DK147583B - HEAT EXCHANGES WITH A HEADROOM SURROUNDED BY WATER - Google Patents

HEAT EXCHANGES WITH A HEADROOM SURROUNDED BY WATER Download PDF

Info

Publication number
DK147583B
DK147583B DK192279AA DK192279A DK147583B DK 147583 B DK147583 B DK 147583B DK 192279A A DK192279A A DK 192279AA DK 192279 A DK192279 A DK 192279A DK 147583 B DK147583 B DK 147583B
Authority
DK
Denmark
Prior art keywords
tube
heat exchanger
water
heat
main pipe
Prior art date
Application number
DK192279AA
Other languages
Danish (da)
Other versions
DK192279A (en
DK147583C (en
Inventor
Lennart Backlund
Original Assignee
Foerenade Fabriksverken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foerenade Fabriksverken filed Critical Foerenade Fabriksverken
Publication of DK192279A publication Critical patent/DK192279A/en
Publication of DK147583B publication Critical patent/DK147583B/en
Application granted granted Critical
Publication of DK147583C publication Critical patent/DK147583C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/14Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically both tubes being bent

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

147583147583

Opfindelsen angår en varmeveksler med et hovedrør, som er omgivet af vand, hvorfra varme skal overføres til et koldt varmevekslermedium, som strømmer gennem hovedrøret.The invention relates to a heat exchanger with a main pipe surrounded by water, from which heat is to be transferred to a cold heat exchanger medium which flows through the main pipe.

Ved udvindelse af energi af søvand ved hjælp af varmepumpe-5 anlæg møder man ofte problemet med tilisning af den del af sy stemet, som optager energien fra vandet. Da vandet i søer og vandløb i mange lande i vintertiden holder en forholdsvis lav temperatur (+1,8°C på 40 m dybde ca. 1 m fra bunden i Storsjdn, Jåmtland), bliver den til rådighed stående temperaturdifference 10 ned til 0°C meget lille. Hvis man derfor vil undgå tilisning af varmevekslerens hovedrør, må man sørge for, at varmevekslermediet, når det strømmer ind i hovedrøret, har en forholdsvis høj temperatur, nemlig så høj, at den energioptagelse, der sker fra vandet, bliver tilstrækkeligt lille til, at dette ikke fry-15 ser. En høj tilløbstemperatur af varmevekslermediet medfører imidlertid, at der, for at der kan optages tilstrækkelig energi i varmevekslermediet, skal anvendes meget af dette. Dette kunne der rådes bod på ved at anvende en lavere tilløbstemperatur af varmevekslermediet til hovedrøret for derved at få et større 20 temperaturfald mellem vandet, der omgiver dette, og varmeveksler mediet, men i så fald risikerer man tilisning af hovedrøret, idet varmevekslermediet i så fald vil optage så megen energi fra vandet, at dettes temperatur falder til under frysepunktet.When extracting energy from lake water by means of heat pump-5 systems, one often encounters the problem of icing the part of the system that absorbs the energy from the water. As the water in lakes and streams in many countries in winter time maintains a relatively low temperature (+ 1.8 ° C at 40 m depth about 1 m from the bottom in Storsjdn, Jämtland), the available temperature difference becomes 10 down to 0 ° C very small. Therefore, if you want to avoid icing of the heat exchanger's main pipe, make sure that the heat exchanger medium as it enters the main pipe has a relatively high temperature, namely so high that the energy absorption that occurs from the water becomes sufficiently small that this does not fry-15 looks. However, a high inlet temperature of the heat exchanger medium means that in order for sufficient energy to be absorbed into the heat exchanger medium, much of this must be used. This could be remedied by applying a lower inlet temperature of the heat exchanger medium to the main pipe, thereby causing a greater temperature drop between the water surrounding it and the heat exchanger medium, but in that case risking icing of the main pipe, the heat exchanger medium being then will absorb so much energy from the water that its temperature drops below freezing point.

En sådan tilisning nedsætter i væsentlig grad varmevekslerens 25 effektivitet.Such icing significantly reduces the efficiency of the heat exchanger 25.

Varmeveksleren ifølge den foreliggende opfindelse er ejendommelig ved, at hovedrøret,i det mindste på en strækning begyndende ved hovedrørets indløb,indeholder et antal med hovedrøret i det væsentlige koncentriske rør, hvorhos varmevekslermediet 30 er beregnet til under tryk at blive tilført det inderste rør, og hvorhos rørene er forsynet med på en sådan måde placerede endevægge, at mediet bringes til at strømme frem og tilbage i mellemrummene mellem de koncentriske rør og til slutteligt at strømme i mellemrummet mellem det yderste rør og hovedrøret.The heat exchanger according to the present invention is characterized in that the main pipe, at least along a stretch beginning at the inlet of the main pipe, contains a number of the main pipe substantially concentric pipe, the heat exchanger medium 30 being intended to be pressurized to the inner pipe, and wherein the tubes are provided with end walls so arranged as to cause the medium to flow back and forth in the spaces between the concentric tubes and finally to flow in the space between the outer tube and the main tube.

35 Herved opnås der en betydelig nedsættelse af faren for tilis ning af hovedrøret selv ved anvendelse af et varmevekslermedium med lille tilløbstemperatur. Dette skyldes, at der ved varmevekslerens anvendelse vil indstille sig en temperaturgradient 2 147583 mellem på den ene side berøringsfladen mellem hovedrørets yderside og det omgivende vand og på den anden side det inderste rør. Denne gradient skyldes, at det varmevekslermedium, der strømmer i mellemrummet mellem det yderste rør og hovedrøret, vil blive 5 opvarmet af dette sidste og vil afgive en del af sin varme til det yderste rør, der på sin side vil opvarme det varmevekslermedium, som strømmer inde i det yderste rør, og dette varmeveksler-. medium vil igen afgive en del af sin varme til det næste rør, indtil der endelig vil ske en varmeoverførsel til det gennem det 10 inderste rør tilstrømmende kolde varmevekslermedium. Dette inde bærer igen, at varmevekslermediet allerede er blevet opvarmet i nogen grad, når det strømmer ind i mellemrummet mellem det yderste rør og hovedrøret, hvorved energioptagelsen på dette sted fra det omgivende vand formindskes, og tilisningsfaren tilsva-15 rende reduceres. Selv om varmevekslermediet strømmer til mellem rummet mellem det yderste rør og hovedrøret med en forholdsvis høj temperatur, opnås der alligevel en god energioptagelse fra det omgivende vand, idet varmevekslermediet under sin strømning i mellemrummet mellem det yderste rør og hovedrøret afgiver 20 en del af sin varme til det yderste rør og følgelig selv under går en langsommere opvarmning, end tilfældet ellers ville være.35 There is thus a considerable reduction in the danger of lamination of the main pipe even when using a heat exchanger medium with a low inlet temperature. This is because, with the application of the heat exchanger, a temperature gradient will adjust between the contact surface on the one hand between the outside of the main pipe and the surrounding water and on the other hand the inner pipe. This gradient is due to the fact that the heat exchanger medium flowing in the space between the outer tube and the main tube will be heated by the latter and will give part of its heat to the outer tube which in turn will heat the heat exchanger medium flowing inside the outer tube and this heat exchanger. medium will again dispense some of its heat to the next tube until finally a heat transfer to the cold heat exchanger medium flowing through the innermost inner tube. This in turn implies that the heat exchanger medium has already been heated to some extent as it flows into the gap between the outermost tube and the main tube, thereby reducing the energy absorption at this location from the surrounding water and correspondingly reducing the icing hazard. Although the heat exchanger medium flows to the space between the outer tube and the main pipe at a relatively high temperature, good energy is still obtained from the surrounding water, the heat exchanger medium during its flow in the space between the outer tube and the main tube giving off some of its heat. to the outer tube and, consequently, even undergoing a slower heating than would otherwise be the case.

Sagt med andre ord, vil det varmevekslermedium, som strømmer i mellemrummet mellem det yderste rør og hovedrøret kunne opretholde en tilstrækkelig lav temperatur til, at der opnås en god 25 varmeoverførsel fra vandet og til det varmevekslermedium, der strømmer i det pågældende mellemrum, og som vil være betydeligt højere end i det tilfælde, hvor det pågældende varmevekslermedium ikke kunne afgive en del af sin tilførte varme under sin strømning gennem det nævnte mellemrum. Opfindelsen medfører 30 således, at et billigt aggregat af f.eks. plastrør kan anvendes til udvindelse af energi fra f.eks. søvand. Aggregatet, som udgør et lukket system, der indeholder et varmevekslermedium med lavt frysepunkt, kan lægges direkte i søen.In other words, the heat exchanger medium which flows in the space between the outer tube and the main tube can maintain a sufficiently low temperature to obtain a good heat transfer from the water and to the heat exchanger medium flowing in that space and which will be considerably higher than in the case where the heat exchanger medium in question could not dispense a portion of its heat supplied during its flow through said gap. The invention results in such that a cheap assembly of e.g. plastic pipes can be used to extract energy from e.g. lake water. The unit, which forms a closed system containing a low freezing point heat exchanger medium, can be installed directly in the lake.

Opfindelsen skal herefter forklares nærmere under henvisning 35 til tegningen, som viser en udførelsesform for varmeveksleren ifølge opfindelsen, idet 147583 3 fig. 1 skematisk viser et anlæg, hvori en eller flere varmevekslere ifølge opfindelsen kan indgå, og fig. 2 et vandret snit af en udførelsesform for varmeveksleren ifølge opfindelsen.The invention will now be explained in more detail with reference to the drawing, which shows an embodiment of the heat exchanger according to the invention, with fig. 1 is a schematic representation of a plant in which one or more heat exchangers according to the invention may be incorporated; and FIG. 2 is a horizontal section of an embodiment of the heat exchanger according to the invention.

5 I fig. 1 betegner 1 en ikke nærmere vist mekanisme til cirkulering af et varmevekslermedium, f.eks. en væske med nedsat frysepunkt gennem et på bunden af en sø nedlagt rørsystem 2. Søvandets temperatur kan være ca. 2°C, medens væsken med nedsat frysepunkt kan have temperaturen 10 —4°C.5 In FIG. 1, 1 denotes a mechanism not shown in detail for circulating a heat exchanger medium, e.g. a liquid with a reduced freezing point through a pipe system 2 laid on the bottom of a lake. The temperature of the sea water can be approx. 2 ° C, while the liquid with reduced freezing point may have a temperature of 10 - 4 ° C.

Systemet 2 omfatter to parallelle rør 3 og 4, hvorimellem et eller flere varmevekslerrør 5, i det følgende benævnt hovedrør, er tilsluttet. Væsken med nedsat frysepunkt tilføres under tryk gennem røret 3, hvorefter væsken 15 strømmer gennem rørene 5, således som vist med pile, hvor ved varme optages af væsken, således at dennes temperatur stiger til ca. +1°C ved indstrømningen i røret 4. Den på denne måde udvundne varme anvendes i mekanismen 1 på konventionel måde, hvorved temperaturen af væsken, som forla-20 der mekanismen 1, påny synker til ca. -4°C.The system 2 comprises two parallel pipes 3 and 4, between which one or more heat exchanger pipes 5, hereinafter referred to as the main pipe, are connected. The liquid with reduced freezing point is supplied under pressure through the pipe 3, after which the liquid 15 flows through the pipes 5, as shown by arrows, where heat is taken up by the liquid, so that its temperature rises to approx. + 1 ° C at the flow into the pipe 4. The heat thus obtained is used in the mechanism 1 in a conventional manner, whereby the temperature of the liquid leaving the mechanism 1 drops again to approx. -4 ° C.

Et af hovedrørene i fig. 1 er vist i enkeltheder i fig.One of the main pipes in FIG. 1 is shown in detail in FIG.

2. Hovedrøret 5 er ved den ene ende på tætnende måde fastgjort mod en ringformet flange 6 på røret 3's kappeflade, og er ved den anden ende på tætnende måde fastgjort mod en ringformet 25 flange 7, der er dannet af en udkraget kant langs en i røret 4's kappe udsparet cirkulær åbning 8.2. The main tube 5 is sealed at one end to an annular flange 6 on the casing surface of the tube 3 and at the other end is sealed to an annular flange 7 formed by a projected edge along a the casing of the tube 4 recessed circular aperture 8.

Hovedrøret 5 indeholder fire indre med hovedrøret 5 i hovedsagen koncentriske rør 9-12. Røret 3's kappe er forsynet med en cirkulær åbning 13, hvis kant er udkraget til dan-30 nelse af en ringformet flange 14, omkring hvilken røret 9 er fastgjort på tætnende måde.The main pipe 5 contains four interiors with the main pipe 5 generally concentric pipe 9-12. The sheath of the tube 3 is provided with a circular aperture 13, the edge of which is projected to form an annular flange 14, around which the tube 9 is sealed in a sealing manner.

Røret 10 er ved hjælp af afstandsorganer 15 fastgjort koncentrisk omkring røret 9 i afstand fra røret 3's kappeflade. Røret 9's frie ende udmunder i afstand fra den 35 hosværende ende af røret 10, som er lukket ved hjælp af en endevæg 16.The tube 10 is fixed by concentric means 15 around the tube 9 at a distance from the casing surface of the tube 3. The free end of the tube 9 extends at a distance from the present end of the tube 10 which is closed by an end wall 16.

Røret 11 er på tætnende måde fastgjort mod en ringfor- 147533 4 met flange 17 på røret 3. Røret 12 er ved hjælp af afstandsorganer 18 fastgjort koncentrisk omkring røret 11 i afstand fra røret 3's kappeflade. Den ende af røret 12, som befinder sig nærmest røret 4, er lukket ved hjælp af 5 en endevæg 19, som befinder sig i afstand fra røret 11's frie ende.The tube 11 is sealed in a sealing manner against an annular flange 17 of the tube 3. The tube 12 is secured by means of spacers 18 concentrically around the tube 11 at a distance from the casing surface of the tube 3. The end of the tube 12 which is closest to the tube 4 is closed by means of an end wall 19 which is spaced from the free end of the tube 11.

Væske, som strømmer ind i røret 9 gennem åbningen 13 i røret-3, strømmer først gennem røret 9 og derefter frem og tilbage gennem mellemrummene mellem rørene 9-12 og 5, 10 således som vist med pile i fig. 2. Derved opnås der en styret temperaturgradient fra kontaktoverfladen mellem vandet og den energioptagende overflade til den koldeste del af det energioptagende medium, hvorved der undgås en påfrysning af hovedrøret 5's kontaktoverflade i forhold 15 til vandet.Liquid flowing into the tube 9 through the opening 13 in the tube-3 first flows through the tube 9 and then back and forth through the spaces between the tubes 9-12 and 5, 10 as shown by arrows in FIG. 2. Thereby, a controlled temperature gradient is obtained from the contact surface between the water and the energy-absorbing surface to the coldest part of the energy-absorbing medium, thereby avoiding a freezing of the contact surface of the main pipe 5 relative to the water.

Rørene 9-12 kan med fordel bestå af tyndvæggede, billige plastrør. Kun til hovedrøret 5 behøver man at stille større krav, hvad angår diffusionstæthed.The pipes 9-12 can advantageously consist of thin-walled, cheap plastic pipes. Only for the main pipe 5 does one have to make greater demands regarding diffusion density.

Proportionerne mellem zonerne A og B, jfr. fig. 2, lige-20 som antallet af rør og disses dimensioner og længder, væl ges på en sådan måde, at der opnås optimal udløbstemperatur af det varmebærende medium.The proportions between zones A and B, cf. FIG. 2, as well as the number of pipes and their dimensions and lengths, are selected in such a way that optimum outlet temperature of the heat-carrying medium is obtained.

DK192279A 1978-05-09 1979-05-09 HEAT EXCHANGES WITH A HEADROOM SURROUNDED BY WATER DK147583C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE7805240A SE422623B (en) 1978-05-09 1978-05-09 HEAT EXCHANGER WITH A HEAD RUBBER Surrounded by water, WHEREFORE HEAT SHOULD BE TRANSFERRED TO A HEAD RUB CURRENT COLD SWITCHING MEDIUM
SE7805240 1978-05-09

Publications (3)

Publication Number Publication Date
DK192279A DK192279A (en) 1979-11-10
DK147583B true DK147583B (en) 1984-10-08
DK147583C DK147583C (en) 1985-05-06

Family

ID=20334862

Family Applications (1)

Application Number Title Priority Date Filing Date
DK192279A DK147583C (en) 1978-05-09 1979-05-09 HEAT EXCHANGES WITH A HEADROOM SURROUNDED BY WATER

Country Status (5)

Country Link
CA (1) CA1098510A (en)
DK (1) DK147583C (en)
FI (1) FI66248C (en)
NO (1) NO145590C (en)
SE (1) SE422623B (en)

Also Published As

Publication number Publication date
DK192279A (en) 1979-11-10
DK147583C (en) 1985-05-06
FI66248B (en) 1984-05-31
CA1098510A (en) 1981-03-31
NO145590C (en) 1982-04-21
NO145590B (en) 1982-01-11
NO791524L (en) 1979-11-12
FI791471A (en) 1979-11-10
SE422623B (en) 1982-03-15
FI66248C (en) 1984-09-10

Similar Documents

Publication Publication Date Title
US4552208A (en) Heat actuated system for circulating heat transfer fluids
RU2125744C1 (en) System for passive heat dissipation from inner space of nuclear reactor containment
US5165472A (en) Heat exchanger with fluid injectors
GB1000238A (en) Heat exchanger
KR890002525B1 (en) Steam heating equipment with condensate vessel and return line
JPS5930911B2 (en) Improved condensable fluid supply circuit for solar thermal engines
US3590912A (en) Vertical staggered surface feedwater heater
SU1026661A3 (en) Case-and-tube heat exchanger
US1965218A (en) Electrical heating system
DK147583B (en) HEAT EXCHANGES WITH A HEADROOM SURROUNDED BY WATER
US2111991A (en) System for heating by hot water circulation
BE892528A (en) SOLAR HEATING INSTALLATION
JP3970514B2 (en) Loop heat exchange heat transport equipment
US4607688A (en) Autogenous solar water heater
US2114316A (en) Heating and cooling apparatus
GB2085573A (en) Warm Water Store for a Solar Collector
CN111508624A (en) Cooling system
US2399916A (en) Refrigeration
JP2735278B2 (en) Natural radiation type containment cooling system
JPH03229100A (en) Vaporizer for cryogenic liquefied gas
NO127439B (en)
US2594616A (en) Hot-water heating device and method
JPS58112083A (en) Heat-accumulating tank
RU2688317C1 (en) Method of liquid separation into fractions and device for its implementation
GB986143A (en) Improvements in combination heat exchanger and degasifier