DK146385B - PROCEDURE FOR BIOLOGICAL CLEANING OF WASTE WATER IN A 2-STEP CLEANING PROCESS - Google Patents

PROCEDURE FOR BIOLOGICAL CLEANING OF WASTE WATER IN A 2-STEP CLEANING PROCESS Download PDF

Info

Publication number
DK146385B
DK146385B DK367075AA DK367075A DK146385B DK 146385 B DK146385 B DK 146385B DK 367075A A DK367075A A DK 367075AA DK 367075 A DK367075 A DK 367075A DK 146385 B DK146385 B DK 146385B
Authority
DK
Denmark
Prior art keywords
air
droplet
exhaust air
oxygen
waste water
Prior art date
Application number
DK367075AA
Other languages
Danish (da)
Other versions
DK146385C (en
DK367075A (en
Inventor
Joerg Lohmann
Karl Eisenaecher
Original Assignee
Uhde Gmbh Friedrich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19742439013 external-priority patent/DE2439013C3/en
Application filed by Uhde Gmbh Friedrich filed Critical Uhde Gmbh Friedrich
Publication of DK367075A publication Critical patent/DK367075A/en
Publication of DK146385B publication Critical patent/DK146385B/en
Application granted granted Critical
Publication of DK146385C publication Critical patent/DK146385C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/26Activated sludge processes using pure oxygen or oxygen-rich gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)

Description

i o 146385in o 146385

Opfindelsen angår en fremgangsmåde til biologisk rensning af spildevand i en totrinsrenseproces ved hjælp af kontakt med luft, hvorved spildevandet i det første procestrin luftes i et dråbelegemetårn og i det andet proces-5 trin luftes i en luftningstank.The invention relates to a method for biological purification of wastewater in a two-stage purification process by contact with air, whereby the waste water in the first process stage is aerated in a droplet tower and in the second process step aerated in an aeration tank.

Den biologiske rensning af spildevand gennemføres under anvendelse af luft, hvor oxygenet tjener som reaktionskomponent. Da luftens oxygenindhold ved rensningsprocessen ikke forbruges fuldstændigt, idet al nitrogen med 10 restindhold af O2 atter ledes tilbage til atmosfæren, hvorved denne afgangsluft tjener som bæregas for flygtige stoffer, f.eks. stoffer med intensiv lugt, svarende til de flygtige stoffers partialtryk, er det nødvendigt at reducere afgangsluftmængden væsentligt.The biological purification of wastewater is carried out using air in which the oxygen serves as a reaction component. As the oxygen content of the air during the purification process is not completely consumed, all nitrogen with 10 residues of O 2 is again returned to the atmosphere, whereby this exhaust air serves as a carrier gas for volatile substances, e.g. For substances with intense odor, corresponding to the partial pressures of the volatile substances, it is necessary to significantly reduce the exhaust air volume.

15 Det er kendt at rense afgangsluften fra dråbele- gemetårnet og fra luftningstanken katalytisk eller termisk eller ved absorption eller kemosorption. Det er endvidere kendt, at afgangsgasrumfanget og dermed emissionsbelastningen ved biologiske klaringsanlæg kan formindskes væ-20 sentligt ved anvendelse af ren eller delvis ren oxygen.It is known to purify the exhaust air from the droplet storage tower and from the aeration tank catalytically or thermally or by absorption or chemosorption. Furthermore, it is known that the exhaust gas volume and hence the emission load at biological clarification plants can be substantially reduced by using pure or partially pure oxygen.

Endvidere kendes bio- eller jordfiltre, ved hvilke de nedbrydelige stoffer fjernes fra afgangsluften ved biologiske processer.Furthermore, bio or soil filters are known in which the degradable substances are removed from the exhaust air by biological processes.

Det er imidlertid en ulempe ved de kendte frem-25 gangsmåder, at der skal installeres supplerende og omfangs rigt rensningsapparatur for at rense afgangsluften fra drå-belegemetårnet og luftningstanken i nødvendig grad for stoffer med intensiv lugt. Skal luftningen foretages med ren eller delvis ren oxygen, skal der forefindes separate 30 anlæg til frembringelse af dette oxygen eller den oxygen-berigede luft.However, it is a disadvantage of the known methods that additional and large-scale purification equipment must be installed to purify the exhaust air from the droplet tower and the aeration tank to the extent necessary for substances with intense odor. If the aeration is to be carried out with pure or partially pure oxygen, separate systems must be provided to produce this oxygen or the oxygen-enriched air.

Det er formålet med opfindelsen at foretage spildevandsrensningen med luft alene og helt eller i det mindste delvis at kunne undlade trin til efterrensning af 35 afgangsluften.SUMMARY OF THE INVENTION It is an object of the invention to carry out waste water purification with air alone and in whole or at least partially to be able to post-purify the exhaust air.

Dette opnås ifølge opfindelsen ved en fremgangsmåde til biologisk rensning af spildevand i en totrinsrense- 2 U«3d5This is achieved according to the invention by a method for biological purification of wastewater in a two-stage 2 U 3

OISLAND

proces ved kontakt med luft, hvorved spildevandet i det første procestrin luftes i et dråbelegemetårn og i det andet procestrin luftes i en luftningstank, hvilken fremgangsmåde er ejendommelig ved, at luftningen i første pro-5 cestrin foretages med afgangsluften fra det andet procestrin, at en del af afgangsluften fra det første procestrin tilblandes afgangsluften fra det andet procestrin, og at luftningen gennemføres i et tårn med dråbelegemer, som har et stort hulrumsvolumen.process of contact with air, whereby the waste water in the first process stage is aerated in a droplet tower and in the second process stage is aerated in an aeration tank, which is characterized in that the aeration in the first process stage is carried out with the exhaust air from the second process stage, that a part of the exhaust air from the first process step, the exhaust air from the second process step is mixed and the aeration is carried out in a tower with droplet bodies which have a large void volume.

10 Det er væsentligt ved den foreliggende opfindel se og fordelagtigt, at der sker en væsentlig formindskelse af mængden af afgangsluft ved fremgangsmåden ifølge opfindelsen. Derved sker samtidig en formindskelse af den udledte mængde af lugtaktive stoffer i afgangsluftmængden, 15 da transporten af lugtaktive stoffer i afgangsluften er proportional med afgangsluftrumfanget og summen af de flygtige komponenters partialtryk. Foretages en reduktion af gasrumfanget reduceres transporten med afgangsluften direkte proportionalt med rumfanget, da de flygtige kompo-20 nenters partialtryk kun kan stige op til det tilsvarende damptryk. Restoxygenindholdet i afgangsluften fra det andet procestrin står til rådighed for den videre nedbrydning i det første trin og reduceres yderligere her.It is significant and advantageous in the present invention to substantially reduce the amount of exhaust air in the process of the invention. At the same time, a reduction in the amount of odorous substances emitted in the exhaust air volume occurs, since the transport of odorous substances in the exhaust air is proportional to the exhaust air volume and the sum of the partial pressures of the volatile components. If the volume of gas is reduced, the transport with the exhaust air is reduced directly in proportion to the volume, since the partial pressure of the volatile components can only rise to the corresponding vapor pressure. The residual oxygen content in the exhaust air from the second process stage is available for the further decomposition in the first stage and is further reduced here.

Endvidere er det væsentligt ved opfindelsen, at 25 luften føres i modstrøm til de to spildevandsrensningstrin, hvorved oxygenformindskelsen i det andet trin, dvs. i luftningstanken i begyndelsen er ringe, og denne formindskelse ér uden indflydelse på nedbrydningsgraden med hensyn til O£ i det første trin, i dråbelegemetårnet. Endvidere er det 30 væsentligt ved opfindelsen, at dråbelegemerne med deres store hulrumsvolumen næsten ikke forårsager tryktab og derved tillader en kredsløbsføring med stor formindskelse af 0^-indholdet.Furthermore, it is essential in the invention that the air be directed in a countercurrent to the two wastewater treatment stages, whereby the oxygen reduction in the second stage, i.e. in the aeration tank at the beginning are low, and this decrease is without influence on the degree of degradation with respect to O £ in the first step, in the droplet body tower. Furthermore, it is essential in the invention that the droplet bodies, with their large void volume, cause almost no pressure loss and thereby allow a circulation with a large reduction of the O₂ content.

Til belysning af fremgangsmåden ifølge opfindelsen 35 foretages i det følgende en sammenligningsopstilling for en totrinsspildevandsrensningsfremgangsmåde med dråbelegemer og luftningstank, ved hvilken begge luftes adskilt med luft, o 3 U&385 og for en spildevandsrensning foretaget i overensstemmelse med fremgangsmåden ifølge opfindelsen. Sammenligningsberegningen foretages hensigtsmæssigt på en BSB-belastning, der skal nedbrydes, på Fr = 1 t BSB pr. dag = 41,6 kg/h. Ved 5 BSB menes biologisk oxygenforbrug.In order to illustrate the process of the invention 35, a comparison is made in the following for a two-stage wastewater treatment process with droplet bodies and aeration tank, both of which are separated by air, and for a wastewater treatment according to the process according to the invention. The comparison calculation is conveniently done on a BSB load to be broken down at Fr = 1 t BSB per day. day = 41.6 kg / h. By 5 BSB is meant biological oxygen consumption.

Eksempel 1Example 1

For det første procestrin, dråbelegemetårnet, 0 gælder følgende empiriske værdier:For the first process step, the droplet tower, 0, the following empirical values apply:

Den antagne nedbrydningsgrad i det første procestrin ^ = 50% opnås ved en rumbelastning på BR = 4,0 kg/m3.dag. Det nødvendige dråbelegemerumfang udgør 3The assumed degradation rate in the first process step ^ = 50% is obtained at a room load of BR = 4.0 kg / m3 day. The required droplet body volume is 3

VolTK = 250 m . Lægges en dråbelegemehøjde på H = 4,0 m til grund bliver den nødvendige tværsnitsflade for dråbe- 15 2 legemerne på F1 = 62,5 m . Ved den på sædvanlig måde ^ 3 2 ansatte luftopstigningshastighed på VT = 130 m /m .h = li 3,6 cm/sek. i et dråbelegeme fås dermed en over tværsnittet strømmende luftmængde på 20 VA TK= 130 m3/m2*h x 62,5 m2 = 8125 m3/hVolTK = 250 m. If a drop body height of H = 4.0 m is assumed, the necessary cross-sectional area for the drop bodies becomes F1 = 62.5 m. At the usual operating rate of 3 3 2 air rise velocity of VT = 130 m / m. H = li 3.6 cm / sec. in a droplet body there is thus obtained an air flow over the cross-section of 20 VA TK = 130 m3 / m2 * h x 62.5 m2 = 8125 m3 / h

Der fjernes kun ca. 1500 m3/h heraf, medens resten recirkuleres. Vz Bel = den nødvendige luftmængde, som skal tilføres VA Bel = VZ Bel " oxy9enf°r^ru9 i luftningstank.Only approx. 1500 m3 / h thereof, while the remainder is recycled. Vz Bel = the required amount of air to be supplied VA Bel = VZ Bel "oxy9enf ° r ^ ru9 in aeration tank.

2g Mængden af afgangsluft i det andet procestrin, luftningstanken, beregnes ud fra det nødvendige oxygenbehov for den biologiske nedbrydning og luftningssystemets udnyttelsesgrad. Ved en omregningsfaktor BSB til oxygen, OC-load, på 1,0 kg 02/kg BSB udgør oxygenbehovet 30 pr. t BSB - totalnedbrydning pr. dag, under hensyntagen til nedbrydningen i det første procestrin °V gel = (Fr -^TK x Fr) x OC-Load 0VBel = (1000 kg/dag - 0,5 x 1000 kg/dag) x 1,0 = 35 500 kg/dag = 20,8 kg/h2g The amount of exhaust air in the second process step, the aeration tank, is calculated based on the necessary oxygen demand for the biodegradation and the utilization rate of the aeration system. At a conversion factor BSB for oxygen, OC load of 1.0 kg 02 / kg BSB, the oxygen demand is 30 per t BSB - total decomposition per day, taking into account the decomposition in the first process step ° V gel = (Fr - ^ TK x Fr) x OC-Load 0VBel = (1000 kg / day - 0.5 x 1000 kg / day) x 1.0 = 35 500 kg / day = 20.8 kg / h

Ved en antaget udnyttelsesgrad for luftningen med trykluft på maksimalt 20% af den indførte oxygenmængde udgør den luftmængde, der i det mindste skal tilføres 3 „ _ 500 kg m 1 kg _ QQOO 3,, 3 ,, VZ,Bel 0,28 dag kg 0/20 kg 8928 /d g " 372 m /h o 4 146385 under antagelse af en gennemsnitlig oxygenkoncentration 3 på 0,28 kg/m i tilgangsluften, bliver afgangsluftmængden fra luftningstrinnet ' vA,Bel 372 ΙΤίΓΈ^Γ ‘ 357'4 m3/h 5At an assumed rate of utilization of the aeration with compressed air of not more than 20% of the introduced oxygen amount, the amount of air to be supplied must at least be 3 ° _ 500 kg m 1 kg _ QQOO 3 ,, 3 ,, VZ, Bel 0.28 day kg 0/20 kg 8928 / dg "372 m / ho 4 146385 assuming an average oxygen concentration 3 of 0.28 kg / m inlet air, the exhaust air flow rate from the aeration stage becomes" vA, Bel 372 ΙΤίΓΈ ^ Γ '357'4 m3 / h 5

Dermed udgør afgangsluften fra 1. og 2. procestrin tilsammen 1500 + 357,4 m?/h = 1857,4 m3/h pr. t BSB-omsætning pr. dag.Thus, the exhaust air from the 1st and 2nd process stages together amounts to 1500 + 357.4 m / h = 1857.4 m3 / h per day. t BSB turnover per day.

Eksempel 2 10 Por fremgangsmåden ifølge opfindelsen gælder følgende beregning:Example 2 The method according to the invention applies to the following calculation:

Oxygenkoncentrationen i afgangsgassen er i det andet trin ved en antaget udnyttelsesgrad på 20% aftaget fra 21 rumfangsprocent til 21 - (21 x 0,2) = 16,8 παπί 5 fangsprocent og er stadig tilstrækkelig høj for den biologiske nedbrydning, således at afgangsgassen kan anvendes til luftning i det første procestrin. Tages der hensyn til oxygenforbruget i det andet trin på OV = 500 kg/ dag svarende til 350 m3/dag = 14,6 m3/h, når der til grund 3 20 lægges en OC-Load på 1,0, udgør afgangsgasrumfanget 372 m /h - 14,6 m3/h - 357,4 m3/h.In the second stage, the oxygen concentration in the exhaust gas, at an assumed utilization rate of 20%, decreases from 21% to 21 - (21 x 0.2) = 16.8 παπί 5% and is still sufficiently high for the biodegradation, so that the exhaust gas can is used for aeration in the first process step. Taking into account the oxygen consumption in the second stage of OV = 500 kg / day corresponding to 350 m3 / day = 14.6 m3 / h, assuming an OC-Load of 1.0, the exhaust gas volume is 372 m / h - 14.6 m3 / h - 357.4 m3 / h.

Ved en sammenligning af opstillingerne fås følgende resultat: Mængden af afgangsgas ved de to fremgangsmåder 25 udgør da pr. t BSB-omsætning ifølge eks. nr. 1 Vafgangsgas - 1857,4 m3/h ifølge eks. nr. 2 Vafgangsgas = 1500 m3/h hvilket vil sige, at der ved fremgangsmåden ifølge opfin-3Q delsen kan foretages en formindskelse af afgangsgassen . med 1857,4 - 1500 1857,4 ~ 19,4% 35 o 5 146386By comparing the arrangements the following result is obtained: The amount of exhaust gas in the two processes 25 is then per t BSB turnover according to Example 1 Waste gas - 1857.4 m3 / h according to Example 2 Waste gas = 1500 m3 / h, which means that the process gas according to the invention can reduce the exhaust gas. with 1857.4 - 1500 1857.4 ~ 19.4% 35 o 5 146386

Fremgangsmåden ifølge opfindelsen belyses nærmere i det følgende under henvisning til tegningen, der illustrerer en udførelsesform for fremgangsmåden ifølge opfindelsen.The method according to the invention is illustrated in more detail below with reference to the drawing which illustrates an embodiment of the method according to the invention.

5 Råspildevandet føres over et fordelerorgan 1 til dråbelegemer 2 i et dråbelegemetårn 3 og risler ned gennem dette. Den i dråbelegemerne opstigende luft kommer i intim kontakt med spildevandet, hvorved luftens oxygen virker som reaktionskomponent. Det i dette første procestrin forren-10 sede spildevand samles i den underste del af dråbelegeme-tårnet 3 og føres gennem en ledning 4 til en luftningstank 5. I luftningstanken 5 foregår f.eks. en luftning med små luftblærer ved hjælp af trykluft, der føres fra et blæseværk 6 over et fordelersystem 7 ind i luftningstan-15 ken. Luftningstanken er lukket foroven, dvs. at den afgående luft med det formindskede oxygenindhold opfanges, og denne luft føres over en ledning 8 ind i den nedre del af dråbelegemetårnet 3, hvorfra luften strømmer ensartet opefter og forlader dråbelegemetårnet 3 gennem en afgangs-20 luftstuds 9.The raw wastewater is passed over a distributor means 1 to droplet bodies 2 in a droplet body tower 3 and sprinkles down through it. The air rising in the droplet bodies comes into intimate contact with the wastewater, whereby the oxygen of the air acts as a reaction component. The wastewater contaminated in this first process step is collected in the lower part of the droplet tower 3 and is passed through a conduit 4 to an aeration tank 5. In the aeration tank 5, for example, a. a small air bladder aeration by means of compressed air which is fed from a blower 6 over a distributor system 7 into the aeration tank. The aeration tank is closed at the top, ie. that the exhaust air with the reduced oxygen content is trapped and this air is passed over a conduit 8 into the lower part of the droplet tower 3, from which the air flows uniformly upwards, leaving the droplet tower 3 through an exhaust air outlet 9.

En del af afgangsluften føres i kredsløb over en kredsløbsledning 10 og blæseapparatet 11.Part of the exhaust air is circulated over a circuit line 10 and the blower 11.

DK367075A 1974-08-14 1975-08-13 PROCEDURE FOR BIOLOGICAL CLEANING OF WASTE WATER IN A 2-STEP CLEANING PROCESS DK146385C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2439013 1974-08-14
DE19742439013 DE2439013C3 (en) 1974-08-14 Two-stage process for the biological treatment of wastewater

Publications (3)

Publication Number Publication Date
DK367075A DK367075A (en) 1976-02-15
DK146385B true DK146385B (en) 1983-09-26
DK146385C DK146385C (en) 1984-03-05

Family

ID=5923187

Family Applications (1)

Application Number Title Priority Date Filing Date
DK367075A DK146385C (en) 1974-08-14 1975-08-13 PROCEDURE FOR BIOLOGICAL CLEANING OF WASTE WATER IN A 2-STEP CLEANING PROCESS

Country Status (11)

Country Link
JP (1) JPS5185270A (en)
AT (1) AT337110B (en)
BE (1) BE832467A (en)
CH (1) CH596098A5 (en)
DK (1) DK146385C (en)
FR (1) FR2281901A1 (en)
GB (1) GB1496178A (en)
IT (1) IT1041828B (en)
NL (1) NL7509641A (en)
NO (1) NO142517C (en)
SE (1) SE409851B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051711A1 (en) * 2005-10-28 2007-05-10 Lutz Dr.Rer.Nat. Haldenwang Method for microbiological aerobic wastewater treatment
JP6117049B2 (en) * 2013-08-08 2017-04-19 メタウォーター株式会社 Water treatment system

Also Published As

Publication number Publication date
CH596098A5 (en) 1978-02-28
IT1041828B (en) 1980-01-10
NL7509641A (en) 1976-02-17
ATA632375A (en) 1976-09-15
DK146385C (en) 1984-03-05
NO142517C (en) 1980-09-03
JPS5185270A (en) 1976-07-26
DE2439013B2 (en) 1977-06-23
NO752831L (en) 1976-02-17
GB1496178A (en) 1977-12-30
FR2281901A1 (en) 1976-03-12
DK367075A (en) 1976-02-15
DE2439013A1 (en) 1976-02-26
FR2281901B1 (en) 1979-01-05
AT337110B (en) 1977-06-10
BE832467A (en) 1975-12-01
SE7509080L (en) 1976-02-16
NO142517B (en) 1980-05-27
SE409851B (en) 1979-09-10

Similar Documents

Publication Publication Date Title
CA1296163C (en) Method and apparatus for the treatment of water, especially for the oxygen enrichment of water
CA2091315C (en) Process and apparatus for the purification of water
US4469599A (en) Apparatus and method for denitrifying water
US5275742A (en) Treatment of water
US5415786A (en) Process for treating water with ozone
US4029574A (en) Process and apparatus for the purification of organically contaminated sewage
US4729887A (en) Process and apparatus for degassing sulfur
EP0191985A2 (en) Treatment of gas mixtures
US6294373B1 (en) Method for biological cleaning of a contaminated gas flow
DK146385B (en) PROCEDURE FOR BIOLOGICAL CLEANING OF WASTE WATER IN A 2-STEP CLEANING PROCESS
JP3918349B2 (en) Biological treatment method and apparatus for nitrous oxide gas
EP0230739B1 (en) Sulphur trioxide absorption apparatus and process
JP2012148217A (en) Biological treatment method of wastewater, and wastewater treatment apparatus
US3923965A (en) Process for eliminating waste liquors accumulated in the desulfurization of coke oven gas
EP0193677A2 (en) Treatment of gas mixtures
WO2008049613A1 (en) Process for the biological removal of hydrogen sulphide from gases, in particular biogas
US6312649B2 (en) Bio-tower
US3909409A (en) Recovery system for oxygen from waste water oxygenation
JP3510539B2 (en) Odor treatment method and system for composting equipment
DE3134539C2 (en) Process for the biological purification of waste water with activated sludge
DE2439013C3 (en) Two-stage process for the biological treatment of wastewater
JPH01275402A (en) Oxygen recycling ozonizer system
CN115196842B (en) Ozone oxidation-aeration biological filter tank water treatment system and sewage treatment method
JPH09290287A (en) Odor suppressing type active sludge treating device
JPH02211290A (en) Ozonizing purification system for liquid