DK146764B - ALKALIMETAL CLAVULANATE USED AS INTERMEDIATE IN THE PREPARATION OF CLAVULANIC ACID OR OTHER DERIVATIVES THEREOF, AND MIXTURE USED FOR THE PREPARATION OF CLAVULANIC ACID OR DERIVATIVES THEREOF - Google Patents

ALKALIMETAL CLAVULANATE USED AS INTERMEDIATE IN THE PREPARATION OF CLAVULANIC ACID OR OTHER DERIVATIVES THEREOF, AND MIXTURE USED FOR THE PREPARATION OF CLAVULANIC ACID OR DERIVATIVES THEREOF Download PDF

Info

Publication number
DK146764B
DK146764B DK207378A DK207378A DK146764B DK 146764 B DK146764 B DK 146764B DK 207378 A DK207378 A DK 207378A DK 207378 A DK207378 A DK 207378A DK 146764 B DK146764 B DK 146764B
Authority
DK
Denmark
Prior art keywords
salt
lithium
water
clavulanic acid
clavulanate
Prior art date
Application number
DK207378A
Other languages
Danish (da)
Other versions
DK146764C (en
DK207378A (en
Inventor
Ian Dunlop Fleming
David Noble
Hazel Mary Noble
Wilfred Frank Wall
Original Assignee
Glaxo Lab Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB540975A external-priority patent/GB1543563A/en
Priority claimed from DK49876AA external-priority patent/DK141099B/en
Application filed by Glaxo Lab Ltd filed Critical Glaxo Lab Ltd
Priority to DK207378A priority Critical patent/DK146764C/en
Publication of DK207378A publication Critical patent/DK207378A/en
Publication of DK146764B publication Critical patent/DK146764B/en
Application granted granted Critical
Publication of DK146764C publication Critical patent/DK146764C/en

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

i 146764in 146764

Opfindelsen angår et hidtil ukendt alkalimetalclavula-nat til anvendelse som mellemprodukt ved fremstilling af cla-vulansyre eller andre derivater deraf. Dette alkalimetalclavu-lanat er ifølge opfindelsen ejendommeligt ved at det er litiumel avulanat.The invention relates to a novel alkali metal clavulate for use as an intermediate in the preparation of cla-vulanoic acid or other derivatives thereof. This alkali metal clavulanate according to the invention is peculiar in that it is lithiumel avulanate.

Opfindelsen angår tillige en blanding til anvendelse ved fremstilling af clavulansyre eller derivater deraf, og ifølge opfindelsen er denne blanding ejendommelig ved at indeholde mindst 98% litiumclavulanat. Så rent litiumclavulanat son muligt, altså med højst 2% urenheder, foretrækkes nemlig til fremstilling af clavulansyre.The invention also relates to a composition for use in the preparation of clavulanic acid or derivatives thereof, and according to the invention this composition is characterized by containing at least 98% lithium clavulanate. As pure lithium clavulanate as possible, ie with a maximum of 2% impurities, is preferred for the preparation of clavulanic acid.

Gæring af Streptomyces clavuligerus, navnlig stammen NRRL 3585, bevirker dannelse af forskellige antibiotiske stoffer, og GB patentskrift nr. 1.315.577 beskriver dyrkning af nævnte stamme til dannelse af antibiotikum A 16886 I og A 16886 II.Fermentation of Streptomyces clavuligerus, in particular the strain NRRL 3585, causes the formation of various antibiotic substances and GB Patent No. 1,315,577 discloses the cultivation of said strain to produce antibiotics A 16886 I and A 16886 II.

Organismen kan desuden danne det antibiotiske stof (2R,5R,Z)-3-(2-hydroxyætyliden)-7-oxo-4-oxa-l-azabicyklo[3,2,0]-heptan-2-karboxylsyre med formel I:The organism may additionally form the antibiotic (2R, 5R, Z) -3- (2-hydroxyethylidene) -7-oxo-4-oxa-1-azabicyclo [3,2,0] -heptane-2-carboxylic acid of formula I :

I _ CH-OHIn CH-OH

HH

H *COOHH * COOH

og denne forbindelse kaldes her for clavulansyre. Opfindelsen angår således denne forbindelses litiumsalt.and this compound is referred to herein as clavulanic acid. Thus, the invention relates to the lithium salt of this compound.

Clavulansyre og forskellige syrer og salte deraf er beskrevet i dansk patentansøgning nr. 1672/75, og her er også beskrevet hvorledes der kan ske nogen rensning af materialet.Clavulanic acid and various acids and salts thereof are described in Danish Patent Application No. 1672/75, and here also is described how some cleaning of the material can be done.

Den bedste anviste rensningsmetode går ud på at man ud fra et salt af clavulansyre danner dens benzylester, der derpå renses på konventionel måde, hvorefter man frigør syren derfra. Det har vist sig at der ved reduktiv spaltning af benzylelavulanat dannes 10-15% af en inaktiv isomer. Det bedste materiale der kan vindes ved denne kendte rensningsmetode indeholder således 10-15% af den uønskede isomer; materiale tilvejebragt i henhold til nævnte ansøgning og uden forestringsprocessen indeholder 2 146764 mindst 1/3 urenheder.The best method of purification is based on forming a benzyl ester salt from a salt of clavulanic acid, which is then purified in a conventional manner, and then the acid is released from it. It has been found that by reductive cleavage of benzylelavulanate, 10-15% of an inactive isomer is formed. Thus, the best material obtainable by this known purification method contains 10-15% of the undesirable isomer; material obtained according to said application and without the esterification process contains at least 1/3 impurities.

Det er opfindelsens formål at tilvejebringe en clavulan-syreforbindelse der ved anvendelse som mellemprodukt ved en rensningsproces kan føre til clavulansyre eller forskellige derivater deraf i en form der er væsentligt renere end hvad der kan opnås ved den ovenfor nævnte kendte teknik. Det har overraskende vist sig at dette kan opnås ved litiumsaltet, der har den uden sammenligning med andre clavulansyresalte enestående egenskab at være tungt opløseligt i vand, samtidig med at det let udfældes i høj renhed, hvorefter det kan omdannes til clavulansyre eller andre derivater af clavulansyre. Som det fremgår ovenfor fremstilles litiumclavulanat fortrinsvis i en renhed på mindst 98%.It is an object of the invention to provide a clavulanic acid compound which, when used as an intermediate in a purification process, can lead to clavulanic acid or various derivatives thereof in a form which is substantially purer than can be obtained by the aforementioned prior art. Surprisingly, it has been found that this can be achieved by the lithium salt, which has the unparalleled property of being heavily soluble in water, while easily precipitating in high purity, after which it can be converted to clavulanic acid or other derivatives of clavulanic acid. . As indicated above, lithium clavulanate is preferably prepared in a purity of at least 98%.

Som nævnt er det overraskende at netop litiumsaltet let fremstilles i så høj renhed og derved kan føre til meget rene andre clavulansyreforbindelser. Det er nemlig fra eksempel 15 og 17 i forannævnte DK patentansøgning 1672/75 kendt at anbringe et råt kulturfiltrat indeholdende rå clavulansyre på en kolonne af en svagt basisk ionbytterharpiks og derpå eluere med NaCl. Herved sker ikke nogen udkrystallisation af natriumcla-vulanat, men dette salt vindes ved inddampning af eluatet. Herved opnås ingen nævneværdig adskillelse fra urenheder, og ifølge nævnte eksempel 17 har det inddampede produkt en renhed på ca. 1/3 af den bedste af de i ansøgningens eksempler angivne renheder. Hvis man derimod erstatter natriumklorid med litiumklorid som elueringsmiddel fra kolonnen af ionbytterharpiks-salt med clavulansyre, dannes der krystallinsk litiumclavulanat som udfældes og dermed skilles fra urenheder. De andre alkalimetaller danner ikke sådanne krystallinske salte med clavulansyre.As mentioned, it is surprising that precisely the lithium salt is readily prepared in such high purity and thus can lead to very pure other clavulanic acid compounds. Namely, from Examples 15 and 17 of the aforementioned DK patent application 1672/75, it is known to apply a crude culture filtrate containing crude clavulanic acid to a column of a weakly basic ion exchange resin and then elute with NaCl. Thereby, no crystallization of sodium cla-vulanate occurs, but this salt is obtained by evaporation of the eluate. Hereby no appreciable separation from impurities is obtained, and according to said example 17, the evaporated product has a purity of approx. 1/3 of the best of the purities indicated in the application examples. By contrast, if sodium chloride is replaced by lithium chloride as the eluent from the column of ion exchange resin salt with clavulanic acid, crystalline lithium clavulanate is formed which precipitates and is thus separated from impurities. The other alkali metals do not form such crystalline salts with clavulanic acid.

Eksempler på urene salte der foruden rå clavulansyre kan danne udgangsmateriale for fremstilling af litiumclavulanat er alkalimetalsalte som fx natrium-, kalium- og litiumsaltet; jordalkalimetalsalte som fx kalcium-, magnium- og bariumsaltet; ammoniumsaltet; og salte med organiske baser som fx salte afledet af primære, sekundære, tertiære eller N-kvaternære aminer, fx mono-, di- eller tri-alkylammoniumsalte såsom metyl- 146764 3 ammoniumsaltet og triætylammoniumsaltet samt heterocykliske basesalte såsom piperidiniumsaltet.Examples of impure salts which, in addition to crude clavulanic acid, can form the starting material for the preparation of lithium clavulanate are alkali metal salts such as the sodium, potassium and lithium salts; alkaline earth metal salts such as the calcium, magnium and barium salts; the ammonium salt; and salts with organic bases such as salts derived from primary, secondary, tertiary or N-quaternary amines, for example, mono-, di- or tri-alkylammonium salts such as the methyl ammonium salt and the triethylammonium salt, and heterocyclic base salts such as the piperidinium salt.

Saltene med uorganiske baser og de fleste af saltene med organiske baser er i almindelighed mere stabile i vandig opløsning end fri clavulansyre. Saltene kan eksistere i form af solvater, dvs. med krystalvand eller et andet krystallisationsopløsningsmiddel .The salts with inorganic bases and most of the salts with organic bases are generally more stable in aqueous solution than free clavulanic acid. The salts can exist in the form of solvates, ie. with crystal water or another crystallization solvent.

Ud fra litiumclavulanat ifølge opfindelsen og med en renhed på 98% eller derover, altså med et indhold af urenheder og/eller isomerer stammende fra produktionen på højst 2 vægt% er der fremstillet adskillige andre clavulanatsalte i krystallinsk form. Disse salte var i det væsentlige rene som det fremgik af de molære ekstinktionskoefficienter, målt ved 259+1 nm i 0,1M vandigt natriumhydroxyd, på mindst 16.200. Værdierne 24 for den molære rotation,[M]^ , i vandig opløsning var mindst +137°+5°. Den fri syre, fremstillet ud fra saltene, har udvist 1% en ekstinktionskoefficient, E^cm i 0,1M vandigt natriumhydroxyd ved 259 nm, på 590 eller derover og en specifik optisk rotation [a]^ i dimetylsulfoxyd på ca. +54°. Det vil forstås at fremstilling af materiale med denne renhedsgrad gør det muligt at bruge produkterne i farmaceutiske og veterinærmedicinske præparater, og også at en sådan renhed er meget ønskelig ved anvendelse af materialerne som mellemprodukter.From lithium clavulanate according to the invention and with a purity of 98% or more, ie having a content of impurities and / or isomers originating from the production of not more than 2% by weight, several other clavulanate salts have been prepared in crystalline form. These salts were substantially pure as evidenced by the molar extinction coefficients, measured at 259 + 1 nm in 0.1M aqueous sodium hydroxide, of at least 16,200. The values 24 for the molar rotation, [M] +, in aqueous solution were at least + 137 ° + 5 °. The free acid prepared from the salts has exhibited 1% an extinction coefficient, ^ cm in 0.1M aqueous sodium hydroxide at 259 nm, of 590 or greater, and a specific optical rotation [α] ² in dimethyl sulfoxide of ca. + 54 °. It will be appreciated that the production of material having this degree of purity makes it possible to use the products in pharmaceutical and veterinary preparations, and also that such purity is highly desirable when using the materials as intermediates.

Udtrykket "renhed" i nærværende beskrivelse refererer til procenten af clavulansyre og/eller salt deraf, udtrykt i forhold til den samlede mængde tilstedeværende tørstof på vægtbasis, men uden hensyn til bundet vand eller andre bundne opløsningsmidler .The term "purity" in this specification refers to the percentage of clavulanic acid and / or salt thereof, expressed in relation to the total amount of dry matter present by weight, but without regard to bound water or other bound solvents.

Clavulansyre og dens salte har antibakteriel virkning mod en række gramnegative og grampositive mikroorganismer, er stabile mod indvirkning af 3-laktamaser frembragt af grampositive og gramnegative organismer og har evne til at inhibere 3-laktamaseenzymer frembragt af grampositive og gramnegative bakterier. Desuden inhiberes et antal enzymer af klasse I.Clavulanic acid and its salts have antibacterial activity against a variety of Gram-negative and Gram-positive microorganisms, are stable against the action of 3-lactamases produced by Gram-positive and Gram-negative organisms, and have the ability to inhibit 3-lactamase enzymes produced by Gram-positive and Gram-negative bacteria. In addition, a number of class I enzymes are inhibited.

Clavulansyre og dens salte har således evne til at beskytte B-laktamase-følsomme 3-laktam-antibiotika fra hydrolyse fremkaldt af 3-laktamase, og den er derfor af interesse til brug i forbindelse med 3-laktam-antibiotika som er følsomme 4 146764 for B-laktamaser både fra grampositive og fra gramnegative organismer.Thus, clavulanic acid and its salts have the ability to protect B-lactamase-sensitive 3-lactam antibiotics from hydrolysis induced by 3-lactamase, and it is therefore of interest for use with 3-lactam antibiotics which are sensitive to B-lactamases from both Gram-positive and Gram-negative organisms.

Det foretrækkes i almindelighed at bruge salte af cla-vulansyre med renhed på mindst 98%, dvs. med under 2% urenheder eller isomerer stammende fra produktionen bortset fra opløsningsmidler, sammen med et bredspektret 8-laktam-antibiotikum.It is generally preferred to use salts of cla-vulanoic acid with a purity of at least 98%, i.e. with less than 2% impurities or isomers derived from the production other than solvents, together with a broad-spectrum 8-lactam antibiotic.

Fremstilling af litiumclavulanatPreparation of Lithium Clavulanate

Clavulansyre og dens salte kan udvindes fra et gæringsmedium frembragt ved dyrkning som angivet i britisk patentskrift nr. 1.315.177 af en stamme af Streptomyces clavuligerus, fx stammen NRRL 3585, ved en fraktioneringsteknik til fjernelse af uønskede bestanddele af næringsmediet såsom proteiner og enzymer og navnlig andre S-laktam-antibiotika. Konventionel teknik er vanskelig, navnlig på grund af den ensartede opførsel af de forskellige tilstedeværende B-laktam-karboxylsyrer såsom de ovennævnte antibiotika A 16.886 I og II. Udvindingen af antibiotiket lettes i høj grad hvis man omdanner clavulansyre eller dens salte til litiumclavulanat og udfælder sidstnævnte, normalt i krystallinsk form. En sådan udfældning kan gennemføres, muligvis på grund af en overraskende høj affinitet af clavulanationer til litiumioner, med ingen eller ingen væsentlig samtidig udfældning af urenheder, specielt andre 8-laktamer. Desuden kan man ved direkte isolation af saltet under undgåelse af omdannelse af clavulansyre til organiske derivater såsom estere med påfølgende genomdannelse til syren, fx ved en reduktionsteknik, undgå omlejring af clavulansyre til isomerer.Clavulanic acid and its salts can be recovered from a fermentation medium produced by culture as disclosed in British Patent Specification No. 1,315,177 to a strain of Streptomyces clavuligerus, e.g. other S-lactam antibiotics. Conventional technique is difficult, in particular because of the uniform behavior of the various B-lactam carboxylic acids present, such as the aforementioned antibiotics A 16,886 I and II. Extraction of the antibiotic is greatly facilitated by converting clavulanic acid or its salts to lithium clavulanate and precipitating the latter, usually in crystalline form. Such precipitation may be accomplished, possibly due to a surprisingly high affinity of clavulan ions to lithium ions, with no or no significant simultaneous precipitation of impurities, especially other 8-lactams. In addition, by direct isolation of the salt while avoiding conversion of clavulanic acid to organic derivatives such as esters with subsequent genome formation to the acid, for example by a reduction technique, clavulanic acid is converted to isomers.

Det skal bemærkes at i gæringsmedier og andre opløsninger ved tilnærmelsesvis neutral pH vil clavulansyre og salte dannet med en eller flere kationer eksistere i ligevægt, og isolationsprocesser vil hyppigt blive udført på clavulansyre og/eller salte deraf i afhængighed af pH-værdien og andre betingelser. I almindelighed er clavulansyre og dens salte temmelig ustabile i vandig opløsning uden for pH-området 5,5 til 8, og under de i det følgende beskrevne processer er det ønskeligt at holde pH-værdien inden for dette område, fortrinsvis nær ved ca. pH 6,5 med mindre andet er angivet.It should be noted that in fermentation media and other solutions at approximately neutral pH, clavulanic acid and salts formed with one or more cations exist in equilibrium, and isolation processes will frequently be performed on clavulanic acid and / or salts thereof, depending on pH and other conditions. In general, clavulanic acid and its salts are rather unstable in aqueous solution outside the pH range of 5.5 to 8, and during the processes described below it is desirable to maintain the pH within this range, preferably close to ca. pH 6.5 unless otherwise stated.

5 1487645 148764

Ved fremstilling af litiumclavulanat omsættes clavulan-syre, normalt rå clavulansyre i et råt gæringsmedium eller et urent, fra litiumsaltet forskelligt salt af clavulansyre med en vandig xonisk litiumforbindelse til frembringelse af en vandig opløsning indeholdende litiumclavulanat, der derefter udfældes derfra hvorefter bundfaldet skilles fra den vandige opløsning.In the preparation of lithium clavulanate, clavulanic acid, usually crude clavulanic acid in a crude fermentation medium or crude, is reacted from the lithium-salt different salt of clavulanic acid with an aqueous xonic lithium compound to produce an aqueous solution containing lithium clavulanate, which is then precipitated and then precipitated. resolution.

I almindelighed vil den ioniske litiumforbindelse være et salt. Det foretrækkes at bruge litiumklorid, men også liti-umbromid, litiumjodid eller litiumsulfat samt litiumkarboxylater såsom acetatet, propionatet, formiatet, benzoatet eller laktatet egner sig. Valget af salt kan påvirkes af andre tilstedeværende materialer, og hvis fx det oprindeligt tilstedeværende clavulansyresalt er bariumsaltet, kan det foretrækkes at bruge litiumsulfat til at bevirke en forudgående udfældning af bariumsulfat før udfældningen af litiumclavulanat.In general, the ionic lithium compound will be a salt. It is preferred to use lithium chloride, but also lithium bromide, lithium iodide or lithium sulfate as well as lithium carboxylates such as the acetate, propionate, formate, benzoate or lactate are suitable. The choice of salt may be influenced by other materials present, and if, for example, the initially present clavulanic acid salt is the barium salt, it may be preferable to use lithium sulfate to effect a prior precipitation of barium sulfate prior to the precipitation of lithium clavulanate.

I almindelighed foretrækkes det at koncentrationen af litiumclavulanat før udfældningen er mindst 0,1 vægt%, hensigtsmæssigt mindst 2%, og højere koncentrationer som fx op til 12% eller endog op til 20 vægt% giver naturligvis større procentuelle udvindinger.Generally, it is preferred that the concentration of lithium clavulanate prior to precipitation is at least 0.1% by weight, preferably at least 2%, and higher concentrations such as up to 12% or even up to 20% by weight, of course, yield greater percent recoveries.

Det oprindeligt tilstedeværende salt af clavulansyre, som behøver rensning, kan fx være et alkalimetalsalt såsom natriumsaltet eller kaliumsaltet eller endog litiumsaltet hvis dette er til stede som en kvantitativt mindre bestanddel af clavulansyrematerialet, eller det kan være et jordalkalimetal-salt som fx kalcium-, barium- eller magniumsaltet eller et salt med en organisk base som beskrevet foran, eller et salt dannet med en basisk ionbytterharpiks.The initially present salt of clavulanic acid which needs purification may be, for example, an alkali metal salt such as the sodium salt or potassium salt or even the lithium salt if present as a quantitatively minor component of the clavulanic acid material, or it may be an alkaline earth metal salt such as calcium, barium or the magnesium salt or a salt having an organic base as described above, or a salt formed with a basic ion exchange resin.

Det forhold at litiumclavulanat let udfældes i høj renhedsgrad kan udnyttes på flere forskellige måder.The fact that lithium clavulanate readily precipitates in high purity can be utilized in several different ways.

Udsaltning af litiumclavulanatSalting out of lithium clavulanate

Man kan i den vandige opløsning indeholdende litiumclavulanat indføre en tilstrækkelig mængde vandopløseligt litiumsalt, især det der bruges til dannelse af litiumclavulanat, til udsaltning af sidstnævnte; herved hæver man koncentrationen 6 146764 af litiumioner så at opløselighedsproduktet af litiumclavula-nat ved den givne temperatur overskrides i høj grad. Da clavu-lanatet er mindre opløseligt ved lavere temperaturer er det normalt hensigtsmæssigt at nedsætte temperaturen af opløsningen for at bringe udfældningen til maximum, fx til omkring 0-5°C.A sufficient amount of water-soluble lithium salt, especially that used to form lithium clavulanate, may be introduced into the aqueous solution containing lithium clavulanate; thereby raising the concentration of lithium ions so that the solubility product of lithium clavula night at the given temperature is greatly exceeded. As the clavulanate is less soluble at lower temperatures, it is usually appropriate to decrease the temperature of the solution to bring the precipitate to maximum, e.g., to about 0-5 ° C.

Ved en sådan udsaltning ligger koncentrationen af den ioniske litiumforbindelse i den vandige opløsning indeholdende litiumclavulanatet fortrinsvis i området 4M til 10M, men koncentrationer op til mætning er brugbare; et særligt foretrukket område er 5M til 8M.In such a salting out, the concentration of the ionic lithium compound in the aqueous solution containing the lithium clavulanate is preferably in the range of 4M to 10M, but concentrations up to saturation are useful; a particularly preferred range is 5M to 8M.

Det kan være fordelagtigt efter at have indhøstet første udbytte af litiumclavulanat at koncentrere yderligere og indhøste et næste udbytte.It may be advantageous after harvesting the first yield of lithium clavulanate to concentrate further and harvest a next yield.

Omdannelse af andre clavulanater til litiumclavulanatConversion of other clavulanates to lithium clavulanate

Den opløsning som indeholder litiumclavulanat kan dannes ved at man opløser et andet salt af clavulansyre end litiumsaltet, fx natrium-, kalium-, magnium-, barium-, kalciumeller ammoniumsaltet, i en vandig opløsning og deri inkorporerer et vandopløseligt litiumsalt såsom litiumklorid. I tilfælde af bariumsaltet kan anvendelse af en høj koncentration af litiumklorid resultere i nogen samtidig udfældning af bariumklorid med litiumklavulanat. Bariumkloridet kan imidlertid let elimineres ved genopløsning af blandingen i vand og tilsætning af litiumsulfat for at udfælde bariumsulfat, der kan fjernes fx ved filtrering, efterfulgt af tilsætning af litiumklorid for at udfælde rent litiumclavulanat.The solution containing lithium clavulanate may be formed by dissolving a salt of clavulanic acid other than the lithium salt, e.g., the sodium, potassium, magnium, barium, calcium or ammonium salt, in an aqueous solution and incorporating therein a water-soluble lithium salt such as lithium chloride. In the case of the barium salt, use of a high concentration of lithium chloride may result in some simultaneous precipitation of barium chloride with lithium clavulanate. However, the barium chloride can be easily eliminated by redissolving the mixture in water and adding lithium sulfate to precipitate barium sulfate which can be removed, for example, by filtration, followed by addition of lithium chloride to precipitate pure lithium clavulanate.

Dannelse af litiumclavulanat på en ionbytterharpiks Særlig rent litiumclavulanat vinder man, hvis det salt af clavulansyre, der bruges som udgangsmateriale, er et salt med en basisk ionbytterharpiks og det bringes i kontakt med en vandig opløsning af et litiumsalt til frembringelse af en vandig opløsning af litiumclavulanat. Harpiksen vil normalt blive anvendt i form af en kolonne på hvilken uren clavulansyre og/eller et salt deraf påføres, og hvorfra der elueres en vandig opløsning af litiumclavulanat under anvendelse af en 1Λ6764 7 vandig opløsning af et vandopløseligt litiumsalt som fx litiumklorid. Harpiksen vil normalt blive vasket, fx med vand, før elueringen.Formation of lithium clavulanate on an ion exchange resin Particularly pure lithium clavulanate is obtained if the salt of clavulanic acid used as a starting material is a salt with a basic ion exchange resin and it is contacted with an aqueous solution of a lithium salt to produce an aqueous solution of lithium salt. . The resin will normally be used in the form of a column to which impure clavulanic acid and / or a salt thereof is applied, and from which an aqueous solution of lithium clavulanate is eluted using an aqueous solution of a water-soluble lithium salt such as lithium chloride. The resin will usually be washed, eg with water, before elution.

Harpiksen vil i almindelighed indeholde aminogrupper eller tertiære aminogrupper (svagt basisk) eller kvaternære ammoniumgrupper (stærkt basisk). Harpiksen kan fx være en polystyrenharpiks, polyakrylharpiks, epoxy-polyaminharpiks, feno-lisk-polyaminharpiks eller tværbundet dekstranharpiks, og den kan være makroretikulær eller mikroretikulær.The resin will generally contain amino groups or tertiary amino groups (weakly basic) or quaternary ammonium groups (strongly basic). The resin may be, for example, a polystyrene resin, polyacrylic resin, epoxy-polyamine resin, phenolic-polyamine resin or cross-linked dextran resin, and it may be macroretic or microretic.

Betegnelsen "harpiks" bruges her af praktiske grunde således at den også omfatter cellulosederivater og de foran nævnte dekstranderivater, der er afledet af naturligt forekommende polymerer. Typiske svagt basiske ionbytterharpikser er (Ri bl.a. "Amberlite" ^IRA68 (mikroretikulær; polyakrylat tværbundet med divinylbenzen; tertiære aminogrupper) og "Amberlite" ILA93 (makroretikulær; polystyren tværbundet med divinylbenzen; tertiære aminogrupper). Typiske stærkt basiske ionbytterharpikser er bl.a. "Zerolit" ^FF og "Zerolit" FF (iP) (forhandlet af Zerolit Co. Ltd.).The term "resin" is used herein for practical reasons to include cellulose derivatives and the aforementioned dextran derivatives derived from naturally occurring polymers. Typical weakly basic ion exchange resins are (R i, "Amberlite" IRA68 (microretric; polyacrylate cross-linked with divinylbenzene; tertiary amino groups) and "Amberlite" ILA93 (macroretic; polystyrene cross-linked with divinylbenzene) tertiary amine and tertiary amine and tertiary amine groups). .a. "Zerolit" ^ FF and "Zerolit" FF (iP) (negotiated by Zerolit Co. Ltd.).

Basiske ionbytterharpikser er med fordel i saltform når de bringes i kontakt med en uren clavulansyre og/eller et salt deraf; anionen er fortrinsvis den samme som i det l'itiumsalt der bruges som elueringsmiddel, hensigtsmæssigt kloridionen, men der kan også bruges anderledes anioner uden afgørende ugunstige virkninger.Advantageously, basic ion exchange resins are in salt form when contacted with an impure clavulanic acid and / or a salt thereof; The anion is preferably the same as in the lithium salt used as the eluent, suitably the chloride ion, but different anions can also be used without decisive adverse effects.

Koncentrationen af det vandige litiumsalt der bruges som elueringsmiddel er fortrinsvis i området 0,02M til 8M, men . de lavere koncentrationer giver dog meget tynde opløsninger af litiumclavulanat og gør den påfølgende udfældning vanskeligere. I almindelighed foretrækkes det at bruge koncentrationer i området 0,5 til 2,5M.The concentration of the aqueous lithium salt used as the eluent is preferably in the range of 0.02M to 8M, but. however, the lower concentrations give very thin solutions of lithium clavulanate and make the subsequent precipitation more difficult. Generally, it is preferred to use concentrations in the range 0.5 to 2.5M.

Selv om adsorptions/eluerings-teknik konventionelt udføres på en sådan måde at det ønskede produkt underkastes en separation af den kromatografiske type fra andre adsorberede materialer, har det vist sig at det påfølgende trin med udfældning er så effektivt ved adskillelse af litiumclavulanat fra uønskede urenheder, at det sædvanligvis må foretrækkes i det væsentlige at strippe kolonnen ved at bruge forholdsvis høje 8 U6764 koncentrationer af litiumsalt i elueringsmidlet. Dette giver et smalt bånd af clavulanat på kolonnen, der kan elueres til et forholdsvis lille rumfang eluat, hvorved man letter den påfølgende udfældning.Although adsorption / elution techniques are conventionally carried out in such a way that the desired product is subjected to separation of the chromatographic type from other adsorbed materials, it has been found that the subsequent step of precipitation is so effective in separating lithium clavulanate from undesirable impurities. it is usually preferable to substantially strip the column using relatively high concentrations of lithium salt in the eluent. This gives a narrow band of clavulanate on the column which can be eluted to a relatively small volume of eluate, thereby facilitating subsequent precipitation.

Eluatet vil normalt indeholde litiumsaltet, fx litiumklorid i en koncentration i området 0,5 til 2,5M, mens som nævnt foran udsaltningsvirkningen er mest effektiv ved koncentrationer i området 5M til 10M. Det foretrækkes derfor at koncentrere eluatet, fx ved inddampning i vakuum til ca. 1/5 af rumfanget. Opløseligheden af litiumclavulanat ved ca. 20°C i forskellige koncentrationer af vandigt litiumklorid fremgår af nedenstående tabel:The eluate will normally contain the lithium salt, for example lithium chloride at a concentration in the range 0.5 to 2.5M, while as mentioned before the salting effect is most effective at concentrations in the range 5M to 10M. It is therefore preferred to concentrate the eluate, for example by evaporation in vacuo to ca. 1/5 of the volume. The solubility of lithium clavulanate at ca. 20 ° C in various concentrations of aqueous lithium chloride is shown in the table below:

Tabel 1Table 1

Molaritet af Opløselighed af litiumclavula-Molarity of Solubility of Lithium Clavula

LiCl_ nat, mg/ffil (tilnærmet)_ 2.5 23,5 3,75 10,2 5,0 4,1 6,25 1,8 7.5 0,8LiCl 2 night, mg / ml (approximate) 2.5 23.5 3.75 10.2 5.0 4.1 6.25 1.8 7.5 0.8

Det foran nævnte trin med koncentrering foretrækkes frem for tilsætning af yderligere litiumsalt, da litiumclavulanat også koncentreres og tab i moderluden derfor nedbringes.The aforementioned step of concentration is preferred over the addition of additional lithium salt, since lithium clavulanate is also concentrated and losses in the mother liquor are therefore reduced.

For at nedbringe eluering af adsorberede urenheder fra harpiksen kan det være fordelagtigt i elueringsmidlet at inkorporere et vandblandbart organisk opløsningsmiddel i høj koncentration. Det er også muligt efter eluering under fravær af et sådant opløsningsmiddel at tilsætte dette til eluatet for at udfælde eluerede urenheder, hvorefter det således dannede bundfald fraskilles før videre behandling. Opløsningsmidlet kan fx være en keton såsom acetone, en alkohol såsom metanol, ætanol, isopropylalkohol eller ætylenglykol, en æter såsom dio-xan eller tetrahydrofuran eller et substitueret amid-, inddeller sulfoxyd-opløsningsmiddel såsom dimetylformamid eller dimetylsulfoxyd. I almindelighed foretrækkes alkoholer som sådanne opløsningsmidler, fx ætanol eller isopropylalkohol.In order to reduce the elution of adsorbed impurities from the resin, it may be advantageous in the eluant to incorporate a high concentration water miscible organic solvent. It is also possible, after elution in the absence of such a solvent, to add this to the eluate to precipitate eluted impurities, after which the precipitate thus formed is separated before further treatment. The solvent may be, for example, a ketone such as acetone, an alcohol such as methanol, ethanol, isopropyl alcohol or ethylene glycol, an ether such as dioxane or tetrahydrofuran or a substituted amide, sulfide oxide solvent such as dimethylformamide or dimethylsulfoxide. Generally, alcohols such as solvents are preferred, for example ethanol or isopropyl alcohol.

U6764 9U6764 9

Til brug ved en sådan fraskillelse fra uønskede urenheder er den foretrukne koncentration af alkoholen i eluerings-raidlet eller eluatet efter tilsætning af alkoholen dertil 70 til 97 rumfangs%.For use in such separation from undesirable impurities, the preferred concentration of the alcohol in the eluent or eluate, after addition of the alcohol, is 70 to 97% by volume.

Udfældning af litiumclavulanat ved hjælp af et vandblandbart opløsningsmiddel__Precipitation of lithium clavulanate by a water-miscible solvent

Hvis koncentrationen af det vandblandbare organiske opløsningsmiddel og litiumsalte i den netop beskrevne procedure er for høj, kan litiumclavulanatet blive udfældet for tidligt.If the concentration of the water-miscible organic solvent and lithium salts in the procedure just described is too high, the lithium clavulanate may be precipitated prematurely.

Det er muligt at udfælde litiumclavulanat fra en vandig opløsning ved at bruge meget høje koncentrationer af sådanne opløsningsmidler, og dette betegner en alternativ udfældningsmetode der udnytter fordelene ved den beskrevne selektive udfældning af litiumclavulanat. således kan clavulansyre og/eller et salt deraf bringes i kontakt med et litiumsalt med forholdsvis lav koncentration, enten ved eluering fra en kolonne eller ved opløsning af saltene i en enkelt opløsning, hvorefter den ønskede udfældning kan udføres uden koncentrering ved tilsætning af vandblandbart opløsningsmiddel. Således er fx koncentrationer af alkohol på mindst 90 rumfangs!, fortrinsvis mindst 95%, effektive til udfældning af litiumclavulanat. Det kan være nødvendigt at indhøste et første udbytte af litiumclavulanat og derefter at koncentrere i vakuum, fx til 1/4 rumfang, for at opnå et andet udbytte.It is possible to precipitate lithium clavulanate from an aqueous solution using very high concentrations of such solvents, and this denotes an alternative precipitation method which utilizes the advantages of the described selective precipitation of lithium clavulanate. thus, clavulanic acid and / or a salt thereof can be contacted with a relatively low concentration of lithium salt, either by elution from a column or by dissolving the salts in a single solution, after which the desired precipitation can be carried out without concentration by adding water-miscible solvent. Thus, for example, concentrations of alcohol of at least 90 volumes, preferably at least 95%, are effective in precipitating lithium clavulanate. It may be necessary to harvest a first yield of lithium clavulanate and then concentrate in vacuo, e.g. to 1/4 volume, to obtain a second yield.

Fremstilling af et salt af clavulansyre med en ionbytterharpiks.Preparation of a salt of clavulanic acid with an ion exchange resin.

Saltet af clavulansyre med en basisk ionbytterharpiks kan være dannet ved kontakt mellem harpiksen og et gæringsmedium indeholdende clavulansyre og/eller et salt deraf, hvorved et adsorptions-/elueringstrin kan spares. Fast materiale er normalt fjernet i forvejen, fx ved filtrering eller centrifugering. Denne mulighed eksisterer på grund af den bemærkelsesværdige rensning der sker ved fældning med en ionisk litiumforbindelse. Efter fjernelse af faste stoffer kan man behandle næringsmediet med adsorberende trækul for at adsorbere clavulansyre og/eller saltet deraf; dette bidrager til at skille andre salte fra clavulanatet og undgå for kraftig belastning 146764 ίο af den basiske ionbytterharpiks med uønsket ionisk materiale.The salt of clavulanic acid with a basic ion exchange resin may be formed by contact between the resin and a fermentation medium containing clavulanic acid and / or a salt thereof, thereby saving an adsorption / elution step. Solid material is usually removed in advance, for example, by filtration or centrifugation. This possibility exists because of the remarkable purification that occurs by precipitation with an ionic lithium compound. After removal of solids, the nutrient medium can be treated with adsorbent charcoal to adsorb clavulanic acid and / or the salt thereof; this helps separate other salts from the clavulanate and avoid excessive loading of the basic ion exchange resin with undesirable ionic material.

I almindelighed kan det klarede medium føres gennem et trækulleje, fx i en kolonne, fortrinsvis under anvendelse af lige netop tilstrækkelig meget trækul til at adsorbere al den ønskede clavulansyre og/eller salt deraf, sædvanligvis i et forhold på ca. 1 rumfangsdel trækul til 3-10 rumfangsdele klaret medium. Almindelige trækul er egnede, og det er ikke nødvendigt at bruge højaktiveret materiale.In general, the clarified medium can be passed through a charcoal bed, for example in a column, preferably using just enough charcoal to adsorb all the desired clavulanic acid and / or salt thereof, usually in a ratio of approx. 1 volume charcoal to 3-10 volumes clarified medium. Ordinary charcoal is suitable and it is not necessary to use highly activated material.

Trækullene kan derefter strippes med et vandigt vandblandbart opløsningsmiddel, fx en keton såsom metylætylketon, metylisobutylketon eller fortrinsvis acetone, fordelagtigt ved en koncentration på fra 30 til 95% keton, fortrinsvis 50 til 70%. Før stripningen vaskes trækullene fortrinsvis fx med vand, for at fjerne tilbageværende komponenter fra mediet.The charcoal can then be stripped with an aqueous water miscible solvent, for example a ketone such as methyl ethyl ketone, methyl isobutyl ketone or preferably acetone, advantageously at a concentration of from 30 to 95% ketone, preferably 50 to 70%. Prior to stripping, the charcoal is preferably washed, for example, with water to remove residual components from the medium.

En anden variation af den netop beskrevne fremgangsmåde består i at fremstille et harpikssalt af clavulansyre som beskrevet foran og at eluere dette med et andet salt end et litiumsalt, fx natriumsalt, kaliumsalt, magniumsalt eller kalci-umsalt, fx et klorid eller acetat, eller et ammoniumsalt eller pyridiniumsalt, fx ammoniumformiat eller -acetat eller pyridin-hydroklorid, til dannelse af en vandig opløsning af det tilsvarende clavulanat; overskud af et vandopløseligt litiumsalt kan derefter sættes til eluatet og litiumclavulanat udfældes som tidligere beskrevet.Another variation of the process just described consists in preparing a resin salt of clavulanic acid as described above and eluting it with a salt other than a lithium salt, e.g., sodium salt, potassium salt, magnesium salt or calcium salt, e.g., a chloride or acetate, or a ammonium salt or pyridinium salt, for example ammonium formate or acetate or pyridine hydrochloride, to form an aqueous solution of the corresponding clavulanate; excess water-soluble lithium salt can then be added to the eluate and lithium clavulanate precipitated as previously described.

Dannelse af litiumclavulanat og andre clavulanater ved ekstraktion af en fenolisk opløsning af clavulansyre_Formation of lithium clavulanate and other clavulanates by extraction of a phenolic solution of clavulanic acid

En vandig opløsning indeholdende litiumclavulanat kan også vindes ved at man ekstraherer en fenolisk opløsning af clavulansyre med en vandig opløsning af litiumhydroxyd, hvorpå udfældning af litiumclavulanat så udføres som beskrevet foran, fortrinsvis efter fjernelse af tilbageværende fenolisk opløsningsmiddel ved ekstraktion af den vandige opløsning med et vandublandbart opløsningsmiddel såsom æter, kloroform eller kulstoftetraklorid.An aqueous solution containing lithium clavulanate can also be obtained by extracting a phenolic solution of clavulanic acid with an aqueous solution of lithium hydroxide, and then precipitating lithium clavulanate is carried out as described above, preferably after removal of the remaining phenolic solvent by extraction of the aqueous solution with aqueous solution. solvent such as ether, chloroform or carbon tetrachloride.

Denne teknik kan også bruges til at fremstille andre salte af clavulansyre end litiumsaltet ved at man ekstraherer den fenoliske opløsning med en passende base, fx jordalka- 146764 11 limetalhydroxyd såsom kalcium- eller bariumhydroxyd. Ethvert andet dannet bundfald, fx bariumsulfat, bør fjernes før udfældningen af clavulanatsaltet og dette kan derefter isoleres, fx ved frysetørring. Rensning ved omdannelse til litiumsaltet kan derefter udføres som beskrevet foran.This technique can also be used to prepare clavulanic acid salts other than the lithium salt by extracting the phenolic solution with a suitable base, for example alkaline earth metal hydroxide such as calcium or barium hydroxide. Any other precipitate formed, e.g., barium sulfate, should be removed prior to the precipitation of the clavulanate salt and this can then be isolated, for example, by freeze drying. Purification by conversion to the lithium salt can then be performed as described above.

I almindelighed udføres ekstraktionen af det fenoliske opløsningsmiddel ved titrering af den vandige fase med en base, så der opnås en pH-værdi på ca. 6,5.Generally, the extraction of the phenolic solvent is carried out by titrating the aqueous phase with a base to obtain a pH of approx. 6.5.

Den fenoliske ekstrakt kan fremstilles ved at man med et fenolisk opløsningsmiddel ekstraherer et vandigt eluat fra et trækul- eller harpiksadsorbat af den foran beskrevne slags, sædvanligvis efter koncentrering af eluatet og eventuelt efter udfældning af uønskede organiske urenheder ved tilsætning af et eller flere vandblandbare organiske opløsningsmidler og/el-ler fjernelse af sådanne urenheder ved ekstraktion med et vand-ublandbart opløsningsmiddel.The phenolic extract can be prepared by extracting with an phenolic solvent an aqueous eluate from a charcoal or resin adsorbate of the kind described above, usually after concentration of the eluate and optionally after precipitation of undesirable organic impurities by the addition of one or more water-miscible organic solvents. and / or removing such impurities by extraction with a water-immiscible solvent.

Ved denne type procedure kan det således være ønskeligt at koncentrere eluatet fra enten trækullet eller en harpiks ved inddampning under nedsat tryk. I almindelighed udføres behandlingen under rensningen fortrinsvis ved en pH-værdi i området 6,0-7,0, fx 6,5, for at nedbringe sønderdeling til et minimum. Eluatet kan derefter renses ved udfældning af uønsket materiale med en vandblandbar keton såsom acetone, fortrinsvis så der kommer en koncentration af ketonen på 50 til 90 rumfangs%, med fordel ca. 85%. pH-værdien ved dette trin er fortrinsvis ca. 6,5 og hvis den vandige væske allerede indeholder vandblandbar keton, fjernes denne fortrinsvis for at lette pH-må-lingen. pH-værdien kan reguleres ved tilsætning af en base, fx et alkalimetalhydroxyd såsom natriumhydroxyd.Thus, in this type of procedure, it may be desirable to concentrate the eluate from either the charcoal or a resin by evaporation under reduced pressure. In general, the treatment during the purification is preferably carried out at a pH in the range 6.0-7.0, e.g. 6.5, to minimize decomposition. The eluate can then be purified by precipitation of unwanted material with a water-miscible ketone such as acetone, preferably so that the ketone concentration reaches 50 to 90% by volume, advantageously approx. 85%. The pH of this step is preferably about 6.5 and if the aqueous liquid already contains water-miscible ketone, it is preferably removed to facilitate the pH measurement. The pH can be adjusted by the addition of a base, for example, an alkali metal hydroxide such as sodium hydroxide.

Yderligere rensning kan udføres med et opløsningsmiddel ved ekstraktionstrin for at fjerne uønskede komponenter, fx ved koncentrering og regulering af pH-værdien af filtratet fra ketonudfældningen til ca. 4 ved tilsætning af en mineralsk syre såsom svovlsyre eller saltsyre, og ekstraktion med n-butanol eller en flydende alkohol med højere molekylvægt. Der kan praktisk anvendes 1 til 8 rumfang opløsningsmiddel.Further purification can be performed with a solvent at extraction step to remove undesirable components, e.g. by concentrating and controlling the pH of the filtrate from the ketone precipitate to ca. 4 by the addition of a mineral acid such as sulfuric acid or hydrochloric acid, and extraction with n-butanol or a higher molecular weight liquid alcohol. Practically 1 to 8 volumes of solvent can be used.

Efter denne ekstraktion koncentreres den vandige fase fortrinsvis ved ca. pH 6,5, og den kan renses yderligere ved 146764 12 ekstraktion af det ønskede antibiotikum over i et fenolisk opløsningsmiddel, fx selve forbindelsen fenol eller en kresol, fortrinsvis efter nedsættelse af pH-værdien til ca. 4 med en mineralsyre. Det fenoliske opløsningsmiddel indeholder med fordel en base såsom Ν,Ν-dimetylanilin og et vandublandbart opløsningsmiddel såsom kloroform eller kulstoftetraklorid. Ekstraktionen udføres med fordel flere gange med anvendelse af ca. 2/3 rumfang opløsningsmiddel for hver ekstraktion. Ekstrakterne kan derefter forenes og der kan tilsættes vand, fortrinsvis ca. 1/15 af opløsningsmiddelrumfanget, for at danne en særskilt fase. Antibiotiket kan derefter tilbageekstraheres ved tilsætning til det vandige lag af en base, fortrinsvis et alka-limetalhydroxyd som fx litiumhydroxyd, eller et jordalkalime-talhydroxyd som fx bariumhydroxyd eller kalciumhydroxyd, til en pH-værdi på ca. 6,5. Det vandige lag skilles fra det fenoliske lag og tilbageekstraktionsprocessen gentages fordelagtigt, hvorefter de vandige ekstrakter slås sammen. Efter fraskillel-se af alle andre bundfald end clavulanat, fx bariumsulfat, kan eventuelt tilbageværende fenolisk opløsningsmiddel fjernes fra den vandige opløsning ved ekstraktion med et vandublandbart opløsningsmiddel såsom æter, kloroform eller kulstoftetraklorid, og til udvinding af saltet af antibiotiket kan den vandige fase frysetørres eller forstøvningstørres ved pH 6,5.After this extraction, the aqueous phase is preferably concentrated at ca. pH 6.5, and it can be further purified by extraction of the desired antibiotic into a phenolic solvent, e.g., the compound itself phenol or a cresol, preferably after reducing the pH to ca. 4 with a mineral acid. The phenolic solvent advantageously contains a base such as Ν, Ν-dimethylaniline and a water-immiscible solvent such as chloroform or carbon tetrachloride. The extraction is advantageously carried out several times using approx. 2/3 volume of solvent for each extraction. The extracts can then be combined and water may be added, preferably approx. 1/15 of the solvent volume, to form a separate phase. The antibiotic can then be back-extracted by adding to the aqueous layer of a base, preferably an alkali metal hydroxide such as lithium hydroxide, or an alkaline earth metal hydroxide such as barium hydroxide or calcium hydroxide, to a pH of about 6.5. The aqueous layer is separated from the phenolic layer and the back extraction process is advantageously repeated, after which the aqueous extracts are combined. After separation of all precipitates other than clavulanate, e.g. barium sulfate, any remaining phenolic solvent may be removed from the aqueous solution by extraction with a water immiscible solvent such as ether, chloroform or carbon tetrachloride, and to recover the salt of the antibiotic, the aqueous phase may be freeze dried or spray dry at pH 6.5.

Yderligere rensning kan udføres ved konventionel teknik såsom kromatografi, navnlig ved anvendelse af sådanne materialer som "Sephadex" ®(et tværbundet dekstran). Således kan antibiotiket, der på dette trin normalt vil have form af et salt, fx bariumsalt, påføres en kolonne af "Sephadex", fx "Sephadex" G 15, og elueres med vand, idet de fraktioner der indeholder væsentlig antibiotisk aktivitet forenes til påfølgende udvinding af et salt, fx ved frysetørring.Further purification can be performed by conventional techniques such as chromatography, in particular using such materials as "Sephadex" ® (a cross-linked dextran). Thus, at this stage, the antibiotic which will normally take the form of a salt, e.g. barium salt, can be applied to a column of "Sephadex", e.g. "Sephadex" G 15, and eluted with water, combining the fractions containing substantial antibiotic activity to subsequent extracting a salt, for example, by freeze-drying.

Omdannelse af litiumclavulanat til clavulansyre og andre salteConversion of lithium clavulanate to clavulanic acid and other salts

Renset litiumclavulanat fremstillet som beskrevet foran kan omdannes til andre salte ved ionbytningsprocesser, fx ved hjælp af en ionbytterharpiks. Således kan fx det vandige litiumsalt anbringes på en kationbytterharpiks, fx "Bio Rad AG50X8" i kationform, idet kationen er den som ønskes i clavulansyresal- 146764 13 tet, fx natrium eller kalium, efterfulgt af eluering, fx med vand.Purified lithium clavulanate prepared as described above can be converted to other salts by ion exchange processes, for example by means of an ion exchange resin. Thus, for example, the aqueous lithium salt can be applied to a cation exchange resin, for example "Bio Rad AG50X8" in cation form, the cation being the one desired in the clavulanic acid salt, eg sodium or potassium, followed by elution, eg with water.

Fri clavulansyre kan dannes ved syrning, fx til pH ca.Free clavulanic acid can be formed by acidification, for example to pH approx.

2,6, af en vandig opløsning af litiumsaltet, fortrinsvis med høj ionstyrke, fx mættet med natriumklorid eller ammoniumsulfat i nærværelse af et vandublandbart opløsningsmiddel for clavulansyre, fx et ester-opløsningsmiddel såsom ætylacetat. Om nødvendigt kan den vandige fase ekstraheres med yderligere opløsningsmidler og ekstrakterne forenes. I almindelighed vil en hvilken som helst syre, der giver tilstrækkelig lav pH-vær-di, egne sig til syrningen, fx en mineralsk syre såsom saltsyre. Opløsningsmidlet kan derefter fjernes til frembringelse af den fri syre, sædvanligvis i form af en olie.2.6, of an aqueous solution of the lithium salt, preferably of high ionic strength, for example, saturated with sodium chloride or ammonium sulfate in the presence of a water-immiscible solvent for clavulanic acid, for example an ester solvent such as ethyl acetate. If necessary, the aqueous phase can be extracted with additional solvents and the extracts combined. In general, any acid which gives a sufficiently low pH value will be suitable for the acidification, for example a mineral acid such as hydrochloric acid. The solvent can then be removed to produce the free acid, usually in the form of an oil.

Opløsningen af den fri syre i det vandublandbare opløsningsmiddel kan bruges til at fremstille mange forskellige salte ved ekstraktion med en vandig opløsning af vedkommende base og isolation af saltet derfra. Det kan være nødvendigt at filtrere fast materiale fra den vandige fase før man skrider til at isolere saltet.The dissolution of the free acid in the water-immiscible solvent can be used to prepare many different salts by extraction with an aqueous solution of the base and isolation of the salt therefrom. It may be necessary to filter solid material from the aqueous phase before proceeding to isolate the salt.

Da den fri syre er forholdsvis ustabil, bør den fortrinsvis bruges så snart som muligt efter dannelse deraf, fx til fremstilling af salte eller andre derivater.Since the free acid is relatively unstable, it should preferably be used as soon as possible after its formation, for example for the preparation of salts or other derivatives.

Opfindelsen skal i det følgende forklares udførligt, dels ved et eksempel på fremstilling af udgangsmaterialet for litiumclavulanat, dels nogle eksempler på fremstilling af dette og dels eksempler på litiumsaltets anvendelse som mellemprodukt.The invention will be explained in detail below, partly by an example of the preparation of the starting material for lithium clavulanate, partly by some examples of its preparation and partly by examples of the use of the lithium salt as an intermediate.

Clavulansyreindhold i procesvæsker og faste stoffer er her målt ved:Clavulanic acid content in process fluids and solids is measured here by:

Ultraviolet spektroskopiUltraviolet Spectroscopy

Vandige opløsninger af clavulansyre og dens salte udviser meget lave uv-absorptioner ved over 230 nm, og fx den molære ekstinktionskoefficient ε ved 280 nm er ca. 60. Ved opløsning i alkali udvikler der sig imidlertid hurtigt en intens uv-absorption ved 259+1, og den kan bruges til bestemmel se af clavulansyre og/eller dens salte. Til sådanne bestemmelser afvejes faste stoffer nøjagtigt og opløses i tynd natrium-hydroxyd (0,1M) til frembringelse af et kendt rumfang opløs- 146764 14 ning svarende til ca. 0,01 mg/ml clavulansyre. Den optiske tæthed af opløsningen ved et absorptionsmaximum ved eller på ca.Aqueous solutions of clavulanic acid and its salts exhibit very low UV absorptions at more than 230 nm and, for example, the molar extinction coefficient ε at 280 nm is approx. 60. However, when dissolved in alkali, intense UV absorption develops at 259 + 1, and it can be used to determine clavulanic acid and / or its salts. For such determinations, solids are accurately weighed and dissolved in thin sodium hydroxide (0.1M) to produce a known volume of solution corresponding to ca. 0.01 mg / ml clavulanic acid. The optical density of the solution at an absorption maximum at or about

259 nm måltes på et spektrofotometer; faste urenheder kan beregnes under antagelse af at ε for ren clavulansyre er 16.700.259 nm was measured on a spectrophotometer; solid impurities can be calculated assuming that ε for pure clavulanic acid is 16,700.

Molære ekstinktionskoefficienter kan beregnes ud fra E^ værdier, dvs. ekstinktionskoefficienterne for en l%s opløsning i en 1 cm celle. På tilsvarende måde blev procesvæsker, om nødvendigt efter fjernelse af organiske opløsningsmidler, fortyndet præcist med fortyndet natriumhydroxyd for at give lignende koncentrationer af alkali og clavulansyre, herudfra bestemtes clavu-lansyrekoncentrationen i den oprindelige væske på den ovenfor beskrevne måde. Værdier for rå faststoffer og procesvæsker blev korrigeret for absorption af urenheder ved hjælp af opløsninger af samme koncentration i vand.Molar extinction coefficients can be calculated from E the extinction coefficients of a 1% solution in a 1 cm cell. Similarly, process liquids, if necessary after removal of organic solvents, were precisely diluted with dilute sodium hydroxide to give similar concentrations of alkali and clavulanic acid, from which the clavulanic acid concentration in the original liquid was determined in the manner described above. Values for crude solids and process fluids were corrected for the absorption of impurities by solutions of the same concentration in water.

Udgangsmateriale 1 a) Podekulturudvikling 10 ml sterilt destilleret vand sattes til en 14 dage gammel skråkultur på malt/gærekstrakt-agar af Streptomyces cla-vuligerus NRRL 3585 og der fremstilledes en suspension.Starting material 1 a) Graft culture development 10 ml of sterile distilled water was added to a 14 day old slurry culture on malt / yeast extract agar of Streptomyces cla-vuligerus NRRL 3585 and a suspension was prepared.

En portion på 1,5 ml af denne suspension brugtes til podning af 150 ml af et medium indeholdende (udtrykt i % v/r, dvs. således at forholdet mellem enheder af faste stoffer og væsker er som mellem g og ml): % v/r sakkarose 2,0 distillers' solubles 1,5 gærekstrakt 0,5 K2HP04 0,02 trypton 0,5 glycerol 1,0 og vand til 100% i en 2 liters langhalset, rund, fladbundet kolbe.A 1.5 ml aliquot of this suspension was used to inoculate 150 ml of a medium containing (expressed in% v / r, i.e., that the ratio of units of solids to liquids is as between g and ml):% v / r sucrose 2.0 distillers' solubles 1.5 yeast extract 0.5 K2 HPO4 0.02 tryptone 0.5 glycerol 1.0 and water to 100% in a 2 liter long necked, round, flat bottom flask.

Denne kolbe inkuberedes ved 26°C i 48 timer med 220 opm på en roterende ryster med et 5 cm slag. 150 ml af denne podekultur brugtes til podning af 4 liter af et medium indeholdende: U6764 15 % v/r soj abønnemel 2,1 distillers' solubles 0,52 kaseinhydrolysat 0,52This flask was incubated at 26 ° C for 48 hours at 220 rpm on a rotary shaker with a 5 cm stroke. 150 ml of this seed culture was used to inoculate 4 liters of a medium containing: U6764 15% v / r soybean flour 2.1 distillers' solubles 0.52 casein hydrolyzate 0.52

FeS04, 7H20 0,01 opløselig stivelse 4,7 glukose 0,78 og vand til 100% i en 5 liter stor gæringsbeholder med luftning (0,75 vol/vol/min), og holdtes på 28°C under omrøring (750 opm) i 20 timer.FeSO4, 7H20 0.01 soluble starch 4.7 glucose 0.78 and water to 100% in a 5 liter large fermentation vessel with aeration (0.75 v / v / min) and kept at 28 ° C with stirring (750 rpm ) for 20 hours.

b) Gæring 7,5 liter af det 20 timer gamle inokulum fra afsnit (a) ovenfor podedes i 150 liter af et medium indeholdende: % v/r opløselig stivelse 4,7 sojabønnemel 2,1 distillers' solubles 0,52 kaseinhydrolysat 0,52 glukose 0,78b) Fermentation 7.5 liters of the 20 hour old inoculum of paragraph (a) above was seeded in 150 liters of a medium containing:% soluble starch 4.7 soybean flour 2.1 distillers' solubles 0.52 casein hydrolyzate 0, 52 glucose 0.78

FeS04, 7H20 0,01 polyglykol (P.2000 fra Dow Chemical Co.) 0,05 og vand til 100% i en 220 liter stor beholder og der gæredes her i 90 timer ved 28°C under luftning (2 vol/vol/min) og omrøring (350 opm).FeSO4, 7H20 0.01 polyglycol (P.2000 from Dow Chemical Co.) 0.05 and water to 100% in a 220 liter container and fermented here for 90 hours at 28 ° C under aeration (2 vol / vol / min) and stirring (350 rpm).

Fremstilling af bariumsaltetPreparation of the barium salt

Et gæret medium vundet som beskrevet foran renses på følgende måde: 135 liter gæringsmedium med pH 6,25 klaredes på en centrifuge til frembringelse af en ovenstående væske i en mængde på 112 liter og med pH 6,3. Denne førtes gennem en kolonne med 25 liter trækul og kolonnen gennemvaskedes med 50 liter vand. Der udhældtes forsigtigt 10 liter acetone i toppen af lejet og eluering påbegyndtes. Dette efterfulgtes af 60 liter 90%s vandig acetone. Eluatet opsamledes i fraktioner (1x10 liter, 2x25 liter).A fermented medium obtained as described above is purified as follows: 135 liters of fermentation medium of pH 6.25 were clarified on a centrifuge to produce a supernatant in an amount of 112 liters and of pH 6.3. This was passed through a column of 25 liters of charcoal and the column was washed with 50 liters of water. Gently poured 10 liters of acetone into the top of the bed and elution commenced. This was followed by 60 liters of 90% aqueous acetone. The eluate was collected in fractions (1x10 liter, 2x25 liter).

Hver fraktion destilleredes under nedsat tryk for at fjerne acetone. Den tilbageværende vandige opløsning regulere- 146764 16 des til pH 6,0 med 1M natriumhydroxyd. Fraktionerne forenedes derefter og inddampedes yderligere til 2,9 liter, overførtes til en beholder og reguleredes op til 3,3 liter med vaskevæsker fra kogeren. Der sattes 17 liter acetone og 500 g filterhjælp "Celite" ®535 til koncentratet under kraftig omrøring.Each fraction was distilled under reduced pressure to remove acetone. The remaining aqueous solution was adjusted to pH 6.0 with 1M sodium hydroxide. The fractions were then combined and further evaporated to 2.9 liters, transferred to a container and regulated up to 3.3 liters with boiler washing fluids. 17 liters of acetone and 500 g of filter aid "Celite" ® 535 were added to the concentrate with vigorous stirring.

Den resulterende suspension filtreredes og kagen vaskedes med 4 liter 85%s vandig acetone.The resulting suspension was filtered and the cake washed with 4 liters of 85% aqueous acetone.

Filtratet og vaskevæskerne forenedes og kombinationen inddampedes under nedsat tryk til 4,0 liter. pH reguleredes fra 5,65 til 6,0 med 1M natriumhydroxyd, og inddampningen fortsatte indtil rumfanget var 1,0 liter. Det resulterende koncentrat syrnedes til pH 4,0 med 20%s svovlsyre og vaskedes med 4 x 750 ml, og 1 x 500 ml butan-l-ol. Opløst butan-l-ol udde-stilleredes af den vandige fase under vakuum.The filtrate and washings were combined and the combination was evaporated under reduced pressure to 4.0 liters. The pH was adjusted from 5.65 to 6.0 with 1M sodium hydroxide and evaporation continued until the volume was 1.0 liter. The resulting concentrate was acidified to pH 4.0 with 20% sulfuric acid and washed with 4 x 750 ml and 1 x 500 ml butan-1-ol. Dissolved butan-1-ol was precipitated by the aqueous phase under vacuum.

Efter at være blevet reguleret til pH 4,2 med 20%s svovlsyre ekstraheredes koncentratet tre gange med en blanding af 265 ml flydendegjort fenol B.P. (dvs. britisk farmakopé-kvalitet), 75 ml kulstoftetraklorid og 25 ml Ν,Ν-dimetylanilin. pH reguleredes til 4,2 for hver ekstrakt. De forenede opløsningsmiddelekstrakter omrørtes med 250 ml vand og pH reguleredes til 6,5 med 70 ml mættet vandigt bariumhydroxyd. Efter adskillelse af faserne genekstraheredes opløsningsmidlet med 200 ml vand og 7 ml mættet vandigt bariumhydroxyd.After being adjusted to pH 4.2 with 20% sulfuric acid, the concentrate was extracted three times with a mixture of 265 ml of liquefied phenol B.P. (ie British Pharmacopoeia grade), 75 ml of carbon tetrachloride and 25 ml of Ν, Ν-dimethylaniline. The pH was adjusted to 4.2 for each extract. The combined solvent extracts were stirred with 250 ml of water and the pH was adjusted to 6.5 with 70 ml of saturated aqueous barium hydroxide. After separation of the phases, the solvent was re-extracted with 200 ml of water and 7 ml of saturated aqueous barium hydroxide.

De forenede vandige faser vaskedes med 3 x 200 ml di-ætylæter, reduceredes i vakuum til 200 ml og frysetørredes til 29,4 g lysebrunt fast stof. E^ = 152. Renhed under 25%.The combined aqueous phases were washed with 3 x 200 ml diethyl ether, reduced in vacuo to 200 ml and lyophilized to 29.4 g light brown solid. E ^ = 152. Purity below 25%.

Eksempel 1 i) Fremstilling af kaliumsaltet a) 8,83 g råt bariumsalt (renhed < 25%) fra udgangsmateria le 1 sattes til 50 ml mættet vandig opløsning af (NH^^SO^.Example 1 i) Preparation of the potassium salt a) 8.83 g of crude barium salt (purity <25%) from starting material 1 was added to 50 ml of saturated aqueous solution of (NH 2 SO 2).

Der tilsattes 50 ml ætylacetat og blandingen omrørtes. Der indsattes et pH-prøveinstrument i blandingen og pH reguleredes fra 6,8 til 2,6 med ca. 15 ml 1M H2S04· Den vandige opløsning 146764 17 skiltes fra ætylacetatet og omrørtes igen med en frisk portion ætylacetat, 50 ml. De to ætylacetatekstrakter forenedes, der tilsattes 100 ml destilleret vand og blandingen omrørtes i nærværelse af pH-prøveinstrumentet. Der tilsattes ca. 40 ml mættet opløsning af et kalciumhydroxyd for at bringe blandingens pH-værdi til 6,6. Den vandige opløsning skiltes fra ætylacetatet, filtreredes gennem filterhjælp og frysetørredes, hvorved der fremkom 1,44 g fast kalciumsalt.50 ml of ethyl acetate was added and the mixture was stirred. A pH test instrument was inserted into the mixture and the pH was adjusted from 6.8 to 2.6 with approx. 15 ml of 1M H2SO4 · The aqueous solution was separated from the ethyl acetate and stirred again with a fresh portion of ethyl acetate, 50 ml. The two ethyl acetate extracts were combined, 100 ml of distilled water was added and the mixture was stirred in the presence of the pH sample instrument. Approx. 40 ml of saturated solution of a calcium hydroxide to bring the pH of the mixture to 6.6. The aqueous solution was separated from the ethyl acetate, filtered through filter aid and lyophilized to give 1.44 g of solid calcium salt.

b) Det faste stof fra (a) opløstes i 15 ml destilleret vand, filtreredes gennem et milliporefilter og påførtes en kolonne indeholdende "Sephadex" ®G15, pakket i vand til et leje med en højde på ca. 150 cm og en diameter på 2,5 cm. Der foretoges eluering med destilleret vand og opsamledes fraktioner på 20 ml. Fraktionerne bestemtes efter tyndlagskromatografering (tic; cellulose, "Eastman"®- "Kodak"® 6065 plader; opløsningsmiddel acetonitril/vand 7:3) ved overlejring med næringsagar indeholdende Staphylococcus aureus. Fraktionerne 33-37 forenedes og frysetørredes, hvorved der fremkom 490 mg. Det faste stof holdtes over ^ va^uum i 60 timer. Kalciumsaltet fra dette eksempels afsnit (b) havde følgende karakteristika: pKa. pKa-værdien for den tilsvarende syre fandtes at være ca.b) The solid from (a) was dissolved in 15 ml of distilled water, filtered through a millipore filter and applied to a column containing "Sephadex" ® G15, packed in water to a bed of about height. 150 cm and a diameter of 2.5 cm. Eluted with distilled water and 20 ml fractions were collected. The fractions were determined by thin layer chromatography (tic; cellulose, "Eastman" ® "Kodak" ® 6065 plates; solvent acetonitrile / water 7: 3) by overlaying with nutrient agar containing Staphylococcus aureus. Fractions 33-37 were combined and lyophilized to give 490 mg. The solid was kept above room for 60 hours. The calcium salt from section (b) of this example had the following characteristics: pKa. The pKa value for the corresponding acid was found to be approx.

2,4 ved potentiometrisk titrering af saltet.2.4 by potentiometric titration of the salt.

Optisk drejning. [a]D ved 22°C: + 44,9° (koncentration 0,287 g/100 ml vand).Optical rotation. [a] D at 22 ° C: + 44.9 ° (concentration 0.287 g / 100 ml water).

UV-spektrum. En prøve på 0,00148 g, der var blevet opløst i 100 ml 0,1M NaOH, udviste absorptionsmaximum, λ , ved 258 nm med en E^-værdi på ca. 550.UV spectrum. A sample of 0.00148 g which had been dissolved in 100 ml of 0.1 M NaOH exhibited absorption maximum, λ, at 258 nm with an E 550th

IR-spektrum. Det infrarøde spektrum for en prøve i nujol udviste absorptionsmaxima ved bølgetal (cm j som følger: 3300 s,br 2330 w 1788 s 1692 m 1604 s 1404 s 1305 s 1190 m 1118 m 1082 m 1060 m 1042 m 1012 m 992 m 968 m 892 m 848 w 790 w 740 m 654 w 146764 18 (s, m, br og w betegner henholdsvis stærk, middel, bred og svag intensitet).IR spectrum. The infrared spectrum of a sample in nujol exhibited absorption maxima at wave numbers (cm j as follows: 3300 s, br 2330 w 1788 s 1692 m 1604 s 1404 s 1305 s 1190 m 1118 m 1082 m 1060 m 1042 m 1012 m 992 m 968 m 892 m 848 w 790 w 740 m 654 w 146764 18 (s, m, br and w denote strong, medium, wide and weak intensity, respectively).

Det fulde spektrum er vist i tegningens figur 3.The full spectrum is shown in Figure 3 of the drawing.

NMR-spektrum. Det proton-kærnemagnetiske resonansspektrum i form af opløsning af prøven i tungt vand udviste grupper af toppe (τ-værdier) centreret ved.ca. 4,31, 5,10, 5,85, 6,46 og 6,91.NMR spectrum. The proton-nuclear magnetic resonance spectrum in the form of dissolution of the sample in heavy water exhibited groups of peaks (τ values) centered at.ca. 4.31, 5.10, 5.85, 6.46 and 6.91.

Tyndlagskromatografi. Portioner af prøven, opløst i vand, på-førtes på begyndelsen af enten "Eastman"-"Kodak" cellulose TL plader (med plastbagside EK 6065) eller "Eastman"-"Kodak" sili-ka TL plader (med plastbagside, EK 6060). Pladerne fremkaldtes med opløsningsmiddel ved stuetemperatur og lufttørredes derefter og blev overlejret med næringsagar indeholdende Staphylococcus aureus. Rf-værdier, beregnet som afstanden fra begyndelsen til midten af hver zone af inhiberet bakterievækst, divideret med afstanden fra begyndelsen til opløsningsmiddelfronten, angives nedenfor for fem systemer.Thin Layer Chromatography. Portions of the sample, dissolved in water, were applied at the beginning of either "Eastman" - "Kodak" cellulose TL plates (with plastic backing EK 6065) or "Eastman" - "Kodak" silica ka plates (with plastic backing, EK 6060 ). The plates were developed with solvent at room temperature and then air dried and overlaid with nutrient agar containing Staphylococcus aureus. Rf values, calculated as the distance from the beginning to the center of each zone of inhibited bacterial growth, divided by the distance from the beginning to the solvent front, are given below for five systems.

Opløsningsmiddel Bæremateriale Rf propan-l-ol/vand 7:3 cellulose 0,60 butan-1-ol/eddikesyre/vand 3:1:1 " 0,64 acetonitril/vand 7:3 " 0,68Solvent Carrier Rf propan-1-ol / water 7: 3 cellulose 0.60 butan-1-ol / acetic acid / water 3: 1: 1 "0.64 acetonitrile / water 7: 3" 0.68

Acetonitril/vand/propan-2-ol 1:1:1 " 0,87 butanol-l-ol/eddikesyre/vand 3:1:1 silika 0,63Acetonitrile / water / propan-2-ol 1: 1: 1 "0.87 butanol-1-ol / acetic acid / water 3: 1: 1 silica 0.63

Papirionoforese. Portioner af prøven underkastedes ionoforese på "Whatman" ® 541 papir i 1 time med 400 volt påført over 20 cm. Aktiviteten, konstateret ved overlejring af det lufttørrede papir med næringsagar indeholdende Staphylococcus aureus, havde en mobilitet i forhold til cyanokobalamin på 4,5 cm hen-imod anoden ved pH 4,8 (0,01M acetat), pH 6,9 (0,01M fosfat) og pH 9,5 (0,01M pyrofosfat).Papirionoforese. Portions of the sample were subjected to ionophoresis on Whatman® 541 paper for 1 hour with 400 volts applied over 20 cm. The activity, found by superimposing the air-dried paper with nutrient agar containing Staphylococcus aureus, had a 4.5 cm cyanocobalamin mobility toward the anode at pH 4.8 (0.01M acetate), pH 6.9 (0, 1M phosphate) and pH 9.5 (0.01M pyrophosphate).

ii) Fremstilling af litiumsaltetii) Preparation of the lithium salt

1 g af kalciumsaltet (E^ 590) fremstillet som beskrevet ovenfor i (i)(b) opløstes i 10 ml vand og der tilsattes 10 ml af en mættet opløsning af litiumklorid i vand. Krystallisation indtrådte uden skrabning eller podning. Efter afkøling til 0°C1 g of the calcium salt (E ^ 590) prepared as described above in (i) (b) was dissolved in 10 ml of water and 10 ml of a saturated solution of lithium chloride in water was added. Crystallization occurred without scraping or grafting. After cooling to 0 ° C

146764 19 filtreredes krystallerne og vaskedes med 5 ml ætanol, 5 ml acetone og 2 x 5 ml diætylæter. Krystallerne tørredes under nedsat tryk til 0,1 mm Hg over silikagel i 2 timer hvorved der fremkom 495,5 mg fast litiumsalt. Dette salt havde renhed over 95% og følgende karakteristika:The crystals were filtered and washed with 5 ml of ethanol, 5 ml of acetone and 2 x 5 ml of diethyl ether. The crystals were dried under reduced pressure to 0.1 mm Hg over silica gel for 2 hours to give 495.5 mg of solid lithium salt. This salt had purity above 95% and the following characteristics:

Elementæranalyse. Fundne værdier (middelværdier anført i parentes) : C 45,5, 45,8 (45,65); H 3,8, 3,8 (3,8); N 7,0, 7,2 (7,1); Li 3,2%. Svovl blev ikke konstateret ved en metode angivet af B.D. Cheronis og J.B. Entrikin (1947) i Semimicko Qualitative Analysis side 93, Crowell, New York. Sammensætningen CgHgNOgLi, 1/4 H2O fordrer C 45,84; H 4,06; N 6,68; Li 3,31%.Elemental analysis. Values found (mean values in parentheses): C 45.5, 45.8 (45.65); H 3.8, 3.8 (3.8); N 7.0, 7.2 (7.1); Li 3.2%. Sulfur was not detected by a method specified by B.D. Cheronis and J.B. Entrikin (1947) in Semimicko Qualitative Analysis page 93, Crowell, New York. The composition CgHgNOgLi, 1/4 H2O requires C 45.84; H, 4.06; N, 6.68; Li 3.31%.

Den værdi for Li-analysen der er anført ovenfor, 3,2%, bestemtes ved atomabsorptionsspektrofotometri. Sulfateret aske var 26,8%, der beregnet som LI2SO4 er ækvivalent til 3,38% litium.The value for the Li analysis stated above, 3.2%, was determined by atomic absorption spectrophotometry. Sulfated ash was 26.8%, calculated as LI2SO4 equivalent to 3.38% lithium.

pKa. pKa-værdien for den tilsvarende syre viste sig at være ca. 2,3 ved potentiometrisk titrering af saltet.pK. The pKa value for the corresponding acid was found to be approx. 2.3 by potentiometric titration of the salt.

Optisk drejning. [a]^-værdien for en 0,145% v/r vandig opløsning ved 24°C var + 66,0°.Optical rotation. The value of a 0.145% v / r aqueous solution at 24 ° C was + 66.0 °.

Ultraviolet spektrum. UV-absorptionsspektret for en 0,00091%s opløsning i 0,1M natriumhydroxyd havde absorptionsmaximum (λ„ ) ved 258 nm med en E^-værdi på 788.Ultraviolet spectrum. The UV absorption spectrum of a 0.00091% solution in 0.1M sodium hydroxide had absorption maximum (λλ) at 258 nm with an E₂ value of 788.

max 1 cmax 1 c

Infrarødt spektrum.IR-spektret i nujol udviste absorptionstoppe (cm 1) ved ca.: 3420 (m) 1402 (s) 1200 (w) 1026 (m) 880 (w) 3012 (w) 1338 (m) 1129 (m) 992 (m) 850 (w) 1765 (s) 1325 (s) 1101 (m) 976 (m)' 734 (m) 1683 (s) 1300 (m) 1062 (m) 950 (s) 708 (w) 1618 (s) 1224 (w) 1048 (s) 900 (m)Infrared spectrum.The nujol IR spectrum exhibited absorption peaks (cm 1) at approximately: 3420 (m) 1402 (s) 1200 (w) 1026 (m) 880 (w) 3012 (w) 1338 (m) 1129 (m) 992 (m) 850 (w) 1765 (s) 1325 (s) 1101 (m) 976 (m) 734 (m) 1683 (s) 1300 (m) 1062 (m) 950 (s) 708 (w) 1618 (s) 1224 (w) 1048 (s) 900 (m)

Det fulde spektrum er vist i tegningens figur 1.The full spectrum is shown in Figure 1 of the drawing.

NMR-spektrum. Et proton-kærnemagnetisk resonansspektrum ved 100 MHz for litiumsaltet i opløsning i tungt vand udviste toppe (τ-værdier med multipler og koblingskonstanter, Hz, i parentes), centreret ved ca. 4,26 (d,3), 5,05 (t,8), 5,06 (s), 5,81 (d,8), 6,43 (dd, 3 og 17) og 6,89 (d,17).NMR spectrum. A proton-nuclear magnetic resonance spectrum at 100 MHz for the lithium salt in solution in heavy water exhibited peaks (τ values with multiples and coupling constants, Hz, in parentheses), centered at ca. 4.26 (d, 3), 5.05 (t, 8), 5.06 (s), 5.81 (d, 8), 6.43 (dd, 3 and 17) and 6.89 (d) , 17).

U6764 20U6764 20

Her betegner s, d, dd, t og m henholdsvis singlet, dublet, dobbelt dublet, triplet og multiplet.Here, s, d, dd, t and m denote singlet, doublet, double doublet, triplet and multiplet respectively.

iii) Omkrystallisation af litiumsaltet 0,1 g af litiumsaltet fremstillet som beskrevet ovenfor under (ii) opløstes i 1,0 ml vand og fortyndedes omhyggeligt med 19 ml isopropanol. Produktet krystalliserede langsomt ved 0°C og indhøstedes i to udbytter ved indkogning under nedsat tryk til 5 ml for andet udbyttes vedkommende. Krystallerne af litiumsaltet tørredes over silikagel i vakuum i 3 døgn.iii) Recrystallization of the lithium salt 0.1 g of the lithium salt prepared as described above under (ii) was dissolved in 1.0 ml of water and carefully diluted with 19 ml of isopropanol. The product crystallized slowly at 0 ° C and was harvested in two yields by boiling under reduced pressure to 5 ml for the second yield. The crystals of the lithium salt were dried over silica gel in vacuo for 3 days.

Udbytte 1. 20,0 mg Xmax 259 nm, E^ = 814 i natriumhydroxydop-løsning (0,1M) ved 10 pg/ml.Yield 1. 20.0 mg Xmax 259 nm, E 2 = 814 in sodium hydroxide solution (0.1M) at 10 pg / ml.

ElementæranalyseElemental Analysis

Beregnet for CgHgNO^Li,1/4 I^O: C 45,84 H 4,06 N 6,68Calculated for C CHgNO ^ Li, 1/4 I ^O: C 45.84 H 4.06 N 6.68

Fundet: C 46,2 H 4,10 46,0 3,85 N 6,8 6,7%.Found: C 46.2 H 4.10 46.0 3.85 N 6.8 6.7%.

Udbytte 2. 67,0 mg. ^max 259 nm, E^ = 800 i natriumhydroxyd (0,IN) ved 10 μg/ml.Yield 2. 67.0 mg. ^ max 259 nm, E ^ = 800 in sodium hydroxide (0, IN) at 10 µg / ml.

ElementæranalyseElemental Analysis

Beregnet for CgHgNOgLi,1/4H20: C 45,84 H 4,06 N 6,68 Li 3,31Calcd for CgHgNOgLi, 1 / 4H2O: C 45.84 H 4.06 N 6.68 Li 3.31

Fundet: C 46,15 H 3,9 N 6,65 Li 3,4% (sulfateret aske) C 46,5 H 4,0 N 6,5Found: C 46.15 H 3.9 N 6.65 Li 3.4% (sulfated ash) C 46.5 H 4.0 N 6.5

Eksempel 2 30 g af bariumsaltet (E^ = 274; renhed <45%, fremstillet som udgangsmateriale 1) opløstes i 40 ml vand og der tilsattes 300 ml mættet ammoniumsulfatopløsning. Opløsningens pH-værdi reguleredes til 2,3 med 23,0 ml 20%s svovlsyre og eks-traheredes derefter med 2 x 300 ml ætylacetat. Der sattes 200 ml vand til de forenede ekstrakter. Blandingen omrørtes kraftigt og der tilsattes 89,3 ml 1M natriumhydroxydopløsning indtil pH-værdien nåede 6,8. Den vandige fase fraskiltes og inddampedes under nedsat tryk til 33 ml. Der sattes 770 ml bu-tan-l-ol til det vandige koncentrat og derefter gennemblande-des der, opvarmedes til 40°C og rystedes kraftigt. Uopløseligt U6764 21 materiale frafiltreredes og genekstraheredes med vand/butan-l-ol 1:23 (rumfangsforhold) indtil alt opløste sig. De forenede opløsninger afkøledes til 4°C natten over. Det dannede krystallinske faste stof opsamledes ved filtrering, vaskedes med butan-l-ol og acetone og lufttørredes til 3,34 g af natriumsaltet (E^ = 648).Example 2 30 g of the barium salt (E (= 274; purity <45%, prepared as starting material 1) were dissolved in 40 ml of water and 300 ml of saturated ammonium sulfate solution was added. The pH of the solution was adjusted to 2.3 with 23.0 ml of 20% sulfuric acid and then extracted with 2 x 300 ml of ethyl acetate. 200 ml of water was added to the combined extracts. The mixture was stirred vigorously and 89.3 ml of 1M sodium hydroxide solution was added until the pH reached 6.8. The aqueous phase was separated and evaporated to 33 ml under reduced pressure. 770 ml of butan-1-ol was added to the aqueous concentrate and then mixed, heated to 40 ° C and shaken vigorously. Insoluble U6764 21 material was filtered off and re-extracted with water / butan-l-ol 1:23 (volume ratio) until all dissolved. The combined solutions were cooled to 4 ° C overnight. The crystalline solid formed was collected by filtration, washed with butan-1-ol and acetone and air dried to 3.34 g of the sodium salt (E + = 648).

2,92 g af dette natriumsalt opløstes i 20 ml vand og filtreredes. Filtratet omrørtes ved 0°C mens der indførtes 20 ml litiumkloridopløsning (mættet ved 20°C) i løbet af 5 minutter. Omrøring og afkøling fortsattes i en time, hvorefter krystallerne indhøstedes ved filtrering, vaskedes med 20 ml ætanol, 2 x 20 ml acetone og 2 x 25 ml diætylaster og lufttørredes til frembringelse af 2,275 g af litiumsaltet som hvide, langag-tige flade prismer (E^ = 770). Renhed over 90%.2.92 g of this sodium salt was dissolved in 20 ml of water and filtered. The filtrate was stirred at 0 ° C while introducing 20 ml of lithium chloride solution (saturated at 20 ° C) over 5 minutes. Stirring and cooling were continued for one hour, after which the crystals were added by filtration, washed with 20 ml of ethanol, 2 x 20 ml of acetone and 2 x 25 ml of diethyl elastomer and air dried to give 2,275 g of the lithium salt as white, long-lasting flat prisms (E ^ = 770). Purity above 90%.

Eksempel 3 7,99 g råt bariumsalt (E^ 288), renhed < 45%, fremstillet som udgangsmateriale 1, opløstes i 60 ml vand og filtreredes. Filtratet behandledes portionsvis med 4,0 g litiumsulfat under omrøring ved stuetemperatur indtil der ikke fremkom reaktion for barium på en ydre testplade med natriumrhodionat. Suspensionen klaredes ved centrifugering og den ovenstående væske dekanteredes og indkogtes til ca. 35 ml under nedsat tryk. Der tilsattes portionsvis 9,0 g litiumklorid under omrøring og afkøling; efter 1 time ved 0°C indhøstedes litiumsaltet ved filtrering, vaskedes med 10 ml ætanol, 2 x 25 ml acetone og 2 x 20 ml diætylæter og lufttørredes i filtertragten til frembringelse af 1,590 g hvide prismer (E^ = 790). Litiumclavulanatets renhed var over 95%.Example 3 7.99 g of crude barium salt (E ^ 288), purity <45%, prepared as starting material 1, dissolved in 60 ml of water and filtered. The filtrate was treated portionwise with 4.0 g of lithium sulfate with stirring at room temperature until no reaction of barium appeared on an outer test plate with sodium rhodionate. The suspension was cleared by centrifugation and the supernatant was decanted and boiled to ca. 35 ml under reduced pressure. 9.0 g of lithium chloride was added portionwise with stirring and cooling; after 1 hour at 0 ° C, the lithium salt was added by filtration, washed with 10 ml of ethanol, 2 x 25 ml of acetone and 2 x 20 ml of diethyl ether and air dried in the filter funnel to give 1,590 g of white prisms (E + = 790). The purity of the lithium clavulanate was over 95%.

Anvendelseseksempel AApplication Example A

Fremstilling af natriumsaltet 3,5 g af litiumsaltet fremstillet som i eksempel 1 (ii) opløstes i 20 ml destilleret vand og påførtes en kolonne indeholdende 50 ml "Bio-Rad" AG50x8 kationbytterharpiks (Na+; 200-400 mesh størrelse). Elueringen skete med vand og der opsamledes fraktioner på 8 ml. Fraktionerne bestemtes efter på- 146764 22 føring af portioner til papir ved overlejring med næringsagar indeholdende Staphylococcus aureus. Aktive fraktioner (4 til 13) forenedes og frysetørredes.Preparation of the sodium salt 3.5 g of the lithium salt prepared as in Example 1 (ii) was dissolved in 20 ml of distilled water and applied to a column containing 50 ml of "Bio-Rad" AG50x8 cation exchange resin (Na +; 200-400 mesh size). The elution was done with water and 8 ml fractions were collected. The fractions were determined after applying portions to paper by overlaying with nutrient agar containing Staphylococcus aureus. Active fractions (4 to 13) were combined and lyophilized.

Det frysetørrede faststof opløstes i destilleret vand til 19 ml opløsning, den rystedes med 450 ml butan-l-ol og opvarmedes på et vandbad indtil opløsningen var næsten klar. Den varme opløsning filtreredes gennem et sinter for at fjerne gult fast Stof, og filtratet holdtes på 4°C i 60 timer. De derved dannede krystaller filtreredes, vaskedes med 2 x 10 ml butan-l-ol og derefter med 2 x 10 ml acetone og tørredes under nedsat tryk ved 40°C i en time til 2,18 g fast stof. Det faste stof omkrystalliseredes fra vand/butan-l-ol 1:23,3 som beskrevet i eksempel 2. Krystallerne tørredes under nedsat tryk over silikagel ved 44°C i 1 1/2 time, og herved vandtes der 1,8 g fast natriumsalt.The freeze-dried solid was dissolved in distilled water to 19 ml of solution, shaken with 450 ml of butan-1-ol and heated on a water bath until the solution was almost clear. The hot solution was filtered through a sinter to remove yellow solid and the filtrate was kept at 4 ° C for 60 hours. The crystals thus formed were filtered, washed with 2 x 10 ml of butan-1-ol and then with 2 x 10 ml of acetone and dried under reduced pressure at 40 ° C for one hour to 2.18 g of solid. The solid was recrystallized from water / butan-1-ol 1: 23.3 as described in Example 2. The crystals were dried under reduced pressure over silica gel at 44 ° C for 1 1/2 hours to give 1.8 g of solid sodium salt.

Det faste stof var hygroskopisk. Det maledes med en støder i en morter og man lod det optage atmosfærisk vand ved 18°C. Efter at der var optaget ca. 22 vægt% vand nåedes der ligevægt.The solid was hygroscopic. It was painted with a bump in a mortar and allowed to absorb atmospheric water at 18 ° C. After recording approx. 22% by weight of water reached equilibrium.

Dette salt havde følgende karakteristika:This salt had the following characteristics:

Elementæranalyse af det ækvilibrerede fugtige faststof: Fundet (idet middelværdier anføres i parentes) C 33,3, 33,2 (33,25); H 4,6, 4,6 (4,6); N 4,6, 4,7 (4,65); Na 7,3 (ved absorptions-spektrofotometri), 7,9 (beregnet ud fra sulfateret aske); vand 21,95%. Sammensætningen CgHgO^N Na, 41^0 fordrer C 32,76; H 5,46; N 4,78; Na 7,8; vand 24,57%.Elemental analysis of the equilibrated moist solid: Found (quoting means in parentheses) C 33.3, 33.2 (33.25); H 4.6, 4.6 (4.6); N, 4.6, 4.7 (4.65); Na 7.3 (by absorption spectrophotometry), 7.9 (calculated from sulfated ash); water 21.95%. The composition CgHgO ^N Na, 41 ^O requires C 32.76; H, 5.46; N, 4.78; Na 7.8; water 24.57%.

Metalanalyse 1) Fundet ved atomabsorptionsspektrofotometri: Na 7,3+0,2% (det er den værdi der er anført under elementæranalysen).Metal analysis 1) Found by atomic absorption spectrophotometry: Na 7.3 + 0.2% (this is the value stated in the elemental analysis).

2) Under den antagelse af den sulfaterede aske er Na2S0^, beregnedes Na-indholdet til 7,9%.2) Assuming the sulfated ash is Na 2 SO 4, the Na content was calculated to be 7.9%.

Optisk drejning. [a]D~værdien for en 0,134% v/r vandig opløsning ved 24°C var +47°.Optical rotation. [a] The D value for a 0.134% v / r aqueous solution at 24 ° C was + 47 °.

Ultraviolet spektrum. UV-absorptionsspektret for en 0,00098%s opløsning i 0,1M NaOH udviste absorptionsmaximum (λ_=) ved 258 nm med en værdi for på 555.Ultraviolet spectrum. The UV absorption spectrum of a 0.00098% solution in 0.1M NaOH exhibited absorption maximum (λ_ =) at 258 nm with a value of 555.

Infrarødt spektrum. IR-spektret i nujol udviste absorptionstoppe (cm *) ved ca.Infrared spectrum. The nujol IR spectrum exhibited absorption peaks (cm

U6764 23 3400 s 1592 s 1288 m 1080 w 986 s 850 w 3300 s 1396 s 1206 w 1060 m 967 m 802 w 1792 s 1348 m 1190 m 1048 m 945 w 753 m 1690 s 1310 s 1138 m 1015 s 902 m 1665 m 1302 sh 1120 m 998 m 880 wU6764 23 3400 s 1592 s 1288 m 1080 w 986 s 850 w 3300 s 1396 s 1206 w 1060 m 967 m 802 w 1792 s 1348 m 1190 m 1048 m 945 w 753 m 1690 s 1310 s 1138 m 1015 s 902 m 1665 m 1302 sh 1120 m 998 m 880 w

Det fulde spektrum er vist i tegningens figur 2.The full spectrum is shown in Figure 2 of the drawing.

NMR-spektrum. Det protonmagnetiske resonansspektrum fra en opløsning i tungt vand udviste grupper af toppe (τ-værdier) centreret ved ca. 4,28, 5,07, 5,82, 6,44 og 6,88.NMR spectrum. The proton magnetic resonance spectrum from a solution in heavy water exhibited groups of peaks (τ values) centered at ca. 4.28, 5.07, 5.82, 6.44 and 6.88.

Anvendelseseksempel BApplication Example B

Fremstilling af kaliumsaltet 3,0 g af litiumsaltet, fremstillet som beskrevet i eksempel 1 (ii) opløstes i 100 ml vand og førtes gennem en 450 ml stor kolonne af "Dowex" 50W x 2 ionbytterharpiks i kaliumform ("Dowex" er et i Danmark indregistreret varemærke). Et forløb på 150 ml blev kasseret. De næste 400 ml eluat opsamledes og inddampedes til 15 ml under nedsat tryk. Der tilsattes 340 ml butan-l-ol og blandingen opvarmedes og rystedes godt.Preparation of the Potassium Salt 3.0 g of the lithium salt prepared as described in Example 1 (ii) was dissolved in 100 ml of water and passed through a 450 ml large column of "Dowex" 50W x 2 potassium ion exchange resin ("Dowex" is one in Denmark registered trademark). A course of 150 ml was discarded. The next 400 ml of eluate was collected and evaporated to 15 ml under reduced pressure. 340 ml of butan-1-ol was added and the mixture heated and shaken well.

Noget uopløseligt fast stof frafiltreredes. Filtratet inddampedes under nedsat tryk til 200 ml og opbevaredes derefter ved 4°C natten over. Det krystallinske bundfald filtreredes, vaskedes med 2 x 10 ml butan-l-ol, 2 x 50 ml acetone og 2 x 50 ml diætylæter og tørredes til slut i en vakuum-desikkator ved stuetemperatur. Udbytte 2,34 g kaliumsalt (E?- = 704). Værdien 1 1 for E1 bestemtes ved at man opløste 7,1 mg af kaliumsaltet i 100 ml vand. Denne opløsning fortyndedes 1:10 med 0,1M na-triumhydroxyd til en sluttelig opløsning på 7,1 μg/ml.Some insoluble solid was filtered off. The filtrate was evaporated under reduced pressure to 200 ml and then stored at 4 ° C overnight. The crystalline precipitate was filtered, washed with 2 x 10 ml of butan-1-ol, 2 x 50 ml of acetone and 2 x 50 ml of diethyl ether and finally dried in a vacuum desiccator at room temperature. Yield 2.34 g of potassium salt (E? - = 704). The value of 1 1 for E1 was determined by dissolving 7.1 mg of the potassium salt in 100 ml of water. This solution was diluted 1:10 with 0.1M sodium hydroxide to a final solution of 7.1 µg / ml.

Elementæranalyse. Fundet (med middelværdier angivet i parentes): C 40,0, 40,14 (40,07); H 3,5, 3,55 (3,53); N 6,0, 5,82 (5,91); K (ved absorptions-spektrofotometri) 16,0 (ved bestemmelse på sulfateret aske) 15,9; vand 1,75, 1,95 (1,85)%. Sammensætningen CgHgNO^K,1/41^0 fordrer C 39,7; H 3,5; N 5,8; K 16,2; vand 1,96%.Elemental analysis. Found (with mean values in parentheses): C 40.0, 40.14 (40.07); H 3.5, 3.55 (3.53); N 6.0, 5.82 (5.91); K (by absorption spectrophotometry) 16.0 (by determination of sulfated ash) 15.9; water 1.75, 1.95 (1.85)%. The composition CgHgNO4 K, 1/41 O requires C 39.7; H 3.5; N, 5.8; K 16.2; water 1.96%.

23°23 °

Optisk drejning. Værdien af [α]β for en 0,276%s v/r vandig opløsning var 58,4°.Optical rotation. The value of [α] β for a 0.276% s v / r aqueous solution was 58.4 °.

146764 24146764 24

Kalcium-, barium- og magniumsaltene af clavulansyre fremstilledes ud fra litiumclavulanat på lignende måde og viste sig at have E^-værdier på henholdsvis 530, 576 og 713.The calcium, barium, and magnesium salts of clavulanic acid were prepared from lithium clavulanate in a similar manner and found to have E-values of 530, 576, and 713, respectively.

Anvendelseseksempel CApplication Example C

Fremstilling af fri clavulansyre 500 mg af litiumsaltet af clavulansyre, fremstillet som i eksempel l(ii), fordeltes mellem 10 ml ætylacetat og 10 ml mættet vandigt natriumklorid. Der tilsattes 1 ml 2N saltsyre og blandingen rystedes kortvarigt. Den vandige fase fraskiltes og vaskedes med 10 ml ætylacetat og de forenede organiske ekstrakter vaskedes med 15 ml mættet vandigt natriumklorid. Den resulterende organiske opløsning tørredes over natriumsulfat og inddampedes næsten til tørhed, hvorved der vandtes 352 mg af den fri syre som en olie indeholdende ca. 0,5 mol ætylacetat.Preparation of free clavulanic acid 500 mg of the lithium salt of clavulanic acid, prepared as in Example 1 (ii), was partitioned between 10 ml of ethyl acetate and 10 ml of saturated aqueous sodium chloride. 1 ml of 2N hydrochloric acid was added and the mixture was shaken briefly. The aqueous phase was separated and washed with 10 ml of ethyl acetate and the combined organic extracts washed with 15 ml of saturated aqueous sodium chloride. The resulting organic solution was dried over sodium sulfate and evaporated almost to dryness to give 352 mg of the free acid as an oil containing ca. 0.5 mole of ethyl acetate.

Forbindelsen havde følgende karakteristika: 24 o [a]^ = 54,5 (c = 1,0 i DMSO); λ af en 0,00098%s L JD max opløsning i vandigt 0,1N NaOH er 258 nm (E^ = 590); infrarødt spektrum i nujol udviser toppe ved bl.a. 3350, 1790 og 1722 cm *"; NMR-toppe (DMSO-dg) indbefatterχ 4,31 (d, 3 Hz), 4,99 (s), 5,23 (t, 7 Hz), 5,97 (d, 7 Hz), 6,37 og 6,93 (dd, 3 og 17 Hz; d, 17 Hz); toppe centreret ved χ 8,82, 8,00 og 5,95 viste at prøven indeholdt ca. 0,5 mol ætylacetat pr. mol clavulansyre. Disse værdier viser at prøven indeholdt mindst 85 vægt% clavulansyre.The compound had the following characteristics: 24 o [a] + = 54.5 (c = 1.0 in DMSO); λ of a 0.00098% s L JD max solution in aqueous 0.1N NaOH is 258 nm (E + = 590); nujol infrared spectrum exhibits peaks at 3350, 1790 and 1722 cm cm *; NMR peaks (DMSO-dg) include χ 4.31 (d, 3 Hz), 4.99 (s), 5.23 (t, 7 Hz), 5.97 (d , 7 Hz), 6.37 and 6.93 (dd, 3 and 17 Hz; d, 17 Hz); peaks centered at χ 8.82, 8.00 and 5.95 showed that the sample contained about 0.5 These values indicate that the sample contained at least 85% by weight of clavulanic acid.

Anvendelseseksempel DApplication Example D

Fremstilling af ammoniumsaltetPreparation of the ammonium salt

En kolonne på 240 ml af "Dowex" ®50W omdannedes til ammoniumformen ved behandling med ammoniumsulfat og vaskedes fri for sulfat med vand. 1,0 g af litiumsaltet af clavulansyre, fremstillet som i eksempel l(ii), opløstes i 15 ml vand og påførtes på kolonnen, og denne fremkaldtes med vand. Der blev udtaget fraktioner på 25 ml og de afprøvedes med hensyn til UV-absorption i 0,1N natriumhydroxyd. De aktive fraktioner (nr. 4-7) forenedes og inddampedes til næsten tørhed (2 ml) under nedsat tryk og der tilsattes 85 ml n-butanol. Blandingen 146764 25 destilleredes omhyggeligt ved 25°C under 0,1 mm Hg-tryk indtil der udfældedes et krystallinsk materiale. Ammoniumsaltet indhøstedes ved filtrering, vaskedes med ganske lidt ætanol og acetone og vaskedes til slut med diætylæter og tørredes ved 0,1 mm Hg i 6 timer hvorved der fremkom 0,54 g smudsighvide krystaller. = +60,1° (c = 0,39% i vand); λ (0,1N na- triumhydroxyd, 8,8 μg/ml) 258 nm (E^ : 745); IR-spektre i nujol omfatter toppe ved 3360, 1780, 1700 og 1580 cm 1; τ-værdi-er (5% D2O) indbefatter 4,27 (d, 3Hz), 5,08 (s), 5,09 (t, 7Hz), 5,84 (d, 7Hz), 6,43 (dd, 17Hz, 3Hz) og 6,89 (d, 17Hz).A 240 ml column of "Dowex" ® 50W was converted to the ammonium form by treatment with ammonium sulfate and washed free of sulfate with water. 1.0 g of the lithium salt of clavulanic acid, prepared as in Example 1 (ii), was dissolved in 15 ml of water and applied to the column and it was developed with water. 25 ml fractions were taken and tested for UV absorption in 0.1N sodium hydroxide. The active fractions (Nos. 4-7) were combined and evaporated to near dryness (2 ml) under reduced pressure and 85 ml of n-butanol was added. The mixture was carefully distilled at 25 ° C under 0.1 mm Hg pressure until a crystalline material precipitated. The ammonium salt was added by filtration, washed with very little ethanol and acetone and finally washed with diethyl ether and dried at 0.1 mm Hg for 6 hours to give 0.54 g of sooty white crystals. = + 60.1 ° (c = 0.39% in water); λ (0.1N sodium hydroxide, 8.8 µg / ml) 258 nm (E +: 745); Nujol IR spectra include peaks at 3360, 1780, 1700 and 1580 cm 1; τ values (5% D 2 O) include 4.27 (d, 3Hz), 5.08 (s), 5.09 (t, 7Hz), 5.84 (d, 7Hz), 6.43 (dd) , 17Hz, 3Hz) and 6.89 (d, 17Hz).

Beregnet for CgHgNO^NH^: C 44,4 H 5,6 N 13,0 Fundet: C 44,4 H 5,6 N 13,3%.Calcd for C 9 H 9 NO 3 NH 4: C 44.4 H 5.6 N 13.0 Found: C 44.4 H 5.6 N 13.3%.

Ved Karl Fischer analyse blev der konstateret spor af vand (0,6%).By Karl Fischer analysis traces of water (0.6%) were found.

Anvendelseseksempel EApplication Example E

Fremstilling af metylaminsaltetPreparation of the methylamine salt

En kolonne på 200 ml af "Amberlite"®IR-120 H+ omdannedes til metylammoniumformen ved behandling med 0,5M metyl-aminopløsning i vand. Den vaskedes til neutralitet med vand og der indførtes 3,0 g metylammoniumklorid i 10 ml vand. Kolonnen vaskedes fri for klorid med vand og var så parat til brug.A 200 ml column of "Amberlite" ® IR-120 H + was converted to the methyl ammonium form by treatment with 0.5M methylamine solution in water. It was washed to neutrality with water and 3.0 g of methylammonium chloride was introduced into 10 ml of water. The column was washed free of chloride with water and then ready for use.

1,50 g af litiumsaltet af clavulansyre, fremstillet som i eksempel l(ii), opløstes i 15 ml vand og indførtes på toppen af kolonnen. Kolonnen fremkaldtes i vand og der opsamledes fraktioner på 25 ml.1.50 g of the lithium salt of clavulanic acid, prepared as in Example 1 (ii), was dissolved in 15 ml of water and introduced at the top of the column. The column was developed in water and 25 ml fractions were collected.

Fraktioner nr. 3-7 forenedes (161 ml med vaskevæsker) og inddampedes ved 25°C/1,0 mm Hg til ca. 2 ml, hvorpå der tilsattes 200 ml n-butanol. Den klare opløsning inddampedes under lignende betingelser til 20 ml, hvorved krystallisation fandt sted. Krystallerne indhøstedes ved filtrering efter en time ved 2°C, de vaskedes med 2 x 15 ml diætylæter og tørredes i 3 timer ved 1 mm Hg til 1,2 g af metylaminsaltet som klynger 2 3 af hvide, langstrakte prismer. [a] = +56,1° (c = 0,23% i υ 1Fractions # 3-7 were combined (161 ml with washings) and evaporated at 25 ° C / 1.0 mm Hg to ca. 2 ml, then 200 ml of n-butanol were added. The clear solution was evaporated to 20 ml under similar conditions, thereby crystallizing. The crystals were harvested by filtration after one hour at 2 ° C, washed with 2 x 15 ml diethyl ether and dried for 3 hours at 1 mm Hg to 1.2 g of the methylamine salt as clusters 2 3 of white elongated prisms. [α] = + 56.1 ° (c = 0.23% in υ 1

vand); λ (0,1N natriumhydroxyd, 9,5 ug/ml) 260 nm (E, = max -Lwater); λ (0.1N sodium hydroxide, 9.5 µg / ml) 260 nm (E, = max -L

584); IR-spektret i nujol omfatter toppe ved 2500, 1790, 1692, 1632 og 1576 cm "S τ-værdier (8% D20) indbefatter 6,40 og 6,86 146764 26 (dd, 17Hzf 3Hz; d, 17Hz), 4,24 (d, 3Hz), 5,06 (t, 7Hz), 5,78 (d, 7Hz), 5,08 (s), 7,42 (s).584); The nujol IR spectrum includes peaks at 2500, 1790, 1692, 1632, and 1576 cm S S S τ values (8% D₂O) include 6.40 and 6.86 δ (dd, 17Hzf 3Hz; d, 17Hz), 4 , 24 (d, 3Hz), 5.06 (t, 7Hz), 5.78 (d, 7Hz), 5.08 (s), 7.42 (s).

Beregnet for CgH-^NjOg: c 47'° H 6,1 N 12,2 Fundet:. C 46,7 H 6,1 N 12,5%.Calculated for C CHH₂N₂O: c 47 ° H 6.1 N 12.2 Found:. C 46.7 H 6.1 N 12.5%.

Anvendelseseksempel FApplication Example F

Fremstilling af piperidinsaltetPreparation of the piperidine salt

En kolonne af ionbytterharpiks (200 ml, fra "Bio-Rad" Laboratories, AG 50W x 2, 100-200 mesh H+ formen) omdannedes til piperidiniuraformen med en opløsning af 75 ml piperidin i 1500 ml vand. Harpiksen vaskedes til neutralitet med vand og behandledes med 3 g piperidiniumklorid i 10 ml vand. Kolonnen vaskedes fri for klorid med vand og var parat til brug.A column of ion exchange resin (200 ml, from "Bio-Rad" Laboratories, AG 50W x 2, 100-200 mesh H + mold) was converted to the piperidine urea form with a solution of 75 ml piperidine in 1500 ml water. The resin was washed to neutrality with water and treated with 3 g of piperidinium chloride in 10 ml of water. The column was washed free of chloride with water and ready for use.

1,50 g af litiumclavulanat, fremstillet som i eksempel 1(ii), indførtes på toppen af kolonnen i 15 ml vand og kolonnen fremkaldtes i vand idet der blev udtaget 25 ml store fraktioner. Fraktionerne nr. 3-6 forenedes med vaskevæsker og udgjorde herved 172 ml.1.50 g of lithium clavulanate prepared as in Example 1 (ii) was introduced at the top of the column into 15 ml of water and the column was developed in water, taking 25 ml of large fractions. Fractions 3 to 6 were combined with washing liquids to make up 172 ml.

Opløsningen inddampedes til næsten tørhed ved 35°C/1,0 mm Hg og der tilsattes rent toluen. Den olieagtige suspension inddampedes til tørhed under nedsat tryk som ovenfor og det derved vundne krystallinske faste stof tritureredes med 90 ml ætylacetat. Det krystallinske piperidiniumsalt indhøstedes ved filtrering og vaskedes med 3 x 30 ml ætylacetat og resterende opløsningsmiddel fjernedes ved 0,1 mm Hg i løbet af 3 timer, 24 hvorved der fremkom 1,775 g svagt smudsighvide prismer. [a]D = +42,2° (c = 0,35% i vand); λ = 0,1N natriumhydroxyd, 10 μg/ml) 259,5 nm (E^ = 474); IR-spektrum i nujol indbefatter toppe ved 3380, 2540, 1782, 1682 og 1608 cm t-værdier (8% D20) indbefatter 6,90 (d, 17Hz), 6,44 (dd, 3Hz og 17Hz); 4,28 (d, 3Hz), 5,08 (s), 5,84 (d, 8Hz), 5,08 (t, 7Hz), 6,84 (kompleks multiplet), 8,0-8,5 (kompleks multiplet).The solution was evaporated to near dryness at 35 ° C / 1.0 mm Hg and pure toluene was added. The oily suspension was evaporated to dryness under reduced pressure as above and the crystalline solid thus obtained was triturated with 90 ml of ethyl acetate. The crystalline piperidinium salt was added by filtration and washed with 3 x 30 ml of ethyl acetate and residual solvent removed at 0.1 mm Hg over 3 hours, yielding 1.775 g of slightly sooty white prisms. [α] D = + 42.2 ° (c = 0.35% in water); λ = 0.1 N sodium hydroxide, 10 µg / ml) 259.5 nm (E + = 474); Nujol IR spectrum includes peaks at 3380, 2540, 1782, 1682 and 1608 cm t-values (8% D 2 O) include 6.90 (d, 17Hz), 6.44 (dd, 3Hz and 17Hz); 4.28 (d, 3Hz), 5.08 (s), 5.84 (d, 8Hz), 5.08 (t, 7Hz), 6.84 (complex multiplet), 8.0-8.5 ( complex multiplied).

Beregnet for C^2H20N2°5'®'^H20: C ^,9 H 7,4 N 9,5Calculated for C₂ ^H₂NN₂ ° 5'® H₂O: C C, 9H 7.4 N 9.5

Fundet: C 52,8 H7,2 N 9,3%.Found: C 52.8 H7.2 N 9.3%.

2727

14676A14676A

Anvendelseseksempel GApplication Example G

Fremstilling af triætylaminsaltetPreparation of the triethylamine salt

En kolonne af ionbytterharpiks ("Bio-Rad" 50W) som beskrevet i anvendelseseksempel F omdannedes til triætylammonium-formen med en opløsning af triætylamin i vand (0,5N, 1,5 liter) og vaskedes til neutralitet med vand. En opløsning af 3 g tri-ætylammoniumklorid i 15 ml vand indførtes på kolonnen, kolonnen vaskedes fri for klorid med vand og var klar til brug.A column of ion exchange resin ("Bio-Rad" 50W) as described in Application Example F was converted to the triethylammonium form with a solution of triethylamine in water (0.5N, 1.5 liters) and washed to neutral with water. A solution of 3 g of triethylammonium chloride in 15 ml of water was introduced into the column, the column was washed free of chloride with water and ready for use.

Derefter indførtes 1,5 g litiumclavulanat, fremstillet som i eksempel l(ii), på toppen af kolonnen i 15 ml vand og kolonnen fremkaldtes i vand, idet der blev udtaget 25 ml store fraktioner. Fraktionerne 4-9 blev forenet og udgjorde sammen med vaskevæskerne 175 ml.Then 1.5 g of lithium clavulanate, prepared as in Example 1 (ii), was added to the top of the column in 15 ml of water and the column was developed in water, taking 25 ml of large fractions. Fractions 4-9 were combined and together with the washing liquids amounted to 175 ml.

Opløsningen indkogtes under nedsat tryk (35°C/1,0 mm Hg) og gav en olie som indkogtes tre gange med toluen under de samme betingelser. De resulterende krystaller blev brudt op under 50 ml ætylacetat, indhøstedes ved filtrering, vaskedes med to gange 20 ml diætylæter og befriedes for tilbageværende opløsningsmiddel i en desikkator i 3 timer ved 0,1 mm Hg, hvorved der vandtes 1,588 g af triætylammoniumsaltet som svagt 25 o smudsighvide prismer, [a] = +44,3 (c = 0,22% i vand); λ d ^ max (0,IN natriumhydroxyd, 9,7 pg/ml) 258 nm (E^ = 485); IR-spek-trum i nujol indbefatter toppe ved 3250, 2080, 1784, 1700 og 1640 cm '''; τ-værdier (10% D20) indbefatter 6,41 og 6,87 (dd, 17Hz, 3Hz; d, 17Hz), 4,26 (d, 3Hz), 5,07 (t, 7Hz), 5,78 (d, 7Hz), 5,07 (s), 8,74 (t, 7Hz) og 6,78 (q, 7Hz).The solution was boiled under reduced pressure (35 ° C / 1.0 mm Hg) to give an oil which was boiled three times with toluene under the same conditions. The resulting crystals were broken up under 50 ml of ethyl acetate, filtered, washed twice with 20 ml of diethyl ether and freed of residual solvent in a desiccator for 3 hours at 0.1 mm Hg, yielding 1.588 g of the triethyl ammonium salt as weak. o dirty white prisms, [α] = +44.3 (c = 0.22% in water); λ d 2 max (0.1N sodium hydroxide, 9.7 µg / ml) 258 nm (E + = 485); Nujol IR spectrum includes peaks at 3250, 2080, 1784, 1700 and 1640 cm 2; τ values (10% D 2 O) include 6.41 and 6.87 (dd, 17Hz, 3Hz; d, 17Hz), 4.26 (d, 3Hz), 5.07 (t, 7Hz), 5.78 ( d, 7Hz), 5.07 (s), 8.74 (t, 7Hz) and 6.78 (q, 7Hz).

Beregnet for c14H24N205,1/4H20: C 55,2 H8,0 N9,2 Fundet: C 55,2 H 7,9 N 9,2%.Calcd. For C 14 H 24 N 2 O 5,1 / 4H 2 O: C 55.2 H8.0 N9.2 Found: C 55.2 H 7.9 N 9.2%.

DK207378A 1975-02-07 1978-05-11 ALKALIMETAL CLAVULANATE USED AS INTERMEDIATE IN THE PREPARATION OF CLAVULANIC ACID OR OTHER DERIVATIVES THEREOF, AND MIXTURE USED FOR THE PREPARATION OF CLAVULANIC ACID OR DERIVATIVES THEREOF DK146764C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK207378A DK146764C (en) 1975-02-07 1978-05-11 ALKALIMETAL CLAVULANATE USED AS INTERMEDIATE IN THE PREPARATION OF CLAVULANIC ACID OR OTHER DERIVATIVES THEREOF, AND MIXTURE USED FOR THE PREPARATION OF CLAVULANIC ACID OR DERIVATIVES THEREOF

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
GB540975 1975-02-07
GB540975A GB1543563A (en) 1975-02-07 1975-02-07 Beta-lactam antibiotic in purified form
GB1107675 1975-03-17
GB1107675 1975-03-17
DK49876AA DK141099B (en) 1975-02-07 1976-02-06 Process for purifying clavulanic acid or a salt thereof with a base.
DK49876 1976-02-06
DK207378 1978-05-11
DK207378A DK146764C (en) 1975-02-07 1978-05-11 ALKALIMETAL CLAVULANATE USED AS INTERMEDIATE IN THE PREPARATION OF CLAVULANIC ACID OR OTHER DERIVATIVES THEREOF, AND MIXTURE USED FOR THE PREPARATION OF CLAVULANIC ACID OR DERIVATIVES THEREOF

Publications (3)

Publication Number Publication Date
DK207378A DK207378A (en) 1978-05-11
DK146764B true DK146764B (en) 1983-12-27
DK146764C DK146764C (en) 1984-06-04

Family

ID=27439327

Family Applications (1)

Application Number Title Priority Date Filing Date
DK207378A DK146764C (en) 1975-02-07 1978-05-11 ALKALIMETAL CLAVULANATE USED AS INTERMEDIATE IN THE PREPARATION OF CLAVULANIC ACID OR OTHER DERIVATIVES THEREOF, AND MIXTURE USED FOR THE PREPARATION OF CLAVULANIC ACID OR DERIVATIVES THEREOF

Country Status (1)

Country Link
DK (1) DK146764C (en)

Also Published As

Publication number Publication date
DK146764C (en) 1984-06-04
DK207378A (en) 1978-05-11

Similar Documents

Publication Publication Date Title
IE50047B1 (en) Amine salt of clavulanic acid,its preparations and use
AU655718B2 (en) Novel alkylenediammonium diclavulanate derivatives, a process for the preparation thereof as well as the use thereof
FI63580C (en) FOERFARANDE FOER RENING AV FOERORENAD KLAVULANSYRA OCH FOER FRMSTAELLNING AV RENA KLAVULANATSALTER
US4144242A (en) Process for the purification of clavulanic acid
EP0005614B1 (en) Lithium pseudomonate, process for its isolation and its hydrolysis
NO763474L (en)
US3436310A (en) Hydrolysis of the acetoxymethyl group at the 3-position of the cephalosporin nucleus
JP2002535996A (en) Method for isolating pseudomonas acid A from culture solution containing pseudomonas acid group
CA1058540A (en) Antibiotic mm 17880 from streptomyces olivaceus
JPH0115491B2 (en)
JPS6366200B2 (en)
US4277601A (en) Preparation of sodium cefuroxime
US2885433A (en) O-carbamyl-d-serine
DK146764B (en) ALKALIMETAL CLAVULANATE USED AS INTERMEDIATE IN THE PREPARATION OF CLAVULANIC ACID OR OTHER DERIVATIVES THEREOF, AND MIXTURE USED FOR THE PREPARATION OF CLAVULANIC ACID OR DERIVATIVES THEREOF
EP0028511B1 (en) Cephalosporins, processes for their preparation and microorganisms capable of their production
US4283492A (en) Production of antibiotics WS-3442 A, B, C, D and E, and their acyl derivatives
FI64600C (en) LITHUANIAN CLAVULANATE FOR OIL DEVELOPMENT OF RAVING AV KLAVULANSYRA OCH DESS DERIVAT
JP2001521393A (en) Method for isolating pharmaceutically acceptable alkali metal salts of clavulanic acid
KR800001241B1 (en) Process for the purification of clavulanic acid
SU582772A3 (en) Method of preparing deacetoxycephalosporinc
RU2644674C1 (en) Method for obtaining 3,3&#39;,3&#39;&#39;,3&#39;&#39;&#39;-(3,8,13,17-tetramethylporphyrin-2,7,12,18-tetrayl) tetrapropionic acid (coproporphyrin)
SU440847A1 (en) METHOD OF OBTAINING ANTIBIOTICS
JPH0123473B2 (en)
CA1055415A (en) Enzymatic production of 7-(3-alkanesulfonamido phenyl-d-glycinamido)-3-desacetoxy cephalosporanic acid
JPS6320440B2 (en)

Legal Events

Date Code Title Description
PBP Patent lapsed