be converted with isocyanate to urethone imine groups, thus yielding polymers containing the repeating unit: -R-N = C-lj [-R-— N - C = 0 6 147697

Inddampningsprocessen og udfældningsprocessen kan fortrinsvis udføres med carbodiimider, der indeholder phosphonio- eller rp - n - strukturenheder, f.eks. med den idealiserede struktur OCN [ -R-N=C=N-R] -N=P^*T^ R' X | » R" i hvilken x og R har den ovenfor angivne betydning, mens R' betyder alkyl eller cycloalkylgrupper. R' betyder fortrinsvis alkyl med 1-6 car-bonatomer og cycloalkyl med 5-7 carbonatomer, og R" betyder alkyl eller aryl, fortrinsvis methyl, ethyl og phenyl.The evaporation process and the precipitation process can preferably be carried out with carbodiimides containing phosphonio or rp - n - structural units, e.g. with the idealized structure OCN [-R-N = C = N-R] -N = P ^ * T ^ R 'X | "R" in which x and R are as defined above, while R 'is alkyl or cycloalkyl groups. R' is preferably alkyl of 1-6 carbon atoms and cycloalkyl of 5-7 carbon atoms and R "is alkyl or aryl, preferably methyl, ethyl and phenyl.

Nogle af carbodiimidgrupperne kan også omdannes med phospho-linoxider eller phospholanoxider til strukturenheder af typen -R-N = C — N-R- l l^r R.Some of the carbodiimide groups may also be converted with phospholine oxides or phospholane oxides to structural units of the type -R-N = C - N-R- 1 l ^ r R.

i hvilken R, R' og R" har den ovenfor angivne betydning.in which R, R 'and R "have the meaning given above.

Fremstillingen af polycarbodiimider af denne art er kendt og beskrevet i f.eks. "Encyclopedia of Polymer Science and Technology", Vol. 7, side 751-754. I det mest simple tilfælde fås polycarbo-diimiderne ved tilsætning af phospholinoxider eller phospholanoxider til isocyanaterne, og størrelsesreduktion af det skumlignende materiale opnås.The preparation of polycarbodiimides of this kind is known and described in e.g. "Encyclopedia of Polymer Science and Technology", Vol. 7, pages 751-754. In the simplest case, the polycarbo-diimides are obtained by the addition of phospholine oxides or phospholan oxides to the isocyanates, and size reduction of the foam-like material is obtained.

Ifølge opfindelsen er det muligt at indkapsle faste eller flydende stoffer. De flydende stoffer skal være forenelige med polymer-opløsningen. Eksempler på egnede kernematerialer er mineralolier, fedeolier, trichlorethylphosphat, thiophosphorsyreestere, ethoxylerede alkylphenoler, parfumer, aromatiske og aliphatiske carbonhydrider og chlorerede carbonhydrider og blandinger deraf, farveopløsninger, titandioxid, methylenblåt, krystalviolet og carbonsort.According to the invention, it is possible to encapsulate solids or liquids. The liquid substances must be compatible with the polymer solution. Examples of suitable core materials are mineral oils, fatty oils, trichloroethyl phosphate, thiophosphoric esters, ethoxylated alkyl phenols, perfumes, aromatic and aliphatic hydrocarbons and chlorinated hydrocarbons and mixtures thereof, color solutions, titanium dioxide, methylene blue, crystal violet and carbons.

De individuelle mikroindkapslingsteknikker udføres f.eks. som følger: 1) Ved den reaktive proces opløses polycarbodiimiden først i et indifferent opløsningsmiddel, og et foreneligt kernemateriale blandes 7 147697 med den dannede opløsning.The individual microencapsulation techniques are performed e.g. as follows: 1) In the reactive process, the polycarbodiimide is first dissolved in an inert solvent and a compatible core material is mixed with the resulting solution.

Denne blanding indføres i en skæregradient, fortrinsvis produceret ved intensiv blanding med små blandere eller blandingsmaskiner, i en ikke-blandbar flydende fase, f.eks. vand, der indeholder en isocyanat-reaktiv polyamin. Aminen kan også tilsættes senere.This mixture is introduced into a cutting gradient, preferably produced by intensive mixing with small mixers or mixing machines, in a non-immiscible liquid phase, e.g. water containing an isocyanate-reactive polyamine. The amine can also be added later.

Egnede polyaminer er f.eks. 1,2-ethylendiamin, 1,4-diamino-butan, bis-(3-aminopropyl)-amin, hydrazino-2-ethanol, bis-(2-methyl--aminoethyl)-methylamin, 1,4-diamino-benzen, 4,4'-diaminio-diphenyl-methan, 1,4-diaminocyclohexan, 3-amino-l-methylamino-propan, N-hydroxyethylethylendiamin, N-methy1-bis-(3-aminopropyl)-amin, hydrazin og 1,2-ethylen-diamin-N-ethansulfonsyre (Na-salt).Suitable polyamines are e.g. 1,2-Ethylenediamine, 1,4-diamino-butane, bis- (3-aminopropyl) -amine, hydrazino-2-ethanol, bis- (2-methylaminoethyl) -methylamine, 1,4-diamino-benzene , 4,4'-diaminio-diphenyl-methane, 1,4-diaminocyclohexane, 3-amino-1-methylamino-propane, N-hydroxyethylethylenediamine, N-methyl-bis- (3-aminopropyl) -amine, hydrazine and 1, 2-ethylene-diamine-N-ethanesulfonic acid (Na salt).

2) Ved fordampningsprocessen opløses polycarbodiimidet først i et opløsningsmiddel, der har et kogepunkt under 100°C, eller som danner en azeotrop, der koger ved en temperatur under 100°C. Et foreneligt kernemateriale blandes derpå med den fremkomne opløsning. Denne blanding dispergeres ved fortrinsvis kraftig omrøring i en væske, der er ikke-blandbar med polymeropløsningsmidlet, f.eks. vand, efterfulgt af trinvis opvarmning til temperaturer over kogepunktet for polymeropløsningsmidlet eller azeotropen. Opløsningsmidlet afdampes, og polycarbodiimidet indkapsler kernematerialet under dannelse af den indre fase ved grænsefladen. Emulgeringshjælpemidler eller emulgatorer sættes fortrinsvis til den vandige fase for at opnå en bedre emulgering og for at stabilisere dispersionen. Eksempler på sådanne produkter, der virker som protektive kolloider, er carboxy-methylcellulose, gelatine og polyvinylalkohol. Eksempler på emulgatorer er ethoxyleret 3-benzyl-4-hydroxybiphenyl og reaktionsprodukter af nonyl-phenol med forskellige mængder ethylenoxid.2) In the evaporation process, the polycarbodiimide is first dissolved in a solvent having a boiling point below 100 ° C or forming an azeotrope boiling at a temperature below 100 ° C. A compatible core material is then mixed with the resulting solution. This mixture is dispersed by preferably vigorous stirring in a liquid which is immiscible with the polymer solvent, e.g. water, followed by stepwise heating to temperatures above the boiling point of the polymer solvent or azeotrope. The solvent is evaporated and the polycarbodiimide encapsulates the core material to form the inner phase at the interface. Emulsifying aids or emulsifiers are preferably added to the aqueous phase for better emulsification and to stabilize the dispersion. Examples of such products which act as protective colloids are carboxymethyl cellulose, gelatin and polyvinyl alcohol. Examples of emulsifiers are ethoxylated 3-benzyl-4-hydroxybiphenyl and reaction products of nonylphenol with various amounts of ethylene oxide.

3) Ved udfældningsprocessen opløses polycarbodiimidet først, og kernematerialet sættes derpå til den dannede opløsning, og under omrøring tilsættes et udfældningsmiddel for den polymere, der er blandbart med polymeropløsningsmidlet. Effektive opløsningsmidler for polycarbodiimidet er f.eks. chlorerede aliphatiske og aromatiske carbonhydrider, f.eks. methylenchlorid og chloroform, aromatiske carbon-hydrider, f.eks. toluen og benzen, estere, såsom ethylacetat og cycliske ethere, f.eks. tetrahydrofuran eller dioxan. Effektive opløsningsmidler for de filmdannende polycarbodiimider er også aprotiske opløsningsmidler, f.eks. Ν,Ν-dimethylformamid, dimethylsulfoxid, Ν,Ν-dimethylacetamid, N,N-di-n-butylformamid, N-methylpyrrolidon og N,N-di-n-butylacetamid.3) In the precipitation process, the polycarbodiimide is first dissolved, and the core material is then added to the solution formed and, with stirring, a precipitant for the polymer which is miscible with the polymer solvent is added. Effective solvents for the polycarbodiimide are e.g. chlorinated aliphatic and aromatic hydrocarbons, e.g. methylene chloride and chloroform, aromatic hydrocarbons, e.g. toluene and benzene, esters such as ethyl acetate and cyclic ethers, e.g. tetrahydrofuran or dioxane. Effective solvents for the film-forming polycarbodiimides are also aprotic solvents, e.g. Ν, Ν-dimethylformamide, dimethylsulfoxide, Ν, Ν-dimethylacetamide, N, N-di-n-butylformamide, N-methylpyrrolidone, and N, N-di-n-butylacetamide.

8 1476978 147697

Uanset hvilken metode der anvendes, kan polycarbodiimid-skallen yderligere modificeres. P.eks. kan forbindelser, der reagerer med carbodiimidgrupperne, sættes til mikrokapseldispersionen. Eksempler på sådanne forbindelser er polyfunktionelle carboxylsyrer, f.eks. adipinsyre, polyacrylsyre eller deres copolymere, og også polyfunktionelle aminer, f.eks. 2,5-diaminobenzensulfon-syre, 4,4'-diaminobenzen og aminoforbindelser nævnt under den reaktive proces. Polycarbodiimidskallen kan hærdnes på denne måde.Whichever method is used, the polycarbodiimide shell can be further modified. P.eks. For example, compounds that react with the carbodiimide groups can be added to the microcapsule dispersion. Examples of such compounds are polyfunctional carboxylic acids, e.g. adipic acid, polyacrylic acid or their copolymers, and also polyfunctional amines, e.g. 2,5-diaminobenzene sulfonic acid, 4,4'-diaminobenzene and amino compounds mentioned during the reactive process. The polycarbodiimide shell can be cured in this way.

Hærdningsmidlerne kan tilsættes enten før eller under fremstillingen af dispersionen til den ydre fase. Imidlertid kan hærdningsmidlerne også tilsættes efter dannelsen af mikrokapslerne i form af en opløsning eller et opløsningsmiddel, der er forenelig med den ydre fase.The curing agents can be added either before or during the preparation of the dispersion to the outer phase. However, the curing agents may also be added after the formation of the microcapsules in the form of a solution or solvent compatible with the outer phase.

Kontinuerlig og batch operation er mulig. Graden af turbulens under blandingen bestemmer diameteren af de opnåede mikrokapsler. Diameteren af mikrokapslerne kan andrage mellem ca. 5 og 5000 ,u, afhængig af blandingsbetingelserne.Continuous and batch operation is possible. The degree of turbulence during mixing determines the diameter of the microcapsules obtained. The diameter of the microcapsules can be between approx. 5 and 5000, u, depending on the mixing conditions.

Vægtforholdet mellem kernematerialet og skalmaterialet i de færdige mikrokapsler er normalt 50 til 90:50 til 10.The weight ratio of the core material to the shell material in the finished microcapsules is usually 50 to 90:50 to 10.

De opnåede mikrokapsler kan f.eks. indeholde pesticider, flammesikringsmidler, farveopløsninger, plastificeringsmidler, katalysatorer, olier, parfumer, pigmenter og farvestoffer, der allerede anvendes kommercielt i indkapslet form.The microcapsules obtained can e.g. contain pesticides, flame retardants, color solutions, plasticizers, catalysts, oils, perfumes, pigments and dyes already commercially used in encapsulated form.

Eksempel 1 a) Fremstilling af den polymere 139 g af en blanding af 80 vægtprocent 2,4-diisocyanatoto luen og 20 vægtprocent 2,6-diisocyanatotoluen blandes under omrøring ved stuetemperatur med 2 g 1-methylphospholin-l-oxid.Example 1 a) Preparation of the polymeric 139 g of a mixture of 80% by weight 2,4-diisocyanatotuene and 20% by weight 2,6-diisocyanatotoluene is mixed with stirring at room temperature with 2g of 1-methylphospholine-1-oxide.

Blandingen opskummes langsomt og giver efter ca. 12 timer en let pulveriseret polycarbodiimidskum, der er opløselig i opløsningsmidler, såsom methylenchlorid, chloroform, chlorbenzen, o-dichlor-benzen, toluen, tetrahydrofuran, N-methylpyrrolidon og dimethylform-amid. Blødgøringsområdet for reaktionsproduktet er over 200°C.The mixture is foamed slowly and gives after approx. 12 hours a lightly powdered polycarbodiimide foam soluble in solvents such as methylene chloride, chloroform, chlorobenzene, o-dichlorobenzene, toluene, tetrahydrofuran, N-methylpyrrolidone and dimethylformamide. The softening range of the reaction product is above 200 ° C.

Det er tilrådeligt at opbevare polycarbodiimidet ved temperaturer under 5°C for så vidt muligt at undgå, at det reagerer yderligere.It is advisable to store the polycarbodiimide at temperatures below 5 ° C in order to avoid further reaction as far as possible.

147697 9 b) Indkapsling 1 g af polycarbodiimidet fremstillet ifølge al opløses i 3 g chloroform, og den dannede opløsning sættes til 22 g poly-chloreret diphenyl (Clophen A 30).B) Encapsulate 1 g of the polycarbodiimide prepared according to al is dissolved in 3 g of chloroform and the resulting solution is added to 22 g of polychlorinated diphenyl (Clophen A 30).

Den homogene blanding røres derpå ud i 300 ml vand, der indeholder 1,5 g polyvinylalkohol (Moviol 70/98} som emulgeringshjælpemiddel. Dette resulterer i en opskumning af dispersionen.The homogeneous mixture is then stirred into 300 ml of water containing 1.5 g of polyvinyl alcohol (Moviol 70/98} as an emulsifier, which results in foaming of the dispersion.

Det viser sig at være tilstrækkeligt at anvende en simpel laboratorieomrører af Lenart-Rapid-typen, der roterer med 500 omdrejninger pr. minut. Et 1 liters glasbæger anvendes som reaktionsbeholder. En opløsning af 14 g ethylendiamin i 56 ml vand sættes derpå til den dannede dispersion.It turns out to be sufficient to use a simple Lenart-Rapid-type laboratory stirrer that rotates at 500 rpm. minute. A 1 liter glass beaker is used as a reaction vessel. A solution of 14 g of ethylenediamine in 56 ml of water is then added to the resulting dispersion.

Blandingen opvarmes hurtigt under kontinuerlig omrøring til 60°C og henstilles ved denne temperatur i ca. 1 time, hvorved der dannes mikrokapsler.The mixture is rapidly heated to 60 ° C with continuous stirring and allowed to stand at this temperature for approx. 1 hour, forming microcapsules.

Kapslerne frafilteres og har en diameter på op til ca. 2 mm.The capsules are filtered out and have a diameter of up to approx. 2 mm.

Ved at ændre dispersionsbetingelserne er det muligt at fremstille kapsler med størrelsesordenen af mikrokapsler, dvs. med en diameter fra ca. 5 til 100 μ.By changing the dispersion conditions, it is possible to make capsules of the order of microcapsules, ie. with a diameter of approx. 5 to 100 µ.

Eksempel 2Example 2

Indkapslingen af 25 g chlorbenzen som kernemateriale udføres som beskrevet i lb) med følgende ændringer: 2 g af polycarbodimidet fremstillet ifølge la) opløses i chlorbenzenen uden tilsætning af chloroform. Under analoge betingelser tilsættes der 30 g bis-(3-amino-propyl)-methylamin som reaktant i den ydre vandige fase.The encapsulation of 25 g of chlorobenzene as a core material is carried out as described in lb) with the following changes: 2 g of the polycarbodimide prepared according to la) is dissolved in the chlorobenzene without the addition of chloroform. Under analogous conditions, 30 g of bis- (3-amino-propyl) methylamine is added as a reactant in the outer aqueous phase.

Eksempel 3 a) Fremstilling af den polymere 228 g l,3,5-triisopropylbenzen-2,4-diisocyanat blandes med 2 g 1-methylphospholin-l-oxid, og den dannede blanding holdes ved ca. 110°C i 5 til 6 timer. Et fast stof dannes ved trinvis udvikling af carbondioxid. Det dannede faste stof har et blødgøringsområde fra 90 til 110°C og viser sig at være opløselig i opløsningsmidler såsom methylenchlorid, chloroform, chlorbenzen, N-methylpyrrolidon, toluen, en blanding af aromatiske carbonhydrider (Solvesso 100),Example 3 a) Preparation of the polymer 228 g of 1,3,5-triisopropylbenzene-2,4-diisocyanate are mixed with 2 g of 1-methylphospholine-1-oxide and the resulting mixture is maintained at ca. 110 ° C for 5 to 6 hours. A solid is formed by the stepwise evolution of carbon dioxide. The solid formed has a softening range of 90 to 110 ° C and is found to be soluble in solvents such as methylene chloride, chloroform, chlorobenzene, N-methylpyrrolidone, toluene, a mixture of aromatic hydrocarbons (Solvesso 100),

Clophen A 30, xylen, ethylenchlorid, 1,3-dichlorpropan, let benzin, benzen, tetrahydrofuran, acetone, methylethylketon og diethylether. Polycarbodimidet kan let reduceres i størrelse og kan således opbevares' ved temperaturer under 5°C.Clophen A 30, xylene, ethylene chloride, 1,3-dichloropropane, light gasoline, benzene, tetrahydrofuran, acetone, methyl ethyl ketone and diethyl ether. The polycarbodimide can be easily reduced in size and thus can be stored at temperatures below 5 ° C.

ίο 147697 b) Indkapsling 2 g af polycarbodiimidet baseret på 1,3,5-triisopropyl-benzen-2,4-diisocyanat, fremstillet ifølge eksempel 3a), opløses i 6 g methylenchlorid, og den dannede opløsning sættes til 20 g tri-n-butylphosphat. Den homogene blanding dispergeres ved hjælp af en simpel laboratorieomrører på samme måde som beskrevet i lb) efterfulgt af tilsætning af 14 g ethylendiamin i 56 ml vand. Oparbejdningen udføres på samme måde som i eksempel lb).b) Encapsulate 2 g of the polycarbodiimide based on 1,3,5-triisopropylbenzene-2,4-diisocyanate prepared according to Example 3a), dissolved in 6 g of methylene chloride and the resulting solution is added to 20 g of tri-n -butylphosphat. The homogeneous mixture is dispersed by a simple laboratory stirrer in the same manner as described in lb) followed by the addition of 14 g of ethylenediamine in 56 ml of water. The work-up is carried out in the same way as in Example 1b).

Eksempel 4 a) Fremstilling af den polymere 134 g hexamethylen-1,6-diisocyanat blandes med 2 g 1-methylphospholin-l-oxid, og den dannede blanding opvarmes i 15 timer til 50°C. Der dannes et meget viskost produkt under trinvis udvikling af carbondioxid. Produktet er opløseligt i følgende opløsningsmidler: Methylenchlorid, chloroform, chlorben-zen, toluen, solvent naphtha (blanding af aromatiske carbonhydrider, BV Aral), Chlophen A 30, tri-n-butylphosphat, tris-chlorethyl-phosphat, ethylenchlorid, 1,3-dichlorpropan, cyclohexan, let benzin, methylethylketon, acetone, ethylacetat, pyrrolidon, N-methyl-pyrrolidon, dimethylformamid, benzen, dioxan og tetrahydrofuran. Polycarbodiimidet skal opbevares ved temperaturer under 5oc.Example 4 a) Preparation of the polymer 134 g of hexamethylene-1,6-diisocyanate are mixed with 2 g of 1-methylphospholine-1-oxide and the resulting mixture is heated to 50 ° C for 15 hours. A very viscous product is formed during the stepwise development of carbon dioxide. The product is soluble in the following solvents: Methylene chloride, chloroform, chlorobenzene, toluene, solvent naphtha (mixture of aromatic hydrocarbons, BV Aral), Chlophen A 30, tri-n-butyl phosphate, tris-chloroethyl phosphate, ethylene chloride, 1.3 -dichloropropane, cyclohexane, light petrol, methyl ethyl ketone, acetone, ethyl acetate, pyrrolidone, N-methyl-pyrrolidone, dimethylformamide, benzene, dioxane and tetrahydrofuran. The polycarbodiimide should be stored at temperatures below 5 ° C.

b) Indkapslingb) Encapsulation

Eksempel I; 2 til 5 g af polycarbodiimidet fremstillet ifølge 4a) opløses i 25 g chlorbenzen og dispergeres i 300 ml vand ved hjælp af en laboratorieomrører af Lenart-Rapid-typen, der roterer med 500 omdrejninger pr. minut. 14 g ethylendiamin opløst i 56 ml vand sættes til den dannede blanding.Example I; 2 to 5 g of the polycarbodiimide prepared according to 4a) are dissolved in 25 g of chlorobenzene and dispersed in 300 ml of water by means of a Lenart-Rapid-type laboratory stirrer, rotating at 500 rpm. minute. 14 g of ethylenediamine dissolved in 56 ml of water are added to the resulting mixture.

Eksempel II: Til indkapsling af 25 g tri-n-butylphosphat opløses 2 g af polycarbodiimidet af hexamethylen-1,6-diisocyanat i phosphatet og bearbejdes yderligere som beskrevet i eksempel I:Example II: To encapsulate 25 g of tri-n-butyl phosphate, 2 g of the polycarbodiimide of hexamethylene-1,6-diisocyanate is dissolved in the phosphate and further processed as described in Example I:

Eksempel III: 2,5 g åf polycarbodiimidet fremstillet ifølge 4a) opløses i 25 g solventnaphtha og bearbejdes yderligere som beskrevet i eksempel I. I dette tilfælde repræsenterer 2 g af polycarbodimidet den lavere grænse.Example III: 2.5 g of the polycarbodiimide prepared according to 4a) are dissolved in 25 g of solvent naphtha and further processed as described in Example I. In this case, 2 g of the polycarbodimide represents the lower limit.

Blandinger I og III oparbejdes som beskrevet i lb). En anden bemærkelsesværdig egenskab fælles for alle disse tre blandinger er, at der ikke er noget behov for en forøgelse af temperaturen under .oparbejdningen, hvorfor kapslerne ikke påvirkes uheldigt. Det er endog muligt 11 147697 at fremstille mikrokapsler uden noget behov for forlænget efter-omrøring. I denne forbindelse er imidlertid forsøg udført med kun 2 g af polycarbodiimidet problematiske, fordi de opnåede kapselmembraner er mindre stabile. Ved tilvejebringelse af passende dispersionsbetingelser viser det sig at være muligt ved alle forsøgene at fremstille mikrokapsler med en diameter fra 5 til 100 /x.Mixtures I and III are worked up as described in lb). Another notable feature common to all of these three mixtures is that there is no need for an increase in temperature during work-up, which is why the capsules are not adversely affected. It is even possible to make microcapsules without any need for extended post-stirring. However, in this regard, experiments with only 2 g of the polycarbodiimide are problematic because the capsule membranes obtained are less stable. By providing suitable dispersion conditions, it appears to be possible in all experiments to produce microcapsules having a diameter of from 5 to 100 µ.

Eksempel 5 10 g af polycarbodiimidet baseret på tolylendiisocyanat fremstillet ifølge la) opløses i 90 g chloroform. 40 g af en blanding af aromatiske carbonhydfider (cumen, xylen, toluen, naphtheniske olier = solvent naphtha produceret af BV Aral) tilsættes derpå, og den homogene blanding dispergeres i en opløsning af 2,5 g polyvinylalkohol (Moviol 70/98) og 2,5 g hydrazino-ethanol i 500 g vand. 2,5 g gelatine eller 2,5 g carboxymethylcellulose (natriumsalt) kan også anvendes som emulgeringshjælp. Som reaktions-beholder anvendes et 1 liter bægerglas. Dispersionen opvarmes til 60°C, og det polymere opløsningsmiddel afdestilieres langsomt i løbet af 4 timer. Det viser sig at være tilstrækkeligt at anvende en simpel laboratorieomrører af typen Lenart-Rapid til dispergeringen. Kapslerne har en middeldiameter på ca. 85 ja. ved en omrøringshastighed på 1750 omdrejninger pr. minut og en middeldiameter på ca. 150 ji ved en omrøringshastighed på 700 omdrejninger pr. minut. Det viser sig, at hydrazino-ethanolen, der anvendes til hærdning af polycarbodiimidskallerne, også kan tilsættes med en lignende effekt efter dispergeringen eller efter at det meste af det polymere opløsningsmiddel er blevet af-destilleret. De dannede kapsler frafiltreres og tørres.Example 5 10 g of the polycarbodiimide based on tolylene diisocyanate prepared according to Ia) are dissolved in 90 g of chloroform. 40 g of a mixture of aromatic hydrocarbons (cumene, xylene, toluene, naphthenic oils = solvent naphtha produced by BV Aral) are then added and the homogeneous mixture is dispersed in a solution of 2.5 g of polyvinyl alcohol (Moviol 70/98) and 2 , 5 g of hydrazino-ethanol in 500 g of water. 2.5 g of gelatin or 2.5 g of carboxymethyl cellulose (sodium salt) can also be used as an emulsifier. A 1 liter beaker is used as the reaction vessel. The dispersion is heated to 60 ° C and the polymeric solvent is slowly distilled off over 4 hours. It turns out to be sufficient to use a simple Lenart-Rapid laboratory stirrer for the dispersion. The capsules have an average diameter of approx. 85 yes. at a stirring speed of 1750 rpm. and a mean diameter of approx. 150 µl at a stirring rate of 700 rpm. minute. It turns out that the hydrazino-ethanol used to cure the polycarbodiimide shells can also be added with a similar effect after the dispersion or after most of the polymeric solvent has been distilled off. The resulting capsules are filtered off and dried.

Eksempel 6 10 g af polycarbodiimidet baseret på tolylendiisocyanat fremstillet ifølge la) opløses i 90 g methylenchlorid og bearbejdes som beskrevet i eksempel 5 med følgende ændringer: 40 g af en opvarmningsbadolie baseret på diphenyl (Marlotherm, et produkt fra Huls/Marl) sættes til polymeropløsningen som kernemateriale. 2,5 g af carboxy-!· methylcellulose (natriumsalt) og 2,5 g af en emulgator baseret på nonylphenol og ethylenoxid (emulgator NP 7, et produkt fra Bayer AG) anvendes som emulgeringshjælp for den homogene disperse fase. Dispersionen opvarmes til kun 40-45°C. 5 g adipinsyre sættes til den vandige fase som hærdningsmiddel for kapselskallen. De dannede kapsler frafiltreres og tørres. Som beskrevet i eksempel' 5, viser det sig at være muligt at anvende gelatine eller polyvinylalkohol (Moviol 70/98) i ste- 12 147697 det for carboxymethylcellulose som emulgeringshjælp.Example 6 10 g of the tolylene diisocyanate based polylcarbodiimide prepared according to Ia) are dissolved in 90 g of methylene chloride and processed as described in Example 5 with the following changes: 40 g of a diphenyl heating bath oil (Marlotherm, a Huls / Marl product) is added to the polymer solution as a core material. 2.5 g of carboxylic methylcellulose (sodium salt) and 2.5 g of a nonylphenol and ethylene oxide emulsifier (emulsifier NP 7, a product of Bayer AG) are used as emulsifying aid for the homogeneous disperse phase. The dispersion is heated to only 40-45 ° C. 5 g of adipic acid are added to the aqueous phase as a hardening agent for the capsule shell. The resulting capsules are filtered off and dried. As described in Example 5, it appears to be possible to use gelatin or polyvinyl alcohol (Moviol 70/98) in place of carboxymethyl cellulose as an emulsifier.

Eksempel 7 a) Fremstilling af den polymereExample 7 a) Preparation of the polymer

Til fremstilling af et polycarbodiimid ud fra 1-isocyanat--3,5,5-trimethyl-5-isocyanatmethylcyclohexan omrøres 177 g af diiso-cyanatet grundigt med 2 g 1-methylphospholin-l-oxid efterfulgt af en opbevaring i ca. 12 timer ved en temperatur på 100-110°C.To prepare a polycarbodiimide from 1-isocyanate-3,5,5-trimethyl-5-isocyanate methylcyclohexane, 177 g of the diisocyanate is thoroughly stirred with 2 g of 1-methylphospholine-1-oxide followed by storage for ca. 12 hours at a temperature of 100-110 ° C.

Der fås herved et meget viskost produkt. Produktet er opløselig i opløsningsmidler såsom methylenchlorid, chloroform, chlorbenzen, toluen, Solvesso 100, tri-n-butylphosphat, ethylenchlorid, 1,3-di-chlorpropan, trichlorethylen, methylethylketon, acetone, tetrahydro-furan, dioxan og benzen.This provides a very viscous product. The product is soluble in solvents such as methylene chloride, chloroform, chlorobenzene, toluene, Solvesso 100, tri-n-butyl phosphate, ethylene chloride, 1,3-dichloropropane, trichlorethylene, methyl ethyl ketone, acetone, tetrahydrofuran, dioxane and benzene.

b) Indkapslingb) Encapsulation

Eksempel I: 2,5 g af polycarbodiimidet fremstillet ifølge eksempel 7a) opløses i 25 g chlorbenzen eller Solvesso 100, disper-geret i 300 ml vand ved 500 omdrejninger pr. minut efterfulgt af tilsætningen af 14 g ethylendiamin opløst i 56 ml vand. Som omrører anvendes en simpel laboratorieomrører af typen Lenart-Rapid. I modsætning til indkapslinger med andre polycarbodiimider opnås de bedste resultater i dette tilfælde ved omrøring i 1 time ved stuetemperatur, dvs. uden opvarmning. De opnåede kapsler filtreres derpå fra og tørres i luft.Example I: 2.5 g of the polycarbodiimide prepared according to Example 7a) is dissolved in 25 g of chlorobenzene or Solvesso 100, dispersed in 300 ml of water at 500 rpm. minute followed by the addition of 14 g of ethylenediamine dissolved in 56 ml of water. A simple laboratory stirrer of the Lenart-Rapid type is used as a stirrer. In contrast to enclosures with other polycarbodiimides, the best results in this case are obtained by stirring for 1 hour at room temperature, ie. without heating. The obtained capsules are then filtered off and dried in air.

Eksempel II: 5 g af polycarbodiimidet fra eksempel 7a) opløses i .... . _ 10 --g - chlorbenzen.·,- og· den dannede opløsning sættes til 20 g Chlophen A 30.Example II: 5 g of the polycarbodiimide of Example 7a) are dissolved in .... 10 g of chlorobenzene., And the resulting solution are added to 20 g of Chlophen A 30.

Denne opløsning dispergeres i 300 ml vand og bearbejdes yderligere som beskrevet i eksempel I.This solution is dispersed in 300 ml of water and further processed as described in Example I.

Eksempel 8 4 g af polycarbodiimidet af l,3,5-triisopropylbenzen-2,4--diisocyanat fremstillet ifølge 3a) opløses i 196 g methylenchlorid, og den dannede opløsning blandes med 20 g finpulveriseret medicinsk carbon under anvendelse af en Lenart-Rapid-laboratorieomrører med 200 omdrejninger pr. minut.Example 8 4 g of the polycarbodiimide of 1,3,5-triisopropylbenzene-2,4-diisocyanate prepared according to 3a) are dissolved in 196 g of methylene chloride and the resulting solution is mixed with 20 g of finely powdered medical carbon using a Lenart Rapid laboratory stirrer with 200 rpm. minute.

Den dannede dispersion holdes ved ca. 25°C efterfulgt af en tilsætning i løbet af 1 time under kontinuerlig omrøring af 250 ml acetone, Polycarbodiimidet udfældes kvantitativt i fin form med det aktiverede carbon indesluttet.The resulting dispersion is maintained at ca. 25 ° C followed by an addition over 1 hour with continuous stirring of 250 ml of acetone, the polycarbodiimide precipitates quantitatively in fine form with the activated carbon enclosed.

13 14769713 147697

Effekten af det indesluttede aktiverede carbon på den vandige methylenblå opløsning (i analogi med standardiseringen ifølge DAB 6) var tydeligt formindsket, ændringen til et forhold mellem kerne og skal til 50:50 giver yderligere en formindskelse af aktiviteten af det indesluttede aktiverede carbon.The effect of the contained activated carbon on the aqueous methylene blue solution (analogous to the standardization according to DAB 6) was clearly diminished, the change to a core to shell ratio to 50:50 further decreases the activity of the contained activated carbon.

DK204576AA 1975-05-10 1976-05-07 MICROCapsule comprising a core and a shell comprising a film-forming polycarbodiimide as well as a process for its preparation DK147697B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2520892 1975-05-10
DE2520892 1975-05-10
DE19752523586 DE2523586C3 (en) 1975-05-28 1975-05-28 Use of polycarbodiimides in the manufacture of microcapsules
DE2523586 1975-05-28

Publications (2)

Publication Number Publication Date
DK204576A DK204576A (en) 1976-11-11
DK147697B true DK147697B (en) 1984-11-19

Family

ID=25768878

Family Applications (1)

Application Number Title Priority Date Filing Date
DK204576AA DK147697B (en) 1975-05-10 1976-05-07 MICROCapsule comprising a core and a shell comprising a film-forming polycarbodiimide as well as a process for its preparation

Country Status (12)

Country Link
JP (1) JPS51137676A (en)
BR (1) BR7602885A (en)
CA (1) CA1079585A (en)
CH (1) CH603235A5 (en)
DD (1) DD125473A5 (en)
DK (1) DK147697B (en)
FR (1) FR2310801A1 (en)
GB (1) GB1529517A (en)
IL (1) IL49539A (en)
IT (1) IT1061255B (en)
MX (1) MX146606A (en)
NL (1) NL7604927A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2617747C2 (en) * 1976-04-23 1982-07-01 Bayer Ag, 5090 Leverkusen Reaction carbonless papers
DE2619524A1 (en) * 1976-05-03 1977-11-24 Bayer Ag METHOD OF MANUFACTURING MICROCAPSULES
US7833578B2 (en) 2003-07-07 2010-11-16 Taiwan Textile Research Institute Composition and method for fabricating microcapsules encapsulating phase-change material
WO2009112467A1 (en) * 2008-03-11 2009-09-17 Basf Se Microcapsules with acylurea walls
JP7080772B2 (en) * 2018-08-29 2022-06-06 トッパン・フォームズ株式会社 Manufacturing method of microcapsules

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2311712B2 (en) * 1973-03-09 1978-08-10 Bayer Ag, 5090 Leverkusen Process for the production of microcapsules

Also Published As

Publication number Publication date
JPS6151941B2 (en) 1986-11-11
FR2310801A1 (en) 1976-12-10
DK204576A (en) 1976-11-11
CA1079585A (en) 1980-06-17
CH603235A5 (en) 1978-08-15
MX146606A (en) 1982-07-15
FR2310801B1 (en) 1982-05-07
IT1061255B (en) 1983-02-28
IL49539A (en) 1979-11-30
BR7602885A (en) 1976-11-23
IL49539A0 (en) 1976-07-30
JPS51137676A (en) 1976-11-27
DD125473A5 (en) 1977-04-20
NL7604927A (en) 1976-11-12
GB1529517A (en) 1978-10-25

Similar Documents

Publication Publication Date Title
US4193889A (en) Microencapsulation with modified aliphatic polyisocyanates
JP3266330B2 (en) Microcapsules prepared from isocyanates having groups containing poly (ethylene oxide)
US4766176A (en) Storage stable heat curable organosiloxane compositions containing microencapsulated platinum-containing catalysts
JP2866385B2 (en) Preparation of multi-wall polymer microcapsules
US5225118A (en) Process for manufacturing polyurea microcapsules and product therefrom
US4428983A (en) Process for the production of microcapsules
EP0508576B1 (en) Microcapsules from polyfunctional aziridines
DK149341B (en) PROCEDURE FOR ENCAPPING HYDROPHOPHIC SUBSTANCES BY INTERFACE POLICY CONDENSATION
US4643764A (en) Multiple types of microcapsules and their production
JPS585697B2 (en) Encapsulation method
EP0174724A2 (en) Microencapsulation of polyisocyanates by interchange of emulsions
US4119565A (en) Production of microcapsules, and the resulting microcapsules
US4518547A (en) Microencapsulation process
DK147697B (en) MICROCapsule comprising a core and a shell comprising a film-forming polycarbodiimide as well as a process for its preparation
JPH06279735A (en) Microcapsulated adhesive agent and its manufacturing process
US4120518A (en) Carbonless copying papers
EP0339803B1 (en) Method for microencapsulating a compound of a platinum group metal
DE2523586C3 (en) Use of polycarbodiimides in the manufacture of microcapsules
EP0148769A1 (en) Process for producing multiple types of microcapsules
CA1104881A (en) Process for producing microcapsules having secondary capsule walls and microcapsules produced thereby
JPS6336819B2 (en)
US3754062A (en) Method for encapsulation of hydrophobic materials utilizing urethane elastomers
EP0293172A2 (en) Polymer particles
NO115280B (en)
CN112970749B (en) Slow-release antibacterial microcapsule and preparation method thereof