DK147079B - PROCEDURE FOR THE PREPARATION OF HYDROFILE POLYOLEFIN FIBERS AND PAPER PRODUCTS CONTAINING THESE - Google Patents

PROCEDURE FOR THE PREPARATION OF HYDROFILE POLYOLEFIN FIBERS AND PAPER PRODUCTS CONTAINING THESE Download PDF

Info

Publication number
DK147079B
DK147079B DK36777A DK36777A DK147079B DK 147079 B DK147079 B DK 147079B DK 36777 A DK36777 A DK 36777A DK 36777 A DK36777 A DK 36777A DK 147079 B DK147079 B DK 147079B
Authority
DK
Denmark
Prior art keywords
polymer
flash
parts
approx
anionic
Prior art date
Application number
DK36777A
Other languages
Danish (da)
Other versions
DK147079C (en
DK36777A (en
Inventor
Terence William Rave
Original Assignee
Hercules Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/653,188 external-priority patent/US4035229A/en
Application filed by Hercules Inc filed Critical Hercules Inc
Publication of DK36777A publication Critical patent/DK36777A/en
Priority to DK29081A priority Critical patent/DK147798C/en
Publication of DK147079B publication Critical patent/DK147079B/en
Application granted granted Critical
Publication of DK147079C publication Critical patent/DK147079C/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H5/00Special paper or cardboard not otherwise provided for
    • D21H5/12Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials
    • D21H5/20Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials of organic non-cellulosic fibres too short for spinning, with or without cellulose fibres
    • D21H5/202Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials of organic non-cellulosic fibres too short for spinning, with or without cellulose fibres polyolefins
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/12Organic non-cellulose fibres from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/14Polyalkenes, e.g. polystyrene polyethylene
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • D21H21/20Wet strength agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

V Ρ· ΒV Ρ · Β

(19) DANMARK(19) DENMARK

|j| da) FREMLÆGGELSESSKRIFT (ιι> 147079 Β| J | da) PRESENTATION WRITING (ιι> 147079)

DIREKTORATET FORDIRECTORATE OF

PATENT- OG VAREMÆRKEVÆSØNETTHE PATENT AND TRADEMARK WEEK

(21) Patentansøgning nr.: 0367/77 (51) Int.CI.3: D 01 F 11/06 (22) Indleveringsdag: 28 jan 1977 D 21 H 5/20 (41) Alm. tilgængelig: 29 jul 1977 (44) Fremlagt: 02 apr 1984 (86) International ansøgning nr.: - (30) Prioritet: 28 jan 1976 US 653188 07sep1976US721133 (71) Ansøger: 'HERCULES INCORPORATED; Wilmlngton, US.(21) Patent Application No: 0367/77 (51) Int.CI.3: D 01 F 11/06 (22) Date of filing: 28 Jan 1977 D 21 H 5/20 (41) Alm. available: 29 Jul 1977 (44) Submitted: 02 Apr 1984 (86) International Application No: - (30) Priority: 28 Jan 1976 US 653188 07sep1976US721133 (71) Applicant: 'HERCULES INCORPORATED; Wilmlngton, US.

(72) Opfinder: Terence William 'Rave; US.(72) Inventor: Terence William 'Rave; US.

(74) Fuldmægtig: Ingeniørfirmaet Lehmann & Ree (54) Fremgangsmåde til fremstilling af hydrofile poly-olefinfibre og papirprodukt indeholdende disse(74) Plenipotentiary: Lehmann & Ree Engineering Company (54) Process for the production of hydrophilic polyolefin fibers and paper products containing them

Opfindelsen angår en fremgangsmåde til fremstilling af hydrofile polyolefinfibre, ved hvilken et flashspundet fibrøst poly-olefinmateriale indeholdende carboxylfunktionalitet bringes i intim kontakt med en fortyndet vandig blanding af vandopløselige, nitrogen-holdige kationiske og anioniske polymerer.The invention relates to a process for the production of hydrophilic polyolefin fibers in which a flash-spun fibrous polyolefin containing carboxyl functionality is brought into intimate contact with a dilute aqueous mixture of water-soluble, nitrogen-containing cationic and anionic polymers.

De ved fremgangsmåden ifølge opfindelsen fremstillede fibre er let dispergerbare i vand og kan blandes med træpulpfibre, hvorved der tilvejebringes en pulp, som kan oparbejdes til papir af høj kvalitet under anvendelse af sædvanlig papirfremstillings- _ teknik.The fibers produced by the process of the invention are readily dispersible in water and can be blended with wood pulp fibers, thereby providing a pulp which can be worked up to high quality paper using conventional papermaking techniques.

O) ^ I de senere år er der blevet gjort en betydelig indsats N for at udvikle fibrøse polyolefinpulpmaterialer med hydrofile egen ar r- skaber. En sådan fremgangsmåde, udviklet for at tilvejebringe hydro- * Ω 147079 2 file egenskaber, er den i beskrivelsen til USA patent nr. 3.743.570 beskrevne. Ifølge dette patentskrift behandles polyolefinfibre med stort overfladeareal med et hydrofilt kolloidt polymert tilsætningsstof sammensat af en kationisk polymer, såsom melamin-formaldehyd, og en anionisk polymer, såsom carboxymethylcellulose. En anden fremgangsmåde, som er udviklet til fremstillingen af hydrofile polyole-finpulpmasser, er en fremgangsmåde, som indbefatter flashspin-ding af en blanding af polyolefinen og et tilsætningsstof, såsom et hydrofilt ler eller en hydrofil polymer, f.eks. polyvinylalkohol.In recent years, significant efforts have been made to develop fibrous polyolefin pulp materials with hydrophilic proprietary tools. One such method, developed to provide hydrophilic properties, is that described in U.S. Patent No. 3,743,570. According to this patent, large surface area polyolefin fibers are treated with a hydrophilic colloidal polymeric additive composed of a cationic polymer such as melamine-formaldehyde and an anionic polymer such as carboxymethyl cellulose. Another method developed for the production of hydrophilic polyolefin pulp compositions is a process which includes flash spinning of a mixture of the polyolefin and an additive such as a hydrophilic clay or a hydrophilic polymer, e.g. polyvinyl alcohol.

Den ved disse fremstillinger anvendte spindingsproces er en proces, hvori polyolefinen og det hydrofile tilsætningsstof dispergeres i en væske, som ikke er opløsningsmiddel for nogen af komponenterne ved deres normale kogepunkter, den fremkomne dispersion opvarmes ved hyperatmosfærisk tryk for at opløse polymeren og opløsningsmiddelopløseligt tilsætningsstof, og derefter udtømmes den fremkomne sammensætning i en zone med reduceret temperatur og tryk, sædvanligvis atmosfæretryk, hvorved fiberproduktet dannes.The spinning process used in these preparations is a process in which the polyolefin and hydrophilic additive are dispersed in a liquid which is not solvent for any of the components at their normal boiling points, the resulting dispersion is heated at hyperatmospheric pressure to dissolve the polymer and solvent-soluble additive, then the resulting composition is discharged into a reduced temperature and pressure zone, usually atmospheric pressure, whereby the fiber product is formed.

En væsentlig mangel ved disse hydrofile polyolefinpulp-masser har været, at efter blanding med træpulp har de resulterende papirprodukter udvist betydelig mindre styrke end papir fremstillet af træpulp alene. En vis forbedring af styrken af papir fremstillet af blandinger af polyolefinpulpmasser og træpulp er imidlertid blevet opnået ved at bibringe polyolefinpulpen anionisk karakter. P.eks. kendes fra tysk offentliggørelsesskrift nr. 2.413.922 fremstillingen af anioniske pulpmasser ved flashspinding af blandinger af polyolefiner og copolymerer af olefinforbindelser med maleinsvreanhydrid eller acryl- eller methacrylsyre. Blandinger af disse pulpmasser med træ-pulp har tilvejebragt papir med bedre trækstyrke end papir fremstil-. let uden polymerkomponenten.A major shortcoming of these hydrophilic polyolefin pulp materials has been that, after blending with wood pulp, the resulting paper products have shown considerably less strength than paper made from wood pulp alone. However, some improvement in the strength of paper made from mixtures of polyolefin pulp and wood pulp has been achieved by imparting anionic character to the polyolefin pulp. P.eks. is known from German Publication No. 2,413,922 the preparation of anionic pulp masses by flash spinning of mixtures of polyolefins and copolymers of olefinic compounds with maleic anhydride or acrylic or methacrylic acid. Mixtures of these wood-pulp pulp compositions have provided paper with better tensile strength than paper produced. easily without the polymer component.

Formålet med den foreliggende opfindelse er at tilvejebringe en fremgangsmåde til fremstilling af hydrofile polyolefin-fibre, som Inkorporeret i pulp af træfibre tilvejebringer papirprodukter med bedre styrkeegenskaber end de kendte papirprodukter fremstillet af syntetisk pulp og træpulp.The object of the present invention is to provide a process for the production of hydrophilic polyolefin fibers, which Incorporated in pulp of wood fibers provides paper products with better strength properties than the known paper products made from synthetic pulp and wood pulp.

Dette opnås ved en fremgangsmåde af den i indledningen omhandlede art, hvilken fremgangsmåde er ejendommelig ved, at den kationiske polymer er reaktionsproduktet mellem epichlorhydrin og (a) et aminopolyamid hidrørende fra en dicarboxyl-syre og en polyalkylenpolyamin med to primære aminogrupper og mindst én sekundær eller tertiær aminogruppe, eller (b) en polyalkylen- 3 147079 polyamin med formlen H2N^CniI2nNR^x ^n^2n^2' ^vor R er H eller CH n er et helt tal på 2-8, og x er et helt tal, eller (c) en poly(diallyl-amin), eller (d) en polyaminourylen hidrørende fra urinstof og en polyamin med mindst tre aminogrupper, hvoraf i det mindste den ene er tertiær, at den anioniske polymer er reaktionsproduktet mellem glyoxal og (a) et polyacrylamid indeholdende fra ca. 2 til ca. 15% acrylsyreenheder eller (b) en delvist hydrolyseret, forgrenet poly-(β-alanin) indeholdende fra ca. 1 til ca. 10 mol% carboxylgrupper baseret på amidgentagelsesenheder, og at forholdet mellem den kationiske polymer og den anioniske polymer på vægtbasis ligger mellem 1:3 og 1:7.This is achieved by a process of the kind described in the introduction, characterized in that the cationic polymer is the reaction product between epichlorohydrin and (a) an aminopolyamide derived from a dicarboxylic acid and a polyalkylene polyamine having two primary amino groups and at least one secondary or t (tertiary amino group) or (b) a polyalkylene polyamine of the formula H2N ^ CnI2nNR ^ x ^ n ^ 2n ^ 2 '^ where our R is H or CH or (c) a poly (diallyl amine), or (d) a polyaminourylene derived from urea and a polyamine having at least three amino groups, at least one of which is tertiary, that the anionic polymer is the reaction product between glyoxal and (a) ) a polyacrylamide containing from ca. 2 to approx. 15% acrylic acid units or (b) a partially hydrolyzed, branched poly (β-alanine) containing from ca. 1 to approx. 10 mole% of carboxyl groups based on amide repeating units and the ratio of the cationic polymer to the anionic polymer by weight is between 1: 3 and 1: 7.

En udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved, at det flashspundne fibrøse polyolefinmateriale indeholdende carboxylfunktionalitet er baseret på polyethylen.An embodiment of the process according to the invention is characterized in that the flash-spun fibrous polyolefin material containing carboxyl functionality is based on polyethylene.

En anden udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved, at det flashspundne fibrøse polyolefinmateriale indeholdende carboxylfunktionalitet er baseret på polypropylen.Another embodiment of the process according to the invention is characterized in that the flash-spun fibrous polyolefin material containing carboxyl functionality is based on polypropylene.

En tredie udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved, at det flashspundne fibrøse polyolefinmateriale indeholdende carboxylfunktionalitet er fremstillet ved flashspinding af en blanding af polypropylen og en anionisk polymer indeholdende carboxylfunktionalitet.A third embodiment of the process according to the invention is characterized in that the flash-spun fibrous polyolefin material containing carboxyl functionality is made by flash-spinning a mixture of polypropylene and an anionic polymer containing carboxyl functionality.

En fjerde udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved, at den anioniske polymer indeholdende carboxylfunktionalitet er en copolymer af ethylen og acrylsyre.A fourth embodiment of the process according to the invention is characterized in that the anionic polymer containing carboxylic functionality is a copolymer of ethylene and acrylic acid.

En femte udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved, at det flashspundne fibrøse polyolefinmateriale indeholdende carboxylfunktionalitet er fremstillet ved flashspinding af polypropylen og oxidation af de fremkomne fibre til indføring af carboxylgrupper i polypropylenmolekylet.A fifth embodiment of the process according to the invention is characterized in that the flash-spun fibrous polyolefin material containing carboxyl functionality is produced by flash-spinning polypropylene and oxidation of the resulting fibers to introduce carboxyl groups into the polypropylene molecule.

En sjette udførelsesform for fremgangsmåden ifølge opfindelsen er ejendommelig ved, at aminopolyamidet hidrører fra adipin-syre og diethylentriamin.A sixth embodiment of the process according to the invention is characterized in that the aminopolyamide is derived from adipic acid and diethylenetriamine.

Opfindelsen angår også et papirprodukt fremstillet ud fra en blanding af træpulp og hydrofile carboxylsyregruppeholdige poly-olefinfibre, hvilket papirprodukt er ejendommeligt ved, at der som hydrofile carboxylsyregruppeholdige polyolefinfibre anvendes sådanne, som er fremstillet ved fremgangsmåden ifølge opfindelsen. Et sådant papirprodukt har forbedret hvidhed, uigennemsigtighed, glathed og 4 147079 trykkeevne og kan fremstilles med lave arkvægte sammenlignet med sædvanligt fyldt eller ufyldt papir.The invention also relates to a paper product made from a mixture of wood pulp and hydrophilic carboxylic acid-containing polyolefin fibers, which paper product is characterized in that as hydrophilic carboxylic acid-containing polyolefin fibers are used as made by the process according to the invention. Such a paper product has improved whiteness, opacity, smoothness and printability and can be made with low sheet weights compared to conventional filled or unfilled paper.

Det er også fordelagtigt, at de syntetiske pulpmasser ifølge opfindelsen ikke nødvendiggør tilstedeværelsen af særlige vandopløselige tilsætningstoffer, såsom stivelse, i papirfremstillingsprocessen, idet disse gøres unødvendige af tilstedeværelsen af den katioiiiske polymerkomponent, som er inkorporeret i de modificerede fibre, som fremstilles ved fremgangsmåden ifølge opfindelsen.It is also advantageous that the synthetic pulp compositions of the invention do not necessitate the presence of particular water-soluble additives, such as starch, in the papermaking process as these are made unnecessary by the presence of the cationic polymer component incorporated in the modified fibers produced by the process of the invention. .

Ved fremgangsmåden ifølge opfindelsen kan det anioniske poly-olefirøtateriale indeholdende carboxylfunktionalitet være en poly-olefinholdig carboxylgruppe, som er blevet indført i polymermolekylet ved podning af polyolefinen med en monomer indeholdende carboxylfunktionalitet eller ved at oxidere polyolefinen med oxygen eller ozon, eller materialet kan være en polyolefin i blanding med en anionisk polymer indeholdende carboxylfunktionalitet. I begge tilfælde kan polyolefinen være polyethylen, polypropylen, en ethylen-propylencopolymer eller en blanding af disse polyolefinmaterialer.In the process of the invention, the anionic polyolefin-containing material containing carboxyl functionality may be a polyolefin-containing carboxyl group which has been introduced into the polymer molecule by grafting the polyolefin with a monomer containing carboxyl functionality or by oxidizing the polyolefin with oxygen or ozone or material or oxygen. in admixture with an anionic polymer containing carboxyl functionality. In either case, the polyolefin may be polyethylene, polypropylene, an ethylene-propylene copolymer or a mixture of these polyolefin materials.

Når det anioniske polyolefinmateriale er en blanding af · en polyolefin og en anionisk polymer indeholdende carboxylfunktionali-tét, kan sidstnævnte komponent være en polyolefinholdig carboxylgruppe, direkte knyttet til polymer-"rygraden", en polyolefin podet med akrylsyre, methakrylsyre, maleinsyreanhydrid eller blandinger heraf, en copolymer af hvilke som helst af stofferne ethylen, propylen, styren, α-methylstyren eller blandinger heraf med hvilke som helst af stofferne akrylsyre, methakrylsyre, maleinsyreanhydrid eller blandinger af hvilke som helst af disse anioniske polymerkomponenter. Igen kan polyolefinen, hvor som helst den nævnes, være polyethylen, polypro pylen, en ethylen-propylencopolymer eller blandinger heraf.When the anionic polyolefin material is a mixture of a polyolefin and an anionic polymer containing carboxyl functionality, the latter component may be a polyolefin-containing carboxyl group directly linked to the polymer "backbone", a polyolefin inoculated with acrylic acid, methacrylic acid, maleic acid, maleic acid, maleic acid, a copolymer of any of the substances ethylene, propylene, styrene, α-methylstyrene or mixtures thereof with any of the substances acrylic acid, methacrylic acid, maleic anhydride or mixtures of any of these anionic polymer components. Again, the polyolefin, wherever mentioned, may be polyethylene, polypropylene, an ethylene-propylene copolymer or mixtures thereof.

I førnævnte blandinger af polyolefin og anionisk polymer indeholdende carboxylfunktionalitet vil forholdet mellem førstnævnte og sidstnævnte fortrinsvis være fra ca. 95:5 til ca. 80:5 på vægtbasis og mængden af tilgængeligt carboxyl i den anioniske polymer vil være fra ca. 3 til ca. 30 vægtprocent. Generelt bør det anioniske polyolefinmateriale, som anvendes ved fremgangsmåden ifølge opfindelsen, indeholde en tilstrækkelig mængde carboxylfunktionalitet til at give mindst 0,01 og fortrinsvis mindst ca. 0,04 milliækvivalent carboxyl-grupper pr. gram af polyolefinpulpen. Endvidere kan mængden af carboxylfunktionalitet være således, at der tilvejebringes op til ca. e% milliækvivalent carboxylgruppe pr. gram af polyolefinpulpen. Et særligt ønskeligt område er fra ca. 0,04 til ca. 0,2 milliækvivalent pr. gram.In the aforementioned mixtures of polyolefin and anionic polymer containing carboxyl functionality, the ratio of the former to the latter will preferably be from ca. 95: 5 to approx. 80: 5 by weight and the amount of carboxyl available in the anionic polymer will be from about 3 to approx. 30% by weight. In general, the anionic polyolefin material used in the process of the invention should contain a sufficient amount of carboxyl functionality to provide at least 0.01 and preferably at least about 10%. 0.04 milliequivalents of carboxyl groups per grams of the polyolefin pulp. Furthermore, the amount of carboxyl functionality may be such that up to approx. e% milli equivalent carboxyl group per grams of the polyolefin pulp. A particularly desirable area is from approx. 0.04 to approx. 0.2 mill equivalent gram.

5 1470795 147079

Det i fiberdannelsestrinnet i fremgangsmåden ifølge opfindelsen anvendte dispergeringsmedium indeholder et vandigt opløsningsmiddel, som ved sit normale kogepunkt ikke er et opløsningsmiddel for det polyolefinmateriale, der benyttes til at danne fibrene. Det kan være det i de fleste af eksemplerne angivne methylenchlorid eller andre halogenerede carbonhydrider, såsom chloroform, carbontetrachlorid, methylchlorid, ethylchlorid, trichlorfluormethan og 1,1,2-trichlor-1,2,2-trifluorethan. Ligeledes er aromatiske carbonhydrider, såsom benzen, toluen og xylen, aliphatiske carbonhydriderf såsom butan, pen-tan, hexan, heptan, octan og disses isomere, og alicykliske carbonhydrider, såsom cyclohexan, anvendelige. Blandinger af disse opløsningsmidler kan anvendes, og vand kan være til stede om ønsket for at danne en emulsion af polyolefin materialet. Endvidere kan det tryk, som dannes af opløsningsmiddeldampene være, og vil normalt være, øget af en inert gas under tryk, såsom nitrogen eller carbondioxid.The dispersing medium used in the fiber forming step of the process of the invention contains an aqueous solvent which, at its normal boiling point, is not a solvent for the polyolefin material used to form the fibers. It may be the methylene chloride indicated in most of the examples or other halogenated hydrocarbons such as chloroform, carbon tetrachloride, methyl chloride, ethyl chloride, trichlorofluoromethane and 1,1,2-trichloro-1,2,2-trifluoroethane. Also aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as butane, pentane, hexane, heptane, octane and their isomers, and alicyclic hydrocarbons such as cyclohexane are useful. Mixtures of these solvents may be used and water may be present if desired to form an emulsion of the polyolefin material. Furthermore, the pressure generated by the solvent vapors may be, and usually will be, increased by an inert gas under pressure such as nitrogen or carbon dioxide.

Under udøvelse af den fiberdannende fremgangsmåde vil koncentrationen af polyolefin materiale i opløsning i opløsningsmidlet normalt være fra ca. 5 til ca. 40 vægtprocent, fortrinsvis fra ca. 10 til ca. 20 vægtprocent. Den temperatur, hvortil dispersionen af polyolefin materiale opvarmes for at danne en opløsning af materia let, vil afhænge af det nærmere bestemte opløsningsmiddel, som anvendes, og må være tilstrækkelig høj til at bevirke opløsning af materialet. Den fiberdannende temperatur vil generelt ligge mellem ca. 100° og ca. 225°c. Trykket på opløsningen af polyolefinmateria-let kan være fra ca. 42 til ca. 105 kg/cm (600-1500 p.s.i.), men er fortrinsvis mellem ca. 63 og ca. 84 kg/cm (900-1200 p.s.i.). Den åbning, hvorigennem opløsningen udpresses, må have en diameter på fra ca. 0,5 til ca. 15 mm, fortrinsvis fra ca. 1 til ca. 5 mm, og forholdet mellem længden af åbningen og dens diameter må være fra ca. 0,2 til ca. 10.While practicing the fiber forming process, the concentration of polyolefin material in solution in the solvent will usually be from approx. 5 to approx. 40% by weight, preferably from approx. 10 to approx. 20% by weight. The temperature at which the dispersion of polyolefin material is heated to readily form a solution of matter will depend upon the particular solvent used and must be sufficiently high to cause dissolution of the material. The fiber-forming temperature will generally be between approx. 100 ° and approx. 225 ° C. The pressure on the solution of the polyolefin material can be from approx. 42 to approx. 105 kg / cm (600-1500 p.s.i.), but is preferably between ca. 63 and approx. 84 kg / cm (900-1200 p.s.i.). The aperture through which the solution is extruded must have a diameter of approx. 0.5 to approx. 15 mm, preferably from approx. 1 to approx. 5 mm and the ratio of the length of the opening to its diameter must be from approx. 0.2 to approx. 10th

I fibermodificeringstrinnet ved fremgangsmåden ifølge opfindelsen bringes fibrene af det fibrøse anioniske polyolefinmateriale indeholdende carbojylfunktionalitet som nævnt i intim kontakt med en fortyndet vandig opløsning eller dispersion af en blanding af visse kat-ioniske og anioniske nitrogenholdige polymere. Forholdet mellem kat-ionisk og anionisk polymer i blandingen ligger mellem 1:3 og 1:7 på vægtbasis. Den kationiske polymerkomponent i førnævnte blanding kan generelt klassificeres som reaktionsproduktet mellem epi-chlorhydrin og en polymer indeholdende sekundære eller tertiære amin-grupper eller begge dele. En repræsentativ gruppe polymere, som hører til denne således afgrænsede klasse, kan eksemplificeres af den kat- 147079 6 ioniske polymerkomponent, som er anvendt i mange af eksemplerne, nemlig reaktionsproduktet mellem epichlorhydrin og det af ethylentriamin og adipinsyre afledte aminopolyamid. Fremstilling af dette produkt er vist i Eksempel A. Imidlertid er denne gruppe af kationiske polymere mere generelt reaktionsprodukterne mellem epichlorhydrin og et aminopolyamid hidrørende fra en carboxylsyre og en polyalkylenpolyamin med to primære amingrupper og mindst én sekundær eller tertiær amingruppe alle som beskrevet i beskrivelserne til USA-patenterne nr. 2,926,116 og 2,926,154.In the fiber modification step of the process of the invention, the fibers of the fibrous anionic polyolefin material containing carbojyl functionality as mentioned are brought into intimate contact with a dilute aqueous solution or dispersion of a mixture of certain cationic and anionic nitrogen containing polymers. The ratio of cationic to anionic polymer in the mixture is between 1: 3 and 1: 7 by weight. The cationic polymer component of the aforementioned mixture can generally be classified as the reaction product between epichlorohydrin and a polymer containing secondary or tertiary amine groups or both. A representative group of polymers belonging to this class so defined can be exemplified by the cationic polymeric component used in many of the examples, namely the reaction product between epichlorohydrin and the ethylene triamine and adipic acid derived aminopolyamide. Preparation of this product is shown in Example A. However, this group of cationic polymers is more generally the reaction products between epichlorohydrin and an aminopolyamide derived from a carboxylic acid and a polyalkylene polyamine having two primary amine groups and at least one secondary or tertiary amine group all as described in the U.S. Patents Nos. 2,926,116 and 2,926,154.

En anden repræsentativ gruppe polymere, som tilhører den bredt definerede klasse af kationiske polymere, er den gruppe, hvori polymerene er vandopløselige reaktionsprodukter af epichlorhydrin og en polyalkylenpolyamin. Fremstillingen af et eksempel på et produkt fra denne gruppe er vist i Eksempel B.Another representative group of polymers belonging to the widely defined class of cationic polymers is the group in which the polymers are water-soluble reaction products of epichlorohydrin and a polyalkylene polyamine. The preparation of an example of a product from this group is shown in Example B.

Polyalkylenpolyaminer, som kan omsættes med epichlorhydrin, har formlen H„N(C H NR) C H„ NH0, hvor R er H eller CH,, n er et helt tal på 2-8, og x et helt tal, fortrinsvis 1-5. Eksempler på sådanne polyalkylenpolyaminer er polyethylenpolyaminerne, polypropylenpoly-aminerne og polybutylenpolyaminerne. Særlige eksempler på disse polyalkylenpolyaminer indbefatter diethylentriamin, triethylentetramin, tetraethylenpentamin, bis(hexamethylen)triamin og dipropylentriamin. Andre polyalkylenpolyaminer, som kan anvendes, indbefatter methylbis(3-aminopropyl) amin, methyl bis(2-aminoethyl)-amin og 4,7-dimethyltriethy-lentetramin. Blandinger af polyalkylenpolyaminer kan om ønsket anvendes.Polyalkylene polyamines which can be reacted with epichlorohydrin have the formula H „N (CH NR) CH „NH0 where R is H or CH ,, n is an integer of 2-8 and x an integer, preferably 1-5. Examples of such polyalkylene polyamines are the polyethylene polyamines, polypropylene polyamines and polybutylene polyamines. Particular examples of these polyalkylene polyamines include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, bis (hexamethylene) triamine and dipropylenetriamine. Other polyalkylene polyamines which may be used include methyl bis (3-aminopropyl) amine, methyl bis (2-aminoethyl) amine and 4,7-dimethyl triethylene tetramine. Mixtures of polyalkylene polyamines may be used if desired.

De relative anvendte mængder af polyalkylenpolyamin og epichlorhydrin kan varieres,alt efter den nærmere bestemte polyalkylenpolyamin, som anvendes. Generelt foretrækkes det, at molforholdet mellem epichlorhydrin og polyalkylenpolyamin er over 1:1 og under 4,5:1. Ved fremstillingen af vandopløselig harpiks af epichlorhydrin og tetraethylenpentamin opnås gode resultater ved molforhold på fra ca. 1,4:1 til 1,94:1. Reaktionstemperaturen er fortrinsvis mellem ca. 40° og ca.The relative amounts of polyalkylene polyamine and epichlorohydrin used may be varied according to the particular polyalkylene polyamine used. In general, it is preferred that the mole ratio of epichlorohydrin to polyalkylene polyamine is above 1: 1 and below 4.5: 1. In the preparation of water-soluble resin of epichlorohydrin and tetraethylene pentamine, good results are obtained at molar ratios of from approx. 1.4: 1 to 1.94: 1. The reaction temperature is preferably between ca. 40 ° and approx.

60°C.60 ° C.

Endnu en gruppe kationiske polymere, som er anvendelig ifølge den foreliggende opfindelse, er den, hvori polymerene er reaktionsprodukter af epichlorhydrin og en poly(diallylamin) . Fremstillingen af et sådant produkt er vist i Eksempel C. Yderligere produkter og fremgangsmåde til fremstilling heraf er beskrevet i beskrivelsen til USA-patent nr. 3,700,623.Yet another group of cationic polymers useful in the present invention is the one in which the polymers are reaction products of epichlorohydrin and a poly (diallylamine). The preparation of such a product is shown in Example C. Further products and processes for their preparation are described in the specification of U.S. Patent No. 3,700,623.

Den sidste gruppe kationiske polymere, som anvendes ifølge opfindelsen, er den, hvori polymerene er reaktionsprodukterne mellem epichlorhydrin og en polyaminourylen. Fremstillingen af et af disse 7 147079 produkter er givet i Eksempel D. Beslægtede produkter og deres fremstilling er beskrevet i beskrivelsen til USA-patent nr. 3,240,664.The last group of cationic polymers used according to the invention is the one in which the polymers are the reaction products between epichlorohydrin and a polyaminourylene. The preparation of one of these products is given in Example D. Related products and their preparation are described in the specification of U.S. Patent No. 3,240,664.

Den anioniske polymerkomponent i den vandige opløsning eller dispersion, hvori fibrene af det anioniske polyolefinmateriale indeholdende carboxylfunktionalitet modificeres, er illustreret i eksemplerne. En af disse er reaktionsproduktet mellem glyoxal og det poly-akrylamid, som er fremkommet ved copolymerisation af akrylamid med akrylsyre. Fremstillingen af et eksempel på dette produkt er vist i Eksempel E. Mængden af akrylsyreenheder i copolymeren kan være fra ca.The anionic polymer component of the aqueous solution or dispersion wherein the fibers of the anionic polyolefin containing carboxyl functionality are modified is illustrated in the Examples. One of these is the reaction product between glyoxal and the polyacrylamide which is obtained by copolymerizing acrylamide with acrylic acid. The preparation of an example of this product is shown in Example E. The amount of acrylic acid units in the copolymer can be from

2 til ca. 15%. Lignende produkter kan fremstilles ved partiel hydrolyse af polyakrylamid eller af en copolymer af akrylamid og et alkylacrylat,såsom en copolymer afakrylamid med ethylakrylat. Et hvilket som helst af disse polyakrylamider kan fremstilles ved sædvanlige fremgangsmåder til polymerisation af vandopløselige monomere og har fortrinsvis en molekylvægt under ca. 25.000, f.eks. mellem ca. 10.000 og ca. 25.000.2 to approx. 15%. Similar products may be prepared by partial hydrolysis of polyacrylamide or by a copolymer of acrylamide and an alkyl acrylate such as a copolymer of acrylamide with ethyl acrylate. Any of these polyacrylamides can be prepared by conventional methods for polymerizing water-soluble monomers, and preferably have a molecular weight of less than about 10%. 25,000, e.g. between approx. 10,000 and approx. 25,000.

Den anden anioniske, nitrogenholdige polymer, som er vist i eksemplerne, er reaktionsproduktet mellem glyoxal og den polymer, som er frembragt ved partiel hydrolyse af en forgrenet, vandopløselig poly (β-alanin). Fremstilling af et repræsentativt produkt er vist i Eksempel F. Poly(β-alariinet) fremstilles ved den anioniske polymerisation af akrylamid i nærvær af en basisk katalysator, såsom natriumhydroxid, og en vinyl-eller fri radikal-polymerisationsinhibitor, såsom phenyl-β-naphthylamin, og polymeren vil have en molekylvægt mellem ca. 500 og ca. 10.000, fortrinsvis fra ca. 2.000 til ca. 6.000. På grund af den ekstremt exoterme natur af den anioniske polymerisation foretrækkes det at gennemføre reaktionen i et egnet organisk reaktionsmedium, såsom toluen eller chlorbenzen, som er inert ved reaktionsbetingelserne og er i stand til at Opløse eller opslemme akrylamid.The second anionic nitrogen-containing polymer shown in the Examples is the reaction product between glyoxal and the polymer produced by partial hydrolysis of a branched, water-soluble poly (β-alanine). Preparation of a representative product is shown in Example F. The poly (β-alariin) is prepared by the anionic polymerization of acrylamide in the presence of a basic catalyst such as sodium hydroxide and a vinyl or free radical polymerization inhibitor such as phenyl-β-naphthylamine. and the polymer will have a molecular weight of between approx. 500 and approx. 10,000, preferably from ca. 2,000 to approx. 6000. Due to the extremely exothermic nature of the anionic polymerization, it is preferred to carry out the reaction in a suitable organic reaction medium such as toluene or chlorobenzene which is inert at the reaction conditions and is capable of dissolving or suspending acrylamide.

Det forgrenede poly(β-alanin), som er fremstillet som ovenfor beskrevet, er en neutral polymer og skal være anionisk modificeret til nærværende opfindelses formål. Anionisk modifikation af forgrenet poly(β-alanin) kan gennemføres ved partiel hydrolyse af polymeren for at omdanne nogle af de primære amidgrupper til anioniske car-boxylgrupper. F.eks. kan hydrolyse af poly(β-alanin) finde sted ved opvarmning af en svagt basisk vandig opløsning af polymeren med en pH-værdi på ca. 9-10 ved temperaturer på fra ca. 50 til ca. 100°C. Den mængde anioniske grupper, som indføres, må være fra ca, en til ca. ti molprocent og fortrinsvis fra ca. to til ca, fem molprocent baseret på amidgentagelsesenheder.The branched poly (β-alanine) prepared as described above is a neutral polymer and must be anionically modified for the purposes of the present invention. Anionic modification of branched poly (β-alanine) can be accomplished by partial hydrolysis of the polymer to convert some of the primary amide groups to anionic carboxyl groups. Eg. For example, hydrolysis of poly (β-alanine) can take place by heating a slightly alkaline aqueous solution of the polymer having a pH of approx. 9-10 at temperatures of approx. 50 to approx. 100 ° C. The amount of anionic groups introduced must be from about, one to about ten mole percent and preferably from ca. two to about five mole percent based on amide repeat units.

147079 8147079 8

Hver af de anioniske, nitrogenholdige polymere, som er beskrevet ovenfor, er modificeret med glyoxal for at tilvejebringe de ønskede, anioniske, vandopløselige, nitrogenholdige polymere, som anvendes ifølge den foreliggende opfindelse. Reaktionen med glyoxal gennemføres i en fortyndet neutral eller svagt alkalisk vandig opløsning af polymeren ved en temperatur på fra ca. 10 til ca. 50°C, fortrinsvis fra ca. 20 til ca. 30°C. Den glyoxalmængde, som benyttes i reaktionsblandingen, kan være fra ca. 10 til ca. 100 molprocent, fortrinsvis fra ca. 20 til ca. 30 molprocent baseret på amidgentagelsesenheder i polymeren. De resulterende opløsninger besidder god stabilitet.Each of the anionic nitrogen-containing polymers described above is modified with glyoxal to provide the desired anionic, water-soluble, nitrogen-containing polymers used in the present invention. The reaction with glyoxal is carried out in a dilute neutral or slightly alkaline aqueous solution of the polymer at a temperature of from ca. 10 to approx. 50 ° C, preferably from ca. 20 to approx. 30 ° C. The amount of glyoxal used in the reaction mixture can be from about 10 to approx. 100 mole percent, preferably from ca. 20 to approx. 30 mole percent based on amide repeat units in the polymer. The resulting solutions possess good stability.

Fremgangsmåden ifølge opfindelsen muliggør fremstilling af forbedrede papirprodukter udfra blandinger af træpulp og polyolefin-pulpmasser. Fremgangsmåden er betinget af den særlige kombination af kationiske og anioniske nitrogenholdige polymere, som anvendes i fibermodifikationstrinnet, og sidstnævnte indbefatter fortrinsvis brugen af en raffineringsprocedure, såsom skiveraffinering. Endvidere afhænger fremgangsmåden af visse kritiske faktorer, nemlig tilstedeværelsen af mindst 80% polyolefin i det polyolefincarboxylholdige anioniske polymeriblandingsmateriale, når dette iblandingsmateriale udgør de som det fiberdannende materiale anvendte anioniske polyolefiijnateriale indeholdende carboxylfunktionalitet, et grænseviskositetstal for poly-olefinen på 1,0 dl/g målt ved 135°C i decahydronaphthalen, tilstrækkelig meget tilgængelig carboxyl i det anioniske polyolefinmateriale indeholdende carboxylfunktionalitet og tilstrækkelig meget harpiks i den vandige opløsning eller dispersion, hvori de anioniske fibre modificeres. Drift indenfor disse betingelsers grænser gør det muligt at fremstille en syntetisk pulp, som, når den blandes med træpulp, vil give et papirprodukt med mindst 70% af 100% træpulps trækstyrke ligesom forøget hvidhed, uigennemsigtighed og glathed.The process of the invention enables the production of improved paper products from blends of wood pulp and polyolefin pulp pulp. The process is contingent upon the particular combination of cationic and anionic nitrogen-containing polymers used in the fiber modification step, and the latter preferably includes the use of a refining procedure such as disc refining. Furthermore, the process depends on certain critical factors, namely the presence of at least 80% polyolefin in the polyolefin carboxyl-containing anionic polymer admixture, when this admixture constitutes the anionic polyolefin material containing carboxyl functionality / polyphosphine content of a limit viscosity number of 1.0 at 135 ° C in the decahydronaphthalene, sufficiently available carboxyl in the anionic polyolefin material containing carboxyl functionality and sufficient resin in the aqueous solution or dispersion in which the anionic fibers are modified. Operation within the limits of these conditions makes it possible to produce a synthetic pulp which, when mixed with wood pulp, will provide a paper product with at least 70% of 100% wood pulp tensile strength, as well as increased whiteness, opacity and smoothness.

Som et eksempel på fremgangsmåden ifølge opfindelsen dis-pergeres polypropylen og en ethylen-acrylsyrecopolymer i et opløsningsmiddel, såsom methylenchlorid, og dispersionen opvarmes i et o o lukket system til en temperatur pa ca. 190 C for at opløse polymerkomponenterne i opløsningsmidlet. Under disse betingelser er det tryk, som dannes af methylenchloriddampene, af størrelsesordenen 2 42,2 kg/cm (600 p.s.i.). Efter indføring af nitrogen til forøgelse 2 af systemets damptryk til et tryk på ca. 70,3 kg/cm (1000 p.s.i.) afgives den fremkomne opløsning til atmosfæren gennem en åbning, hvilket resulterer i afdampning af methylenchloridopløsningsmidlet og dannelse af fiberproduktet. Fiberproduktet suspenderes derpå i et vandigt medium tilvejebragt ved at blande en fortyndet vandig 9 147079 opløsning af f.eks. epichlorhydrinmodificeret poly(diethylentriamin-adipinsyre) med en fortyndet vandig opløsning af f.eks. glyoxal-modificeret poly(acrylamidacrylsyre), og komponenterne af den resulterende suspension bringes i intim kontakt med hinanden, såsom ved raffinering i en skiveraffinør. De behandlede fibre kan derefter isoleres og opbevares i form af våde kager, eller også kan den fiber-holdige suspension anvendes direkte i en papirfremstillingsproces.As an example of the process of the invention, polypropylene and an ethylene-acrylic acid copolymer are dispersed in a solvent such as methylene chloride, and the dispersion is heated in an enclosed system to a temperature of approx. 190 C to dissolve the polymer components in the solvent. Under these conditions, the pressure generated by the methylene chloride vapors is of the order of 2 42.2 kg / cm (600 p.s.i.). After introducing nitrogen to increase 2 of the system vapor pressure to a pressure of approx. 70.3 kg / cm (1000 p.s.i.), the resulting solution is delivered to the atmosphere through an orifice, which results in evaporation of the methylene chloride solvent and formation of the fiber product. The fiber product is then suspended in an aqueous medium provided by mixing a dilute aqueous solution of e.g. epichlorohydrin modified poly (diethylenetriamine adipic acid) with a dilute aqueous solution of e.g. glyoxal-modified poly (acrylamide acrylic acid), and the components of the resulting suspension are brought into intimate contact with one another, such as by refining in a disc refiner. The treated fibers can then be isolated and stored in the form of wet cakes, or the fiber-containing suspension can be used directly in a papermaking process.

Medens udførelsesformerne ifølge opfindelsen er blevet skitseret generelt ovenfor, udgør nedenstående eksempler specielle illustrationer. Alle mængdeangivelser er på vægtbasis.While the embodiments of the invention have been outlined generally above, the examples below are special illustrations. All quantity declarations are by weight.

EKSEMPEL AEXAMPLE A

En kationisk, vandopløselig, nitrogenholdig polymer fremstilledes af diethylentriamin, adipinsyre og epichlorhydrin. Diethylen-triamin i mængden 0,97 mol tilsattes til en reaktionsbeholder forsynet med en mekanisk omrører, et termometer og en tilbagesvaler. Der tilsattes derefter gradvis et mol adipinsyre under omrøring. Efter, at syren var blevet opløst i aminen, opvarmedes reaktionsblandingen til 170-175°C og blev holdt ved den temperatur i halvanden time, på hvilket tidspunkt reaktionsblandingen var blevet meget tyktflydende. Reaktionsblandingen afkøledes derefter til 140°C, og der tilsattes tilstrækkelig meget vand til at give den resulterende polyamidopløsning et tørstofindhold på ca. 50%. En prøve af polyamidet isoleret fra denne opløsning fandtes at haveet viskc^itetstal på 0,155 dl/g målt med et Ubbeloh-de viskosimeter ved en koncentration på 2% i en en-molær vandig opløsning af ammoniumchlorid. Polyamidopløsningen fortyndedes til 13,5% tørstof og opvarmedes til 40°C, og epichlorhydrin tilsattes langsomt i en mængde svarende til 1,32 mol pr. mol sekundær amin i polyamidet. Reaktionsblandingen opvarmedes derefter til en temperatur mellem 70° og 75°C, indtil den nåede en Gardner-viskositet på E-F. Derefter tilsattes tilstrækkelig meget vand til at give et tørstofindhold på ca. 12,5%, og opløsningen afkøledes til 25°C. Opløsningens pH-værdi indstilledes derefter til 4,7 med koncentreret svovlsyre. Slutproduktet indeholdt 12,5% tørstof og havde en Gardner-viskositet på B-C.A cationic, water-soluble, nitrogen-containing polymer was prepared from diethylenetriamine, adipic acid and epichlorohydrin. Diethylene triamine in the amount of 0.97 mol was added to a reaction vessel equipped with a mechanical stirrer, a thermometer and a reflux condenser. Then a mole of adipic acid was gradually added with stirring. After the acid was dissolved in the amine, the reaction mixture was heated to 170-175 ° C and kept at that temperature for one and a half hours, at which time the reaction mixture became very viscous. The reaction mixture was then cooled to 140 ° C and enough water was added to give the resulting polyamide solution a dry matter content of approx. 50%. A sample of the polyamide isolated from this solution was found to have a viscosity of 0.155 dl / g as measured with an Ubbelohde viscometer at a concentration of 2% in a one-molar aqueous solution of ammonium chloride. The polyamide solution was diluted to 13.5% solids and heated to 40 ° C, and epichlorohydrin was added slowly in an amount equal to 1.32 moles per ml. moles of secondary amine in the polyamide. The reaction mixture was then heated to a temperature between 70 ° and 75 ° C until it reached a Gardner viscosity of E-F. Then enough water was added to give a dry matter content of approx. 12.5% and the solution cooled to 25 ° C. The pH of the solution was then adjusted to 4.7 with concentrated sulfuric acid. The final product contained 12.5% solids and had a Gardner viscosity of B-C.

EKSEMPEL BEXAMPLE B

En anden repræsentativ kationisk, vandopløselig, nitrogenholdig polymer fremstilledes, denne gang under anvendelse af epichlorhydrin og en kommercielt tilgængelig vandig blanding af polyaminer som reaktanterne. Denne blanding indeholdt mindst 75% bis(hexamethylen) 147079 ίο triamin og højere homologe, medens resten af blandingen bestod af aminer med lavere molekylvægt, nitriler og lactamer. Reaktionen gennemførtes i en kedel forsynet med et dampstrålevakuumsystem, som anvendtes til at udsuge dampe gennem en kondensator i stedet for at lade dem undvige gennem en åbning i kedlen.Another representative cationic, water-soluble, nitrogen-containing polymer was prepared, this time using epichlorohydrin and a commercially available aqueous mixture of polyamines as the reactants. This mixture contained at least 75% bis (hexamethylene) triamine and higher homologue, while the remainder of the mixture consisted of lower molecular weight amines, nitriles and lactams. The reaction was carried out in a boiler equipped with a steam jet vacuum system which was used to extract vapors through a condenser rather than allowing them to evade through an opening in the boiler.

Kedlen fyldtes med 704 dele vand og 476 dele epichlorhydrin, og derefter tilsattes 420 dele af den kommercielle blanding af polyami-ner til kedlen over en periode på 35 minutter, idet reaktionsblandingen afkøledes for at hindre temperaturen i at overskride 70°C. Efter tilsætning af aminen tilsattes seks dele vandigt 20% natriumhydroxid for at fremskynde reaktionen, og efter ialt 160 minutter ved ca. 70°C fortyndedes reaktionsblandingen med 640 dele vand for at reducere viskositeten til en Gardner-værdi på ca. C. Ialt 44 dele vandigt 20% natriumhydroxid tilsattes derefter over en periode på 105 minutter. En Gardner-viskositet på S nåedes efter 215 minutter, på hvilket tidspunkt reaktionen afsluttedes ved tilsætning af 26 dele koncentreret svovlsyre opløst i 1345 dele vand. Den fremkomne opløsning havde en Gardner-viskositet på D, og yderligere svovlsyre og vand tilsattes for at regulere pH til 4 og give et tørstofindhold på 22,5%.The boiler was filled with 704 parts of water and 476 parts of epichlorohydrin, and then 420 parts of the commercial mixture of polyamines were added to the boiler over a period of 35 minutes, cooling the reaction mixture to prevent the temperature from exceeding 70 ° C. After addition of the amine, six parts of aqueous 20% sodium hydroxide were added to speed the reaction, and after a total of 160 minutes at ca. At 70 ° C, the reaction mixture was diluted with 640 parts of water to reduce the viscosity to a Gardner value of approx. C. A total of 44 parts of aqueous 20% sodium hydroxide was then added over a period of 105 minutes. A Gardner viscosity of S was reached after 215 minutes, at which time the reaction was terminated by the addition of 26 parts of concentrated sulfuric acid dissolved in 1345 parts of water. The resulting solution had a Gardner viscosity of D, and additional sulfuric acid and water were added to adjust the pH to 4 and give a dry matter content of 22.5%.

EKSEMPEL CEXAMPLE C

Yderligere en kationisk, vandopløselig, nitrogenholdig polymer fremstilledes, hvor de grundliggende reaktanter var methyldiallyl-amin og epichlorhydrin. Til 333 dele methyldiallylamin tilsattes langsomt 290-295 dele koncentreret saltsyre for at tilvejebringe en opløsning med en pH-værdi på 3-4. Opløsningen gennembobledes derefter med nitrogen i 20 minutter, og temperaturen indstilledes til 50-60°C. En vandig 10,7% opløsning af natriumbisulfit og en vandig 10,1% opløsning af t-butylhydroperoxid tilsattes samtidig til reaktionsblandingen over en periode på 4-5 timer, indtil den resulterende polymer, poly(methyl-diallylaminhydrochlorid) , havde et viskositetstal på 0,2 dl/g målt med et Ubbe-lohde viskosimeter på en 1% opløsning i vandig gnmnlapr· natriumchlorid ved 25°C. Mængden af anvendt natriumbisulfit og t-butylhydroperoxid var i begge tilfælde to molprocent baseret på polymergentagelsesenhederne.A further cationic, water-soluble, nitrogen-containing polymer was prepared, wherein the basic reactants were methyldiallylamine and epichlorohydrin. To 333 parts of methyldiallylamine, 290-295 parts of concentrated hydrochloric acid were slowly added to provide a solution having a pH of 3-4. The solution was then bubbled with nitrogen for 20 minutes and the temperature adjusted to 50-60 ° C. An aqueous 10.7% solution of sodium bisulfite and an aqueous 10.1% solution of t-butyl hydroperoxide were simultaneously added to the reaction mixture over a period of 4-5 hours until the resulting polymer, poly (methyl-diallylamine hydrochloride) had a viscosity number of 0.2 dl / g measured with an Ub dissolved viscometer on a 1% solution in aqueous average sodium chloride at 25 ° C. In both cases, the amount of sodium bisulfite and t-butyl hydroperoxide used was two mole percent based on the polymer repeating units.

Til ovenstående polymeropløsning tilsattes derefter 600 dele vandigt 4% natriumhydroxid, og temperaturen af den fremkomne opløsning indstilledes til 35°C. Efter tilsætning af tilstrækkelig meget vand til at bringe polymeropløsningens tørstofindhold ned på 22% tilsattes 416,3 dele epichlorhydrin. Temperaturen af reaktionsblandingen blev holdt på ca. 45°C, medens Gardner-viskositeten af blandingen steg fra mindre end A til B+. Efter tilsætningen af 304 dele 36% saltsyre opvar- 11 1A7079 medes reaktionsblandingen til 80°C og blev holdt ved denne temperatur under kontinuerlig tilsætning af yderligere mængder saltsyre, indtil reaktionsblandingens pH-værdi havde stabiliseret sig ved 2 i en time. Reaktionsblandingen afkøledes derefter til 40°C, pH-værdien indstilledes til 3,5-4,0 med vandigt 4% natriumhydroxid, og der fortyndedes til 20% tørstof.To the above polymer solution, 600 parts of aqueous 4% sodium hydroxide were then added and the temperature of the resulting solution was adjusted to 35 ° C. After adding enough water to reduce the polymer solids content to 22%, 416.3 parts of epichlorohydrin was added. The temperature of the reaction mixture was maintained at ca. 45 ° C, while the Gardner viscosity of the mixture increased from less than A to B +. After the addition of 304 parts of 36% hydrochloric acid, the reaction mixture was heated to 80 ° C and kept at this temperature with continuous addition of additional amounts of hydrochloric acid until the pH of the reaction mixture stabilized at 2 for one hour. The reaction mixture was then cooled to 40 ° C, the pH was adjusted to 3.5-4.0 with aqueous 4% sodium hydroxide and diluted to 20% dry matter.

Harpiksproduktet fra ovenstående proces må inden anvendelse ifølge opfindelsen baseaktiveres. Dette opnås ved at tilsætte 18 dele vand og 12 dele énmolær natriumhydroxidopløsning til hver 10 dele af opløsningen af harpiksen med 20% tørstof. Den fremkomne opløsning med 5% tørstof bør efter modning i 15 minutter have en pH-værdi på 10 eller derover. Yderligere natriumhydroxid må om nødvendigt tilsættes for at opnå dette pH-niveau.The resin product of the above process must be base activated before use according to the invention. This is accomplished by adding 18 parts of water and 12 parts of one molar sodium hydroxide solution to each 10 parts of the solution of the resin with 20% solids. The resulting solution with 5% solids should, after ripening for 15 minutes, have a pH of 10 or more. Additional sodium hydroxide must be added if necessary to achieve this pH level.

EKSEMPEL DEXAMPLE D

En anden anvendelig kationisk, vandopløselig, nitrogenholdig polymer fremstilledes af bis(3-aminopropyl)methylamin, urinstof og epi-chlorhydrin. 210 dele af aminen og 87 dele urinstof anbragtes i en reaktionsbeholder, opvarmet :til-175°C, blev holdt ved denne temperatur i en time og derefter afkølet til 155°C. Vand tilsattes til reaktionsproduktet i en mængde på 375 dele, og den fremkomne opløsning afkøledes til stuetemperatur.Another useful cationic, water-soluble, nitrogen-containing polymer was prepared from bis (3-aminopropyl) methylamine, urea and epichlorohydrin. 210 parts of the amine and 87 parts of urea were placed in a reaction vessel, heated: to-175 ° C, kept at this temperature for one hour and then cooled to 155 ° C. Water was added to the reaction product in an amount of 375 parts and the resulting solution was cooled to room temperature.

Til 271 dele af ovenstående opløsning tilsattes 321 dele vand, 29 dele koncentreret saltsyre og 89,6 dele epichlorhydrin. Temperaturen af reaktionsblandingen blev holdt mellem 39° og 42°C i ca. 85 minutter, medens Gardner-viskositeten af blandingen steg fra A-B til L+.To 271 parts of the above solution were added 321 parts of water, 29 parts of concentrated hydrochloric acid and 89.6 parts of epichlorohydrin. The temperature of the reaction mixture was kept between 39 ° and 42 ° C for approx. 85 minutes, while the Gardner viscosity of the mixture increased from A-B to L +.

Der tilsattes derefter til blandingen J?0 dele koncentreret saltsyre, og den resulterende blanding opvarmedes i fire timer til en temperatur mellem 60 og 75°C, idet der efter ca. halvanden time tilsattes endnu ni dele saltsyre for at holde pH-værdien under 2. Blandingen afkøledes derefter til stuetenqperatur. Det fremkomne epichlorhydrinmodificerede polyaminurylenprodukt indeholdt 27% tørstof.Partially concentrated hydrochloric acid was added to the mixture and the resulting mixture was heated to a temperature between 60 and 75 ° C for four hours, an hour and a half, nine parts of hydrochloric acid was added to keep the pH below 2. The mixture was then cooled to room temperature. The resulting epichlorohydrin modified polyaminurylene product contained 27% solids.

Ovennævnte produkt må inden anvendelse ifølge opfindelsen også baseaktiveres. Aktivering gennemføres ved at tilsætte 10 dele af ovenstående produkt til 10 dele énmolær natriumhydroxidopløsning, modning af den fremkomne opløsning i 15 minutter og derefter fortynding af opløsningen (13,5% tørstof) til 5% tørstof eller derunder inden brug.The above product must also be activated before use according to the invention. Activation is accomplished by adding 10 parts of the above product to 10 parts of one molar sodium hydroxide solution, ripening the resulting solution for 15 minutes and then diluting the solution (13.5% dry matter) to 5% dry matter or less before use.

12 14707912 147079

EKSEMPEL EEXAMPLE E

En anionisk, vandopløselig, nitrogenholdig polymer fremstilledes af akrylamid, akrylsyre og glyoxal. Til en reaktionsbeholder forsynet med en mekanisk omrører, termometer, tilbagesvaler og nitrogentilfø-ringsorgan tilsattes 890 dele vand. I vandet opløstes der derefter 98 dele akrylamid, to dele akrylsyre og halvanden del vandig 10% cupri-sulfat. Den fremkomne opløsning gennembobledes med nitrogen og opvarmedes til 76°C, på hvilket tidspunkt to dele ammoniumpersulfat opløst i seksenhalv dele vand tilsattes. Temperaturen af reaktionsblandingen steg 21,5°C over en periode på tre minutter efter persulfattilsætningen. Da temperaturen var nået tilbage til 76°C blev den holdt der i to timer, hvorefter reaktionsblandingen afkøledes til stuetemperatur. Den fremkomne opløsning havde en Brookfield-viskositet på 54 centipoise ved 21°C og indeholdt under 0,2% akrylamid baseret på polymerindholdet.An anionic, water-soluble, nitrogen-containing polymer was prepared from acrylamide, acrylic acid and glyoxal. 890 parts of water were added to a reaction vessel equipped with a mechanical stirrer, thermometer, reflux condenser and nitrogen supply. Then 98 parts of acrylamide, two parts of acrylic acid and one and a half parts of aqueous 10% cuprous sulfate were dissolved in the water. The resulting solution was bubbled with nitrogen and heated to 76 ° C, at which time two parts of ammonium persulfate dissolved in six and a half parts of water were added. The temperature of the reaction mixture increased 21.5 ° C over a period of three minutes after the addition of persulphate. When the temperature reached 76 ° C, it was kept there for two hours, after which the reaction mixture was cooled to room temperature. The resulting solution had a Brookfield viscosity of 54 centipoise at 21 ° C and contained less than 0.2% acrylamide based on the polymer content.

Til 766,9 dele af ovenstående opløsning (76,7 dele polymer indeholdende 75,2 dele eller 1,06 mol amidgentagelsesenheder) tilsattes 39,1 dele vandigt 40% glyoxal (15,64 dele eller 0,255 ækvivalent baseret på amidgentagelsesenheder glyoxal). pH-værdien for den fremkomne opløsning indstilledes til 9,25 ved tilsætning af 111,3 dele vandigt 2% natriumhydroxid. I løbet af ca. 20 minutter efter natriumhydroxidtilsætningen var Gardner-viskositeten af opløsningen steget fra A til E. Reaktionen afsluttedes derefter ved tilsætning af 2777 dele vand-og ca. 2,6 dele vandig 40% svovlsyre. Den fremkomne opløsning havde en pH-værdi på 4,4 og indeholdt 2,2% tørstof.To 766.9 parts of the above solution (76.7 parts of polymer containing 75.2 parts or 1.06 moles of amide repeat units), 39.1 parts of aqueous 40% glyoxal (15.64 parts or 0.255 equivalent based on amide repeat units glyoxal) were added. The pH of the resulting solution was adjusted to 9.25 by the addition of 111.3 parts of aqueous 2% sodium hydroxide. Over approx. 20 minutes after the sodium hydroxide addition, the Gardner viscosity of the solution had increased from A to E. The reaction was then terminated by the addition of 2777 parts of water and ca. 2.6 parts aqueous 40% sulfuric acid. The resulting solution had a pH of 4.4 and contained 2.2% solids.

EKSEMPEL FEXAMPLE F

Et andet eksempel på en anionisk, vandopløselig, nitrogenholdig polymer fremstilledes under anvendelse af alene akrylamid og glyoxal som reaktanter. I en reaktionsbeholder forsynet med omrører, termometer og tilbagesvaler anbragtes 350 dele akrylamid, en del phenyl- 3-naphthylamin og 3870 dele chlorbenzen. Denne blanding opvarmedes til 80-90°C under kraftig omrøring for delvis at smelte og delvis opløse akrylamidet.Another example of an anionic, water-soluble, nitrogen-containing polymer was prepared using acrylamide and glyoxal alone as reactants. Into a reaction vessel equipped with a stirrer, thermometer and reflux was placed 350 parts of acrylamide, one part of phenyl-3-naphthylamine and 3870 parts of chlorobenzene. This mixture was heated to 80-90 ° C with vigorous stirring to partially melt and partially dissolve the acrylamide.

En del natriumhydroxidflager tilsattes derefter til blandingen, og efter en induktionsperiode indtrådte en exoterm reaktion, og der Udskiltes polymer på omrøreren og på reaktionsbeholderens vægge. Endnu tre portioner bestående af en del natriumhydroxidflager tilsattes til reaktionsblandingen med tredive minutters intervaller, hvorefter reaktionsblandingen opvarmedes til ca. 90°C i en time. Den varme chlorbenzen dekanteredes derefter, og det tilbageblevne tørstof, en forgrenet, 13 U 7079 vandopløselig poly(β-alanin) vaskedes tre gange med acetone og opløstes derefter ved stuetemperatur i 1000 dele vand. Den således fremkomne uklare opløsning med en pH-værdi på ca. 10,5 opvarmedes til ca. 75°C i ca. 30 minutter for at opnå delvis hydrolyse af amidgrupperne i poly(p-alaninet), og kraftdamp blæstes gennem opløsningen, indtil det tilbageblevne chlorbenzen var blevet fjernet og det sidste spor af polymer opløst. Efter afkøling indstilledes pH-værdien af opløsningen til ca.Some sodium hydroxide flakes were then added to the mixture and after an induction period an exothermic reaction occurred and polymer was separated on the stirrer and on the walls of the reaction vessel. Another three portions consisting of some sodium hydroxide flakes were added to the reaction mixture at thirty minute intervals, after which the reaction mixture was heated to ca. 90 ° C for one hour. The hot chlorobenzene was then decanted and the residual dry substance, a branched, 13 U 7079 water-soluble poly (β-alanine) was washed three times with acetone and then dissolved at room temperature in 1000 parts of water. The cloudy solution thus obtained having a pH of approx. 10.5 was heated to ca. 75 ° C for approx. 30 minutes to achieve partial hydrolysis of the amide groups in the poly (β-alanine) and vapor is blown through the solution until the residual chlorobenzene has been removed and the last trace of polymer dissolved. After cooling, the pH of the solution was adjusted to ca.

5,5 med svovlsyre. Den opløste polymer indeholdt ca. 2 molprocent car-boxylgrupper, bestemt ved potentiometrisk titrering.5.5 with sulfuric acid. The dissolved polymer contained approx. 2 mole percent carboxyl groups as determined by potentiometric titration.

Til en vandig 15% opløsning af ovenstående polymer tilsattes en vandig 40% opløsning af glyoxal i tilstrækkelig mængde til at give 25 molprocent glyoxal baseret på amidgentagelsesenhederne i polymeren. pH-værdien af den fremkomne opløsning hævedes langsomt til ca. 9,0-9,5 ved stuetemperatur ved tilsætning af fortyndet vandig natriumhydroxid, og pH-værdien blev holdt på dette niveau, indtil en stigning i Gardner-viskositet på 5-6 enheder havde fundet sted. Opløsningen fortyndedes derefter hurtigt med vand til 10% totalt tørstof og indstilledes til en pH-værdi på 5,0 med svovlsyre.To an aqueous 15% solution of the above polymer, an aqueous 40% solution of glyoxal was added in sufficient quantity to give 25 mole percent glyoxal based on the amide repeat units in the polymer. The pH of the resulting solution was slowly raised to approx. 9.0-9.5 at room temperature by the addition of dilute aqueous sodium hydroxide, and the pH was maintained at this level until an increase in Gardner viscosity of 5-6 units occurred. The solution was then rapidly diluted with water to 10% total solids and adjusted to a pH of 5.0 with sulfuric acid.

Eksempel 1 90 dele isotaktisk polypropylen med et grænseviskotitets- tal [η] på 2,1 dl/g målt med et Ubbelohde viskosimeter i decahydro- naphthalen ved 135°C og 10 dele af en ethylen-akrylcyrecopolymer (Dow, 92:8 ethylen:akrylsyre, smeltetal 5,3) anbragtes i en lukket autoklave sammen med 400 dele methylenchlorid som opløsningsmiddel.Example 1 90 parts of isotactic polypropylene having an intrinsic viscosity number [η] of 2.1 dl / g as measured with a Ubbelohde viscometer in decahydronaphthalene at 135 ° C and 10 parts of an ethylene-acrylic copolymer (Dow, 92: 8 ethylene: acrylic acid, melting point 5.3) was placed in a closed autoclave together with 400 parts of methylene chloride as solvent.

Autoklavens indhold omrørtes og opvarmedes til 220°C, på hvilket o tidspunkt autoklavens damptryk hævedes til 70,3 kg/cm (1000 p.s.i.) ved tilførsel af nitrogen. Den fremkomne opløsning udtømtes fra autoklaven til atmosfæren gennem en åbning med en diameter på 1 mm og en længde på 1 mm, hvilket resulterede i afdampning af methylenchlorid-opløsningsmidlet og dannelse af det ønskede fiberprodukt. Dette fiberprodukt skiveraffineredes derefter i 6 minutter i en Sprout Waldron-skiveraffinør ved 0,25% stoftæthed i et vandigt medium indeholdende 0,1% af en blanding af den kationiske polymer ifølge Eksempel A og den anioniske polymer ifølge Eksempel E, idet vægtforholdet mellem den kationiske polymer og den anioniske polymer i harpiksblandingen var 1:5. Det rensede fiberprodukt indeholdt efter vask med vand 8,5% tilknyttet harpiks baseret på nitrogenanalyse.The contents of the autoclave were stirred and heated to 220 ° C, at which time the steam pressure of the autoclave was raised to 70.3 kg / cm (1000 p.s.i.) by the addition of nitrogen. The resulting solution was discharged from the autoclave into the atmosphere through an opening of 1 mm diameter and 1 mm length, resulting in evaporation of the methylene chloride solvent and formation of the desired fiber product. This fiber product was then sliced for 6 minutes in a Sprout Waldron slice refiner at 0.25% dust density in an aqueous medium containing 0.1% of a mixture of the cationic polymer of Example A and the anionic polymer of Example E, the weight ratio of the cationic polymer and the anionic polymer in the resin mixture were 1: 5. The purified fiber product, after washing with water, contained 8.5% associated resin based on nitrogen analysis.

14 14707914 147079

Eksempel 2Example 2

Det flashspundne fiberprodukt ifølge Eksempel 1 skiveraffineredes som i dette eksempel med undtagelse af, at der anvendtes et vandigt medium indeholdende 0,05% af blandingen af kationiske og an-ioniske polymerer. Det rensede fiberprodukt indeholdt efter vask med vand 5,2% tilknyttet harpiks baseret på nitrogenanalyse.The flash-spun fiber product of Example 1 was sliced as in this example except that an aqueous medium containing 0.05% of the mixture of cationic and anionic polymers was used. The purified fiber product, after washing with water, contained 5.2% of resin based on nitrogen analysis.

Eksempel 3Example 3

Fremgangsmåden ifølge Eksempel 1 gentoges med undtagelse af, at der anvendtes følgende betingelser ved fremstillingen af det ud-spundne fiberprodukt: 95 dele af polypropylenet, fem dele ethylen-akrylsyrecopolymer (Dow, 88:12 ethylen:akrylsyre, smeltetal 7,0) , en blanding af 360 dele methylenchlorid og 40 dele acetone som opløsningsmiddel, en temperatur på 220°C og et tryk på 84,4 kg/cm^ (1200 p.s.i.). Det således fremkomne fiberprodukt indeholdt efter skiveraffinering som i Eksempel 1 9,0% afsat harpiks, bestemt ved nitrogenanalyse.The procedure of Example 1 was repeated except that the following conditions were used in the preparation of the spun fiber product: 95 parts of the polypropylene, five parts of ethylene-acrylic acid copolymer (Dow, 88:12 ethylene: acrylic acid, melting point 7.0), a mixture of 360 parts of methylene chloride and 40 parts of acetone as solvent, a temperature of 220 ° C and a pressure of 84.4 kg / cm 2 (1200 psi). The fiber product thus obtained, after disc refining, contained, as in Example 1, 9.0% resin deposited, as determined by nitrogen analysis.

Eksempel 4Example 4

Fremgangsmåden ifølge Eksempel 1 blev igen gentaget med undtagelse af, at der denne gang anvendtes følgende betingelser ved fremstillingen af det flashspundne fiberprodukt: 90 dele isotaktisk polypropylen med et grænseviskositetstal [η] på 1,3 dl/g målt med et Ubbe-lohde viskosimeter i decahydronaphthalen ved 135°C, 10 dele ethylen-akrylsyrecopolymer (Union Carbide, 94:6 ethylen:akrylsyre), 900 dele methylenchlorid som opløsningsmiddel, en temperatur på 200°C og et tryk på 70,3 kg/cm (1000 p.s.i.). Fiberproduktet fra denne udspin-dingsproces skiveraffineredes derefter som i Eksempel 1, hvorved der fremkom fibre indeholdende 7,2% tilknyttet harpiks baseret på nitrogenanalyse .The procedure of Example 1 was repeated again except that this time the following conditions were used in the preparation of the flash spun fiber product: 90 parts of isotactic polypropylene having an intrinsic viscosity number [η] of 1.3 dl / g measured with an Ub dissolved viscometer in decahydronaphthalene at 135 ° C, 10 parts of ethylene-acrylic acid copolymer (Union Carbide, 94: 6 ethylene: acrylic acid), 900 parts of methylene chloride as solvent, a temperature of 200 ° C and a pressure of 70.3 kg / cm (1000 psi). The fiber product from this spinning process was then sliced as in Example 1 to yield fibers containing 7.2% associated with resin based on nitrogen analysis.

Eksempel 5Example 5

Et flashspundet fiberprodukt fremstilledes efter fremgangsmåden ifølge Eksempel 1 med undtagelse af, at der anvendtes 80 dele af polypropylenet og 20 dele af ethylen-akrylsyrecopolymeren ifølge Eksempel 4, 400 dele methylenchlorid, en temperatur på 210°C og et tryk på 70,3 kg/cm (1000 p.s.i.). Produktet skiveraffineredes som i Eksempel 1, hvorved der fremkom et fiberprodukt indholdende 6,7% afsat harpiks baseret på nitrogenanalyse.A flash spun fiber product was prepared according to the procedure of Example 1 except that 80 parts of the polypropylene and 20 parts of the ethylene-acrylic acid copolymer of Example 4 were used, 400 parts of methylene chloride, a temperature of 210 ° C and a pressure of 70.3 kg / day. cm (1000 psi). The product was sliced refined as in Example 1 to give a fiber product containing 6.7% of resin deposited based on nitrogen analysis.

15 147079147079

Eksempler 6 og 7Examples 6 and 7

Gentagelse af Eksempel 5 gennemførtes under samme betingelser med undtagelse af, at der anvendtes et vægtforhold på 1:7 mellem den kationiske polymer ifølge Eksempel A og den anioniske polymer ifølge Eksempel E i harpiksblandingen i Eksempel 6 og et vægtforhold på 1:3 mellem polymerene i Eksempel 7. Harpiksoptagelsen i fiberproduktet ifølge Eksempel 6 var 6,5% og i fiberproduktet ifølge Eksempel 7 5,1%.Repeat Example 5 was carried out under the same conditions except that a 1: 7 weight ratio was used between the cationic polymer of Example A and the anionic polymer of Example E in the resin mixture of Example 6 and a weight ratio of 1: 3 between the polymers of Example 7. The resin uptake in the fiber product of Example 6 was 6.5% and in the fiber product of Example 7 5.1%.

Eksempel 8Example 8

Hver af de syntetiske pulpmasser, fremstillet som beskrevet i Eksemplerne 1-7, blandedes med bleget krafttræpulp (50:50 RBK:WBK, pH 6,5, 500 Canadian Standard Freeness) i forholdet 30% syntetisk pulp til 70% træpulp. Håndark fremstillet af blandingerne tørredes og kalan-dreredes ved 89 kg/cm (500 lbs/lineær tomme) ved 60°C. Hvidheden, uigennemsigtigheden, trækstyrken og Mullen-brudstyrken af de kalandrerede ark bestemtes, og resultaterne er angivet i Tabel 1. I de i denne tabel angivne data er trækstyrke- og Mullen-brudstyrkeværdierne udtrykt som en procent af trækstyrken og Mullen-brudstyrken af sammenligningsprøven bestående af 100% træpulp, hvor alle resultater er korrigeret til en basisvægt på 18,1 kg pr. ris.Each of the synthetic pulp compositions prepared as described in Examples 1-7 was mixed with bleached kraft wood pulp (50:50 RBK: WBK, pH 6.5, 500 Canadian Standard Freeness) in the ratio of 30% synthetic pulp to 70% wood pulp. Hand sheets made from the mixtures were dried and calendered at 89 kg / cm (500 lbs / linear inch) at 60 ° C. The whiteness, opacity, tensile strength and Mullen fracture strength of the calendered sheets were determined and the results are given in Table 1. In the data given in this table, tensile strength and Mullen tensile strength values expressed as a percentage of tensile strength and Mullen fracture strength of the comparison sample consisted of 100% wood pulp, where all results are corrected to a basis weight of 18.1 kg per rice.

Tabel 1 Uigennem-Table 1

Eksempel Hvidhed sigtighed Træks tyrke Mullen-bruds tyrke (%) (%) (%) (%) 1 87,3 85,8 90 86 2 87,9 87,2 82 84 3 87,6 87,7 78 78 4 84,4 81,5 71 68 5 87,2 82,5 78 72 6 87,4 81,8 76 76 7 87,5 82,8 79 63Example Whiteness visibility Trek Turkey Mullen fracture Turkey (%) (%) (%) (%) 1 87.3 85.8 90 86 2 87.9 87.2 82 84 3 87.6 87.7 78 78 4 84 , 4 81.5 71 68 5 87.2 82.5 78 72 6 87.4 81.8 76 76 7 87.5 82.8 79 63

Det fremgår af ovenstående data, at fremgangsmåden ifølge opfindelsen vil tilvejebringe papir med en trækstyrke på fra ca. 70 til ca. 90% af trækstyrken og fra ca. 60 til ca. 85% af Mullen-brudstyrken af papir fremstillet af 100% træpulp.It is apparent from the above data that the method according to the invention will provide paper with a tensile strength of from approx. 70 to approx. 90% of the tensile strength and from approx. 60 to approx. 85% of the Mullen breaking strength of paper made from 100% wood pulp.

147079 16147079 16

Eksempel 9Example 9

Fremgangsmåden ifølge Eksempel 1 fulgtes under anvendelse af 200 dele krystallinsk polypropylen podet med tre vægtdele maleinsyre-anhydrid, 2672 dele methylenchlorid, en temperatur på 200°C og et tryk på 70,3 kg/cm2 (1000 p.s .i.) . det flashspundne fiberprodukt skiveraffine redes som i Eksempel 1, hvorved der fremkom fibre indeholdende 2,7% afsat harpiks. Den raffinerede pulp blandedes med træpulp, og der fremstilledes og bedømtes håndark som i Eksempel 8. De resulterende ark havde en hvidhed på 82%, en uigennemsigtighed på 80%, en trækstyrke på 67% og en Mullen-brudstyrke på 71%.The procedure of Example 1 was followed using 200 parts of crystalline polypropylene seeded with three parts by weight of maleic anhydride, 2672 parts of methylene chloride, a temperature of 200 ° C and a pressure of 70.3 kg / cm 2 (1000 p.s.i.). the flash-spun fiber product sliced refine was prepared as in Example 1 to yield fibers containing 2.7% resin deposited. The refined pulp was mixed with wood pulp and hand sheets were prepared and evaluated as in Example 8. The resulting sheets had a whiteness of 82%, an opacity of 80%, a tensile strength of 67% and a Mullen breaking strength of 71%.

Eksempel 10Example 10

Fremgangsmåden ifølge Eksempel 1 anvendtes til at fremstille et flashspundet fiberprodukt af krystallinsk polypropylen podet med seks vægtprocent akrylsyre. Der anvendtes vand:hexan som dispergeringsmedi-um i vægtforholdet 3:2. Fiberproduktet skiveraffineredes som i Eksempel 1 med undtagelse af, at der anvendtes en vandig 0,5% opløsning af en blanding af den kationiske polymer i Eksempel A med den anioniske polymer i Eksempel F, idet vægtforholdet mellem den kationiske polymer og den anioniske polymer var 1:3. Den på fibrene afsatte harpiksmængde var 7,2%. Den rensede pulp blandedes med træpulp, og der fremstilledes og bedømtes håndark som i Eksempel 8. De fremkomne ark udviste en hvidhed på 87%, en uigennemsigtighed på 79,3% og en trækstyrke på 77%.The procedure of Example 1 was used to prepare a flash spun fiber product of crystalline polypropylene seeded with six weight percent acrylic acid. Water: hexane was used as the dispersion medium in the 3: 2 weight ratio. The fiber product was sliced refined as in Example 1 except that an aqueous 0.5% solution of a mixture of the cationic polymer of Example A with the anionic polymer of Example F was used, the weight ratio of the cationic polymer to the anionic polymer being 1 : 3rd The amount of resin deposited on the fibers was 7.2%. The purified pulp was mixed with wood pulp and hand sheets were prepared and evaluated as in Example 8. The resulting sheets showed a whiteness of 87%, an opacity of 79.3% and a tensile strength of 77%.

Eksempel 11Example 11

Halvfems dele h.d. polyethylen (DuPont, smeltetal 5,5-6,5 ved 190°C) erstattede polypropylenet i Eksempel 1, og blandingen med ethy-len-akrylsyrecopolymeren flashspandtes fra opløsning i methylenchlorid ved 200°C og et tryk på 70,3 kg/cm2 (1000 p.s.i.), Fiberproduktet skiveraffineredes som i Eksempel 1, og den rensede pulp blandedes med træpulp, og håndark fremstilledes og bedømtes som i Eksempel 8. De fremkomne ark udviste en hvidhed på 84%, en uigennemsigtighed på 80%, og trækstyrke på 68% og en Mullen-brudstyrke på 69%.Ninety parts h.d. polyethylene (DuPont, melting point 5.5-6.5 at 190 ° C) replaced the polypropylene in Example 1, and the mixture with the ethylene-acrylic acid copolymer flash-flashed from solution in methylene chloride at 200 ° C and a pressure of 70.3 kg / cm 2 (1000 psi), the fiber product was sliced as in Example 1, and the purified pulp was mixed with wood pulp and hand sheets were prepared and evaluated as in Example 8. The resulting sheets exhibited a whiteness of 84%, an opacity of 80%, and tensile strength of 68 % and a Mullen breaking strength of 69%.

Eksempel 12 130 dele polypropylen med et grænseviskositetstal [η] på 2,2 dl/g målt med et Ubbelohde viskosimeter i decahydronaphthalen ved 135°C, 870 dele methylenchlorid, en temperatur på 222°C og et 2 tryk på 70,3 kg/cm anvendtes ved fremstillingen af et fiberprodukt efter fremgangsmåden ifølge Eksempel 1. 60 dele af fiberproduktet 17 147079 suspenderedes i 6000 dele vand, den fremkomne suspension omrørtes, 3 3 og luft indeholdende 24,7 g/m (0,7 g/ft ) ozon ledtes gennem suspen-sionen ved stuetemperatur i en mængde på 1,7 1/minut (0,06 ft /minut) i en periode på 15 minutter. Under disse forhold var ozonoptagelsen af fiberen 0,53 vægtprocent af fibrene, og fibrene havde et syretal svarende til 0,033 milliækvivalent carboxylgrupper pr. gram fiber. De våde ozoniserede fibre blev skiveraffineret som i Eksempel 1, og det raffinerede produkt fandtes at indeholde 5,4% tilknyttet harpiks baseret på nitrogenanalyse. Den raffinerede pulp blandedes derefter med træpulp (50:50 RBK:WBK, 750 Canadian Standard Freeness), og håndark fremstilledes og bedømtes som i Eksempel 8. De resulterende ark udviste en hvidhed på 87,3%, en uigennemsigtighed på 87,6% og en trækstyrke på 84%.Example 12 130 parts of polypropylene having an intrinsic viscosity [η] of 2.2 dl / g as measured with a Ubbelohde viscometer in the decahydronaphthalene at 135 ° C, 870 parts of methylene chloride, a temperature of 222 ° C and a 2 pressure of 70.3 kg / cm was used in the preparation of a fiber product according to the procedure of Example 1. 60 parts of the fiber product 17 were suspended in 6000 parts of water, the resulting suspension was stirred, 3 3 and air containing 24.7 g / m (0.7 g / ft) ozone. was passed through the suspension at room temperature in an amount of 1.7 l / min (0.06 ft / min) for a period of 15 minutes. Under these conditions, the ozone uptake of the fiber was 0.53% by weight of the fibers and the fibers had an acid number corresponding to 0.033 milliequivalents of carboxyl groups per minute. grams of fiber. The wet ozonized fibers were disc refined as in Example 1, and the refined product was found to contain 5.4% associated resin based on nitrogen analysis. The refined pulp was then mixed with wood pulp (50:50 RBK: WBK, 750 Canadian Standard Freeness) and hand sheets were prepared and evaluated as in Example 8. The resulting sheets exhibited a whiteness of 87.3%, an opacity of 87.6% and a tensile strength of 84%.

Eksempel 13Example 13

Fremgangsmåden ifølge Eksempel 12 blev gentaget med undtagelse af, at ozoniseringsreaktionen forløb over en time. Ozonoptagelsen af fibrene var 1,9%, og fibrene havde et syretal svarende til 0,129 milliækvivalent carboxylgrupper pr. gram fiber. Efter skiveraffinering indeholdt fibrene 5,1% tilknyttet harpiks, og håndarkene fremstillet ifølge Eksempel 8 udviste en hvidhed på 87,2%, en uigennemsigtighed på 87,7% og en trækstyrke på 89%.The procedure of Example 12 was repeated except that the ozonization reaction proceeded over one hour. The ozone uptake of the fibers was 1.9% and the fibers had an acid number equal to 0.129 milliequivalents of carboxyl groups per minute. grams of fiber. After disc refining, the fibers contained 5.1% of resin and the hand sheets made according to Example 8 exhibited a whiteness of 87.2%, an opacity of 87.7% and a tensile strength of 89%.

Eksempel 14Example 14

Fremgangsmåden ifølge Eksempel 13 blev gentaget med undtagelse af, at der anvendtes h.d. polyethylen i stedet for polypropylen, og at pentan anvendtes som opløsningsmiddel i stedet for methylenchlorid. Ozonoptagelsen var 1,2%, syretallet var 0,115 milliækvivalent pr. gram, mængden af bundet harpiks var 8,8%, og håndarkene udviste en hvidhed på 85%, en uigennemsigtighed på 87% og en trækstyrke på 100%.The procedure of Example 13 was repeated except that h.d. polyethylene instead of polypropylene, and that pentane was used as a solvent instead of methylene chloride. Ozone uptake was 1.2%, the acid number was 0.115 milliequivalents per day. grams, the amount of bonded resin was 8.8% and the hand sheets exhibited a whiteness of 85%, an opacity of 87% and a tensile strength of 100%.

Eksempel 15Example 15

Idet teknikken ifølge Eksempel 12 generelt blev fulgt, fremstilledes et flashspundet fiberprodukt af h.d. polyethylen podet med 5% maleinsyreanhydrid, der fremstilledes en enprocent suspension af 60 dele af fibrene i vand, og ozon blev ledt gennem fibersuspensionen i en time ved 25°C i en mængde på 0,039 g/minut. De ozoniserede fibre blev skiveraffineret ved en stoftæthed på 0,125% i et vandigt medium indeholdende 0,05% af harpiksblandingen ifølge Eksempel 1. Harpiksopta 147079 18 gelsen fra raffineringsproceduren var 5,4%, og efter blanding med træpulp og formning af håndark som i Eksempel 8 udviste de fremkomne ark en hvidhed på 87,5%, en uigennemsigtighed på 85% og en trækstyrke på 85%.Following the technique of Example 12 in general, a flash-spun fiber product of h.d. polyethylene grafted with 5% maleic anhydride, a one percent suspension of 60 parts of the fibers was prepared in water, and ozone was passed through the fiber suspension for one hour at 25 ° C at a rate of 0.039 g / minute. The ozonized fibers were slice refined at a dust density of 0.125% in an aqueous medium containing 0.05% of the resin blend of Example 1. The resin uptake from the refining procedure was 5.4% and after blending with wood pulp and forming hand sheets as in Example 8, the resulting sheets exhibited a whiteness of 87.5%, an opacity of 85% and a tensile strength of 85%.

Eksempel 16Example 16

Der fremstilledes et polypropylenfiberprodukt under anvendelse af betingelser, som lignede de i Eksempel 12 angivne. En del af dette produkt blandedes med fem vægtprocent træpulp (50:50 RBK:WBK) baseret på polypropylenfibre, og fiberblandingen skiveraffineredes, indtil den blev vanddispergerbar. En enprocent dispersion af blandingen i vand blev derefter ozoniseret ved at lede ozon gennem fiberdispersionen ved stuetemperatur, indtil de ozoniserede fibre havde et syretal svarende til 0,07 milliækvivalent carboxylgrupper pr. gram fiber. Tredive dele af den ozoniserede pulp blandedes med 70 dele træpulp, og til portioner af den fremkomne blanding tilsattes i papirfremstillingskar fem procent baseret på den totale fibervægt af (a) harpiksblandingen ifølge Eksempel 1, (b) en blanding af den kationiske polymer ifølge Eksempel B med den anioniske polymer ifølge Eksempel E, idet vægtforholdet mellem kationisk og anionisk var 1:5, (c) en blanding af den kationiske polymer ifølge Eksempel C med den anioniske polymer ifølge Eksempel E, idet vægtforholdet mellem kationisk og anionisk var 1:5, og (d) en blanding af den kationiske polymer ifølge Eksempel D med den anioniske polymer ifølge Eksempel E, idet vægtforholdet mellem kationisk og anionisk var 1:5. Efter grundig blanding af tilsætningsstofferne med pulpen fremstilledes og bedømtes håndark som beskrevet i Eksempel 8. Resultaterne er vist i Tabel 2.A polypropylene fiber product was prepared using conditions similar to those of Example 12. Part of this product was blended with five weight percent wood pulp (50:50 RBK: WBK) based on polypropylene fibers and the fiber blend was sliced until it became water dispersible. A one percent dispersion of the mixture in water was then ozonized by passing ozone through the fiber dispersion at room temperature until the ozonized fibers had an acid number corresponding to 0.07 milliequivalents of carboxyl groups per minute. grams of fiber. Thirty parts of the ozonized pulp were blended with 70 parts of wood pulp, and for portions of the resulting mixture, five percent by weight of the total fiber weight of the (a) resin blend of Example 1 was added in paper-making vessels, (b) a mixture of the cationic polymer of Example B with the anionic polymer of Example E, the weight ratio of cationic to anionic being 1: 5; (c) a mixture of the cationic polymer of Example C with the anionic polymer of Example E, the weight ratio of cationic to anionic being 1: 5; and (d) a mixture of the cationic polymer of Example D with the anionic polymer of Example E, the weight ratio of cationic to anionic being 1: 5. After thorough mixing of the additives with the pulp, hand sheets were prepared and evaluated as described in Example 8. The results are shown in Table 2.

Tabel 2Table 2

Tilsætnings- Uigennemsig- stof_ Hvidhed tighed_ Trækstyrke (%) (%) (%) (a) 87,8 84,5 67 (b) 87,1 84,3 68 (c) 87,6 84,4 74 (d) 87,8 84,2 69Additive Opaque Fabric_ White Lightness_ Tensile Strength (%) (%) (%) (a) 87.8 84.5 67 (b) 87.1 84.3 68 (c) 87.6 84.4 74 (d) 87.8 84.2 69

Sammenligningsdata fremkommet ved vurderingen af repræsentative kendte fremgangsmåder og polymere tilsætningsmidler er vist i nedenstående eksempler. Alle mængder er igen på vægtbasis.Comparative data obtained from the evaluation of representative known methods and polymeric additives are shown in the examples below. All quantities are again on a weight basis.

147079 19147079 19

Sammenligningseksempel 17Comparative Example 17

Idet fremgangsmåden ifølge Eksempel 1 fulgtes, fremstilledes et fiberprodukt af 95 dele polypropylen og fem dele af ethylen-akryl-syrecopolymeren ifølge dette eksempel, og separate portioner af fiberproduktet skiveraffineredes i et vandigt medium indeholdende 0,1% af (a) harpiksblandingen ifølge Eksempel 1, (b) en 1:1 blanding af melamin-formaldehydpolymer (Paramel HE, American Cyanamid) og carboxymethyl-cellulose (CMC, D.S. 0,4, Hercules), og (c) en 2:1 blanding af Paramel-og CMC-polymerene. Hver af de fremkomne pulpmasser blandedes med træpulp, og der fremstilledes og bedømtes håndark som beskrevet i Eksempel 8. Resultaterne er vist i Tabel 3.Following the procedure of Example 1, a fiber product of 95 parts of polypropylene and five parts of the ethylene-acrylic acid copolymer of this example was prepared, and separate portions of the fiber product were sliced into an aqueous medium containing 0.1% of (a) the resin mixture of Example 1 , (b) a 1: 1 mixture of melamine-formaldehyde polymer (Paramel HE, American Cyanamide) and carboxymethyl cellulose (CMC, DS 0.4, Hercules), and (c) a 2: 1 mixture of Paramel and CMC. polymers. Each of the resulting pulp masses was mixed with wood pulp, and hand sheets were prepared and evaluated as described in Example 8. The results are shown in Table 3.

Tabel 3Table 3

Tilsætnings- Uigennemsig- Træk- Mullenstof Hvidhed tighed styrke brudstyrke (S) (%) (S) (%) (a) 82,5 87,0 73,5 56,0 (b) 81,8 86,7 38,2 24,9 (c) 84,3 88,2 44,1 26,0Additive-Transparent-Tensile-White Fabric Strength Strength Strength (S) (%) (S) (%) (a) 82.5 87.0 73.5 56.0 (b) 81.8 86.7 38.2 24.9 (c) 84.3 88.2 44.1 26.0

Disse data viser, at udskiftning af harpiksblanding (a) med kendte blandinger (b) og (c) ved fremgangsmåden ifølge opfindelsen ikke giver et papir med den ønskede styrke.These data show that replacement of resin blend (a) with known blends (b) and (c) by the process of the invention does not yield a paper of the desired strength.

Sammenligningseksempel 18Comparative Example 18

Et flashspundet fiberprodukt, stort set identisk med produktet ifølge Eksempel 1, skiveraffineres i seks minutter i vand i en Sprout Waldron-skiveraffinør ved en stoftæthed på 0,25%. Den raffinerede pulp blandedes med bleget krafttræpulp (50:50 RBK:WBK, 500 Canadian Standard Freeness) som i Eksempel 8, og til portioner af den fremkomne blanding tilsattes der i papirfremstillingskar fem procent baseret på den totale fibervægt af (a) harpiksblandingen ifølge Eksempel 7, (b) en blanding af den kationiske polymer ifølge Eksempel B med den anioniske polymer ifølge Eksempel E, idet vægtforholdet mellem den kationiske polymer og den anioniske polymer var 1:3, (c) en blanding af den kationiske polymer ifølge Eksempel C med den anioniske polymer ifølge Eksempel E, idet vægtforholdet mellem den kationiske polymer og den anioniske polymer var 1:3, og (d) 2:l-blandingen af Paramel og CMC ifølge 20 147079A flash spun fiber product, substantially identical to the product of Example 1, is disc refined for six minutes in water in a Sprout Waldron disc refiner at a dust density of 0.25%. The refined pulp was blended with bleached kraft wood pulp (50:50 RBK: WBK, 500 Canadian Standard Freeness) as in Example 8, and for portions of the resulting mixture, 5 percent based on the total fiber weight of the (a) resin blend of Example 1 was added 7, (b) a mixture of the cationic polymer of Example B with the anionic polymer of Example E, the weight ratio of the cationic polymer to the anionic polymer being 1: 3, (c) a mixture of the cationic polymer of Example C with the anionic polymer of Example E, the weight ratio of the cationic polymer to the anionic polymer being 1: 3, and (d) the 2: 1 mixture of Paramel and CMC according to 207070

Eksempel 17. Yderligere portioner af pulpblandingen behandledes tilsvarende med halvanden procent (a), (b), (c) og (d) baseret på den totale fibervægt. Håndark fremstilledes og bedømtes som beskrevet i Eksempel 8. Resultaterne er angivet i Tabel 4.Example 17. Further portions of the pulp mixture were similarly treated with one and a half percent (a), (b), (c) and (d) based on the total fiber weight. Hand sheets were prepared and evaluated as described in Example 8. The results are given in Table 4.

Tabel 4Table 4

Tilsætnings- Uigennemsig- Træk- Mullenstof Hvidhed tighed styrke brudstyrke (%) (%) (%) (%) 5,0% (a) 82,5 82,4 87 102 5,0% (b) 81,0 83,8 75 103 5,0% (c) 81,3 80,3 92 86 5,0% (d) 85,6 82,0 50 52 1,5% (a) 85,1 83,6 67 69 1,5% (b) 84,6 82,9 70 68 1,5% (c) 84,0 81,6 70 95 1,5% (d) 86,5 83,1 55 40Additive Opaque-Tensile-Tissue Whiteness Strength Strength (%) (%) (%) (%) 5.0% (a) 82.5 82.4 87 102 5.0% (b) 81.0 83, 8 75 103 5.0% (c) 81.3 80.3 92 86 5.0% (d) 85.6 82.0 50 52 1.5% (a) 85.1 83.6 67 69 1, 5% (b) 84.6 82.9 70 68 1.5% (c) 84.0 81.6 70 95 1.5% (d) 86.5 83.1 55 40

Det fremgår af ovenstående data, at tilsætningsstofferne (a), (b) og (c) ifølge opfindelsen giver bedre papirstyrke end det kendte tilsætningsstof (d) .It can be seen from the above data that the additives (a), (b) and (c) of the invention provide better paper strength than the known additive (d).

Sammenligningseksempel 19Comparative Example 19

Et flashspundet fiberprodukt fremstilledes som i Eksempel 1 med undtagelse af, at ethylen-akrylsyrecopolymeren blev udeladt, og der anvendtes 100 dele polypropylen. Separate portioner af fiberproduktet behandledes i en Waring-blender i vandigt medium indeholdende 1,0% af (a) harpiksblandingen ifølge Eksempel 1, (b) 1:1-blandingen af Paramel og CMC ifølge Eksempel 17 og (c) 2:1-blandingen af Paramel og CMC ifølge Eksempel 17. De fremkomne pulpmasser blandedes med træpulp, og der fremstilledes og bedømtes håndark som beskrevet i Eksempel 8. Tabel 5 viser de opnåede resultater.A flash spun fiber product was prepared as in Example 1 except that the ethylene-acrylic acid copolymer was omitted and 100 parts of polypropylene was used. Separate portions of the fiber product were treated in a Waring blender in aqueous medium containing 1.0% of (a) the resin mixture of Example 1, (b) the 1: 1 mixture of Paramel and CMC of Example 17 and (c) 2: 1- The mixture of Paramel and CMC according to Example 17. The resulting pulp masses were mixed with wood pulp and hand sheets prepared and evaluated as described in Example 8. Table 5 shows the results obtained.

147079 21147079 21

Tabel 5Table 5

Tilsætnings- Uigennemsig- Træk- Mullenstof Hvidhed tighed styrke brudstyrke (%) (%) (%) (%) (a) 87,6 87,5 47,7 37,1 (b) 89,6 87,8 36,2 22,9 (c) 89,2 88,2 36,9 26,3Addition-Transparent-Tensile-White Fabric strength strength breaking strength (%) (%) (%) (%) (a) 87.6 87.5 47.7 37.1 (b) 89.6 87.8 36.2 22.9 (c) 89.2 88.2 36.9 26.3

Disse data viser igen overlegenheden af tilsætningsstoffet (a) ifølge opfindelsen i forhold til kendte tilsætningsstoffer (b) og (c). Ved sammenligning med Eksempel 17 viser resultaterne i forbindelse med tilsætningsstof (a) endvidere betydningen af carboxylfunktionaliteten i den anioniske polyolefinsammensætning, som anvendes ved fremgangsmåden ifølge opfindelsen.This data again shows the superiority of the additive (a) of the invention over known additives (b) and (c). Furthermore, when compared with Example 17, the results of additive (a) show the importance of the carboxyl functionality of the anionic polyolefin composition used in the process of the invention.

Eksempel 20Example 20

Firs dele af polypropylenen ifølge Eksempel 1 og 20 dele poly-styren-maleinanhydridcopolymer (Arco, 75:25 styren:maleinsyreanhydrid, molekylvægt 19.000) anbragtes i en lukket autoklave sammen med 250 dele hexan og 250 dele vand. Autoklavens indhold omrørtes og opvarmedes til 220°C, på hvilket tidspunkt damptrykket i autoklaven forøgedes til 70,3 kg/cm (1000 p.s.i.) med nitrogen. Den fremkomne opløsning udspandtes fra autoklaven til atmosfæren gennem en åbning med en diameter på en mm og en længde på en mm, hvorved der dannedes et fiberprodukt .Eighty parts of the polypropylene of Examples 1 and 20 parts of polystyrene-maleic anhydride copolymer (Arco, 75:25 styrene: maleic anhydride, molecular weight 19,000) were placed in a closed autoclave together with 250 parts of hexane and 250 parts of water. The contents of the autoclave were stirred and heated to 220 ° C, at which time the vapor pressure in the autoclave was increased to 70.3 kg / cm (1000 p.s.i.) with nitrogen. The resulting solution was stretched from the autoclave to the atmosphere through an orifice having a diameter of one mm and a length of one mm, thereby forming a fiber product.

Portioner af fiberproduktet skiveraffineredes i seks minutter i en Sprout Waldron-skiveraffinør ved en stoftæthed på 0,25% i (a) vand, (b) en vandig 0,5% opløsning af den kationiske polymer ifølge Eksempel A, (c) en vandig 0,5% opløsning af en glyoxalitKDdificeret copolymer af akrylamid og diallyldiiæthylanmoniurtchlorid (Parez 631 NC, American Cyanamid), (d) en vandig 0,5% opløsning af melamin-formaldehydpolymer (Paramel HE, American Cyanamid), (e) en vandig 0,5% opløsning af kationisk stivelse, og (f) en vandig 0,5% opløsning af en 1:3 blanding af den kationiske polymer ifølge Eksempel A og den anioniske polymer ifølge Eksempel F. Hver af de fremkomne pulpmasser blandedes med træpulp, og der fremstilledes og bedømtes håndark som beskrevet i Eksempel 8. De derved opnåede data er angivet i Tabel 6.Portions of the fiber product were disc refined for six minutes in a Sprout Waldron disc refiner at a dust density of 0.25% in (a) water, (b) an aqueous 0.5% solution of the cationic polymer of Example A, (c) an aqueous (D) an aqueous 0.5% solution of melamine-formaldehyde polymer (Paramel HE, American Cyanamide), (e) an aqueous 0.5% solution of a glyoxalite , 5% solution of cationic starch, and (f) an aqueous 0.5% solution of a 1: 3 mixture of the cationic polymer of Example A and the anionic polymer of Example F. Each of the resulting pulp compositions was mixed with wood pulp, and hand sheets were prepared and evaluated as described in Example 8. The data thus obtained are given in Table 6.

22 14707922 147079

Tabel 6Table 6

Rense- Uigennemsig- Træk- Mullen- medium Hvidhed tighed styrke brudstyrke (%) (%) (%) (%) (a) 84,2 81,3 41 30 (b) 85,2 79,8 51 48 (c) 85,5 81,4 39 32 (d) 81,6 82,5 48 38 (e) 84,8 79,2 54 48 (f) 82,1 79,4 72 71Purification- Opaque- Tensile- Mullen Medium Whitness Strength Strength (%) (%) (%) (%) (a) 84.2 81.3 41 30 (b) 85.2 79.8 51 48 (c) 85.5 81.4 39 32 (d) 81.6 82.5 48 38 (e) 84.8 79.2 54 48 (f) 82.1 79.4 72 71

Disse data viser, at når enkelte tilsætningsstoffer anvendes ved fremgangsmåden ifølge opfindelsen, er de på ingen måde så effektive med hensyn til at tilvejebringe et papir med passende styrke som en blanding af de specifikke kationiske og anioniske polymere ifølge opfindelsen, såsom den under (f) anvendte blanding.These data show that when single additives are used in the process of the invention, they are by no means as effective in providing a paper of appropriate strength as a mixture of the specific cationic and anionic polymers of the invention such as that of (f) mixture used.

Claims (6)

23 147079 Patentkrav.23 147079 Patent Claims. 1. Fremgangsmåde til fremstilling af hydrofile polyolefin-fibre, ved hvilken et flashspundet fibrøst polyolefinmateriale indeholdende carboxylfunktionalitet bringes i intim kontakt med en fortyndet vandig blanding af vandopløselige, nitrogenholdige kationiske og anioniske polymerer, kendetegnet ved, at den kationiske polymer er reaktionsproduktet mellem epichlorhydrin og (a) et aminopolyamid hidrørende fra en dicarboxyl-syre og en polyalkylenpolyamin med to primære aminogrupper og mindst én sekundær eller tertiær aminogruppe, eller (b) en polyalkylenpolyamin med formlen H,N(C H, NR)„ C H0 NHof hvor R er H eller CH0, n er et helt tal på 2-8, og x er et helt tal, eller (c) en poly (diallylamin), eller (d) en polyaminourylen hidrørende fra urinstof og en polyamin med mindst tre aminogrupper, hvoraf i det mindste den ene er tertiær, at den anioniske polymer er reaktionsproduktet mellem glyoxal og (a) et polyacrylamid indeholdende fra ca. 2 til ca. 15% acrylsyreenheder eller (b) en delvist hydrolyseret, forgrenet poly-(β-alanin) indeholdende fra ca. 1 til ca. 10 mol% carboxylgrupper baseret på amidgentagelsesenheder, og at forholdet mellem den kationiske polymer og den anioniske polymer på vægtbasis ligger mellem 1:3 og 1:7.A process for preparing hydrophilic polyolefin fibers, in which a flash-spun fibrous polyolefin material containing carboxyl functionality is brought into intimate contact with a dilute aqueous mixture of water-soluble, nitrogen-containing cationic and anionic polymers, characterized in that the cationic polymer is the reaction product ( a) an aminopolyamide derived from a dicarboxylic acid and a polyalkylene polyamine having two primary amino groups and at least one secondary or tertiary amino group, or (b) a polyalkylene polyamine of the formula H, N (CH, NR) CH0, n is an integer of 2-8, and x is an integer, or (c) a poly (diallylamine), or (d) a polyaminourylene derived from urea and a polyamine having at least three amino groups, of which at least one is tertiary, that the anionic polymer is the reaction product between glyoxal and (a) a polyacrylamide containing from ca. 2 to approx. 15% acrylic acid units or (b) a partially hydrolyzed, branched poly (β-alanine) containing from ca. 1 to approx. 10 mole% of carboxyl groups based on amide repeating units and the ratio of the cationic polymer to the anionic polymer by weight is between 1: 3 and 1: 7. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at det flashspundne fibrøse polyolefinmateriale indeholdende carboxylfunktionalitet er baseret på polyethylen.Process according to claim 1, characterized in that the flash-spun fibrous polyolefin material containing carboxyl functionality is based on polyethylene. 3. Fremgangsmåde ifølge krav 1, kendetegnet ved, at det flashspundne fibrøse polyolefinmateriale indeholdende carboxylfunktionalitet er baseret på polypropylen.Process according to claim 1, characterized in that the flash-spun fibrous polyolefin material containing carboxyl functionality is based on polypropylene. 4. Fremgangsmåde ifølge krav 3, kendetegnet ved, at det flashspundne fibrøse polyolefinmateriale indeholdende carboxylfunktionalitet er fremstillet ved flashspinding af en blanding af polypropylen og en anionisk polymer indeholdende carboxylfunktionalitet .Process according to claim 3, characterized in that the flash-spun fibrous polyolefin material containing carboxyl functionality is produced by flash-spinning a mixture of polypropylene and an anionic polymer containing carboxyl functionality. 5. Fremgangsmåde ifølge krav 4, kendetegnet ved, at den anioniske polymer indeholdende carboxylfunktionalitet er en copolymer af ethylen og acrylsyre.Process according to claim 4, characterized in that the anionic polymer containing carboxylic functionality is a copolymer of ethylene and acrylic acid. 6. Fremgangsmåde ifølge krav 3, kendetegnet ved, at det flashspundne fibrøse polyolefinmateriale indeholdende carboxylfunktionalitet er fremstillet ved flashspinding af poly-Process according to claim 3, characterized in that the flash-spun fibrous polyolefin material containing carboxyl functionality is made by flash-spinning polyethylene.
DK36777A 1976-01-28 1977-01-28 PROCEDURE FOR THE PREPARATION OF HYDROFILE POLYOLEFIN FIBERS AND PAPER PRODUCTS CONTAINING THESE DK147079C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK29081A DK147798C (en) 1976-01-28 1981-01-22 Mixture of Cationic and Anionic Water-Soluble, Nitrogen-Containing Polymers and Use of Same to Prepare Hydrophilic Polyolefin Fibers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US05/653,188 US4035229A (en) 1974-11-04 1976-01-28 Paper strengthened with glyoxal modified poly(β-alanine) resins
US65318876 1976-01-28
US72113376A 1976-09-07 1976-09-07
US72113376 1976-09-07

Publications (3)

Publication Number Publication Date
DK36777A DK36777A (en) 1977-07-29
DK147079B true DK147079B (en) 1984-04-02
DK147079C DK147079C (en) 1984-09-10

Family

ID=27096460

Family Applications (1)

Application Number Title Priority Date Filing Date
DK36777A DK147079C (en) 1976-01-28 1977-01-28 PROCEDURE FOR THE PREPARATION OF HYDROFILE POLYOLEFIN FIBERS AND PAPER PRODUCTS CONTAINING THESE

Country Status (7)

Country Link
JP (1) JPS6031948B2 (en)
AT (1) AT359824B (en)
CH (1) CH618474A5 (en)
DE (1) DE2703372A1 (en)
DK (1) DK147079C (en)
FR (1) FR2339686A1 (en)
GB (1) GB1577634A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2755341C2 (en) 1977-12-12 1983-09-08 Akzo Gmbh, 5600 Wuppertal Hydrophilic polyester fibers
JPH06275340A (en) * 1993-03-24 1994-09-30 Nec Corp Stacking connector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743570A (en) * 1971-03-03 1973-07-03 Crown Zellerbach Corp Process for producing a nonwoven fabric web from a suspension of polyolefin fibers and a hydrophilic colloidal polymeric additive
BE788672A (en) * 1971-09-13 1973-01-02 Crown Zellerbach Int Inc PROCESS FOR PRODUCING AN UNWOVEN SHEET FROM POLYOLEFIN FIBERS AND A NEW SHEET THUS PRODUCED

Also Published As

Publication number Publication date
GB1577634A (en) 1980-10-29
FR2339686B1 (en) 1981-05-29
JPS52110923A (en) 1977-09-17
JPS6031948B2 (en) 1985-07-25
DE2703372A1 (en) 1977-08-04
AT359824B (en) 1980-12-10
CH618474A5 (en) 1980-07-31
DK147079C (en) 1984-09-10
FR2339686A1 (en) 1977-08-26
ATA49477A (en) 1980-04-15
DK36777A (en) 1977-07-29

Similar Documents

Publication Publication Date Title
DK168640B1 (en) Process for making paper, cardboard and cardboard with high dry strength
CN1188451C (en) Process of repulping wet strenlgth paper
US4154647A (en) Preparation of hydrophilic polyolefin fibers for use in papermaking
DK170826B1 (en) Process for making high-strength paper, cardboard and cardboard
US3708555A (en) Grafting of a mixture of styrene and maleic anhydride onto backbone polymers containing active or labile hydrogen atoms
CA2405999A1 (en) Method for pretreatment of filler, modified filler with a hydrophobic polymer and use of the hydrophobic polymer
US4273892A (en) Preparation of hydrophilic polyolefin fibers for use in papermaking
US4156628A (en) Preparation of hydrophilic polyolefin fibers for use in papermaking
US4109053A (en) Sizing paper with stable dispersions of hydrocarbon resins
DK155219B (en) DIFFICULT DISPERSION OF REINFORCED COLOPHONIUM RESIN USED BY LIMITING PAPER
DK147079B (en) PROCEDURE FOR THE PREPARATION OF HYDROFILE POLYOLEFIN FIBERS AND PAPER PRODUCTS CONTAINING THESE
US3826712A (en) Acrylic synthetic paper and method for producing the same acrylic fibers wet spun from a blend of hydrolyzed and unhydrolyzed acrylic polymers having at least 60 % acrylonitriles by weight and paper made from such fibers
SE456912B (en) WATER-SOLUBLE POLYAMIDOAMIN POLYAMINE AND PROCEDURES FOR PREPARING A CELLULOSA FIBER BASED PRODUCT
US3428617A (en) Cationic hydroxy-containing polymers,preparation and use
US4332749A (en) Process for the production of polyolefine-based fibrids, and the fibrids obtained
NO871810L (en) PAPER Glue, MANUFACTURING AND USING THEREOF.
US4158595A (en) Preparation of hydrophilic styrene maleic anhydride copolymer fibers for use in papermaking
JPH0533289A (en) Paper with high strength made of flock and fibrid
DK147798B (en) Mixture of Cationic and Anionic Water-Soluble, Nitrogen-Containing Polymers and Use of Same to Make HYDROPHILE POLYOLEFIN FIBERS
US4154646A (en) Preparation of hydrophilic styrene maleic anhydride copolymer fibers for use in papermaking
US3679621A (en) Reaction products of carboxylic acid polymers,alkylenimines and alkylene oxides
NO148861B (en) PROCEDURE FOR THE PREPARATION OF HYDROFILE POLYOLEFINE FIBERS AND USE OF THESE IN PAPER MANUFACTURING
AT359371B (en) MIXTURES OF NITROGEN-BASED POLYMERISIS FOR TREATING FIBER FABRICS
EP0097974A1 (en) Flooring felt compositions and method for preparing the same
CA1101146A (en) Blends of cationic and anionic nitrogen-containing polymers for treating papermaking polyolefin fibers