DK143064B - PROCEDURE FOR THE REMOVAL OF ORGANIC POLLUTIONS FROM INDUSTRIAL WATER - Google Patents

PROCEDURE FOR THE REMOVAL OF ORGANIC POLLUTIONS FROM INDUSTRIAL WATER Download PDF

Info

Publication number
DK143064B
DK143064B DK358573AA DK358573A DK143064B DK 143064 B DK143064 B DK 143064B DK 358573A A DK358573A A DK 358573AA DK 358573 A DK358573 A DK 358573A DK 143064 B DK143064 B DK 143064B
Authority
DK
Denmark
Prior art keywords
oxygen
wastewater
approx
cod
amount
Prior art date
Application number
DK358573AA
Other languages
Danish (da)
Other versions
DK143064C (en
Inventor
R V Trense
A Clamen
J M Fernbacher
Original Assignee
Exxon Research Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research Engineering Co filed Critical Exxon Research Engineering Co
Publication of DK143064B publication Critical patent/DK143064B/en
Application granted granted Critical
Publication of DK143064C publication Critical patent/DK143064C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Water Treatment By Sorption (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)

Description

VRbl/ (11) FREMLÆGGELSESSKRIFT 1^306*4· ---- DANMARK wmt.a> o 02 f o/oo • (21) Ansøgning nr. 5585/75 (22) Indleveret døn 28. jun. 1975 (24) Løbedag 28. jun. 1975 (44) Ansøgningen fremlagt og fremleeggelsesskriftet offentliggjort den 23* Π1&Γ. 1981VRbl / (11) PUBLICATION WRITING 1 ^ 306 * 4 · ---- DENMARK wmt.a> o 02 f o / oo • (21) Application No. 5585/75 (22) Filed on 28 Jun. 1975 (24) Race day 28 Jun. 1975 (44) The application presented and the petition published on 23 * Π1 & Γ. 1981

DIREKTORATET FORDIRECTORATE OF

PATENT- OG VAREMÆRKEVÆSENET (3°) Pr'°ntet begæret fra denPATENT AND TRADE MARKET (3 °) As requested by the

28. jun. 1972, 267231, USJune 28 1972, 267231, US

(71) ESSO RESEARCH AND ENGINEERING COMPANY, Linden, New Jersey, US.(71) ESSO RESEARCH AND ENGINEERING COMPANY, Linden, New Jersey, US.

(72) Opfinder: Ronald Victor Trense, 66 Clive Street, Metuchen, New Jersey, US: Allen Clamen, 131 CoTtage Place, Westfield, New Jersey, US: John Matthew Ferrib acher, 1701 Lobdell Avenue, Baton Rouge, Louisiana, US* (74) Fuldmægtig under sagens behandling:(72) Inventor: Ronald Victor Trense, 66 Clive Street, Metuchen, New Jersey, US: Allen Clamen, 131 CoTtage Place, Westfield, New Jersey, US: John Matthew Ferrib, 1701 Lobdell Avenue, Baton Rouge, Louisiana, US * (74) Plenipotentiary in the proceedings:

Ingeniørfirmaet Lehmann & Ree. _____ (54) Fremgangsmåde til fjernelse af organiske forureninger fra industri* spildevand.The engineering firm Lehmann & Ree. _____ (54) Process for removing organic pollutants from industrial * wastewater.

Opfindelsen angår en fremgangsmåde til fjernelse af suspenderede og opløste organiske forureninger fra industrispildevand, hvorved spildevandet forbehandles for at fjerne suspenderede forureninger derfra og derefter ledes gennem et lag af aktiveret kul for at fjerne opløste organiske forureninger, idet gennemledningen gennem laget af aktiveret kul, hvis det findes ønskeligt, periodevis afbrydes af ef-terskylninger af kullaget ved at lede vand op gennem laget med tilstrækkelig 3tor hastighed til at formindske den mængde biologisk vækst, der er akkumuleret på det aktive kul.The invention relates to a method for removing suspended and dissolved organic pollutants from industrial wastewater, whereby the wastewater is pre-treated to remove suspended contaminants therefrom and then passed through a layer of activated carbon to remove dissolved organic pollutants, passing through the layer of activated carbon if the found desirable, periodically interrupted by backwashing of the coal layer by passing water up through the layer at a sufficient rate of 3 to reduce the amount of biological growth accumulated on the activated carbon.

Den til fjernelse af urenheder fra spildevand mest almindelige metode består først af en primær bundfældning, hvori en stor del af de i spildevandet suspenderede, faste stoffer fjernes med eller 2 143064 uden kemiske flokkuleringsmidler. Et andet behandlingstrin, hvor de tilbageblevne, suspenderede faste stoffer, som sædvanligvis er til stede i en mængde fra ca. 50 til ea. 150 ppm,nedbrydes, kan derefter gennemføres. Andet behandlingstrin omfatter endvidere sædvanligvis kraftig beluftning for yderligere at nedbryde de opløste organiske materialer ved bakteriel virkning. Udgangsstrømmen fra dette biologiske behandlingstrin bundfældes for at fjerne bakterierne i form af slam. Slammet recirkuleres derefter til anden behandlingszone. Denne biologiske behandling af spildevand blev primært udviklet til behandling af toilet- eller husholdningsspildevand. Ved behandling af toileteller husholdningsspildevand, som typisk indeholder affaldsstoffer, som findes i en offentlig spildevandsledning, har processen almindeligvis virket ganske tilfredsstillende. I den seneste tid har industrianlæg imidlertid udledt deres spildevand i offentlige kloakeringsanlæg. Dette er resulteret i alvorlige vanskeligheder i betragtning af, at industrielt spildevand også indeholder en betydelig mængde ikke-bioned-brydelige forureninger. Disse ikke-bionedbrydelige forureninger giver ofte, sammen med andre toxiske materialer i industrielt spildevand, anledning til drab af bakterierne i de ovennævnte sekundære biologiske behandlingstrin, hvilket gør behandlingsanlægget uvirksomt i det tidsrum, hvor systemet renses for de toxiske materialer og ny bakterievækst etableres. Hertil kommer, at konventionel biologisk oxidation ikke har udvist evne til at danne udløbsstrømme af ensartet høj kvalitet ved behandling af spildevand fra råolieraffineringsprocesser og petrokemiske fabrikationsprocesser.The most common method for removing impurities from wastewater consists first of a primary precipitate in which a large part of the solids suspended in the wastewater is removed with or without chemical flocculants. Another treatment step, in which the residual suspended solids, which are usually present in an amount of approx. 50 to ea. 150 ppm, decomposed, can then be carried out. Furthermore, the second treatment step usually involves vigorous aeration to further degrade the dissolved organic materials by bacterial action. The starting stream from this biological treatment step is precipitated to remove the bacteria in the form of sludge. The sludge is then recycled to the second treatment zone. This biological treatment of wastewater was primarily developed for the treatment of toilet or household wastewater. In the treatment of toilet or household wastewater, which typically contains waste contained in a public wastewater pipeline, the process has generally seemed quite satisfactory. Recently, however, industrial plants have discharged their wastewater into public sewerage systems. This has resulted in serious difficulties given that industrial wastewater also contains a significant amount of non-biodegradable contaminants. These non-biodegradable contaminants often, together with other toxic materials in industrial wastewater, cause the bacteria to be killed in the aforementioned secondary biological treatment steps, rendering the treatment plant inactive during the period of purification of the toxic materials and new bacterial growth being established. In addition, conventional biological oxidation has not demonstrated the ability to generate uniformly high-quality effluent streams in the treatment of wastewater from crude oil refining processes and petrochemical manufacturing processes.

Ved bestemmelse af mængden af forureninger i en spildevandsstrøm er der udviklet visse anerkendte angivelser. Disse omfatter: Biokemisk oxygen krav (BOD), hvilket er mængden af oxygen i milligram pr. liter eller parts per million, som anvendes til biokemisk oxidation over en periode på 5 dage ved 20° af det i vandet indeholdte, organiske stof; og kemisk oxygen krav (COD), som er mængden af oxygen, udtrykt i milligram pr. liter, der er forbrugt under specifikke oxidationsbetingelser med stærke kemiske oxidationsmidler, såsom natrium chromit (se Method of Examination of Water and Waste Water, 12th Edition, Public Health Association, New York (1965), pp. 510-51**·) Almindeligvis er den akceptable minimalstandard udtrykt henholdsvis som BODej og COD, for en renset spildevandsstrøm, henholdsvis ca. 0 og ca. 100 mg pr. liter.In determining the amount of pollutants in a wastewater stream, certain recognized indications have been developed. These include: Biochemical oxygen requirement (BOD), which is the amount of oxygen in milligrams per minute. liters or parts per million used for biochemical oxidation over a period of 5 days at 20 ° of the organic matter contained in the water; and chemical oxygen requirement (COD), which is the amount of oxygen, expressed in milligrams per minute. liters consumed under specific oxidation conditions with strong chemical oxidizing agents such as sodium chromite (see Method of Examination of Water and Waste Water, 12th Edition, Public Health Association, New York (1965), pp. 510-51 ** ·) Generally is the acceptable minimum standard expressed as BODej and COD, respectively, for a purified wastewater stream, respectively. 0 and approx. 100 mg per liter.

3 14306/(3 14306 / (

Der er følgelig et behov for at behandle udgangsstrømmen fra sådanne biologiske sekundære behandlingsanlæg, ligesom der er behov for en forbedret fremgangsmåde til behandling af industrispil-devand med henblik på at fjerne bionedbrydelige såvel som ikke-bio-nedbrydelige forureninger, d.v.s. bio-resistente forureninger, fra dette vand for at undgå de ovennævnte uønskede resultater.Accordingly, there is a need to treat the output stream of such biological secondary treatment plants, as well as an improved method of treating industrial waste water to remove biodegradable as well as non-biodegradable contaminants, i.e. bio-resistant contaminants, from this water to avoid the above unwanted results.

Por at fjerne de organiske forureninger fra spildevand, specielt industrispildevand, er det i den senere tid blevet foreslået at behandle industrispildevandet såvel som udløbsstrømmen fra det sekundære biologiske behandlingstrin med aktiveret kul. F.eks. er der beskrevet fremgangsmåder i U.S. patentskrifterne nr. 3.244.621, 3.455.820 og 3.658.697 til fjernelse af organiske, opløselige forureninger fra spildevand ved gennemføring af spildevandet gennem et leje af aktiveret kul. Det er imidlertid også blevet beskrevet (se Hopkins, C.B, Weber, W.J., Jr., Bloom, R., Jr., U.S. Department of Interior Federal Water Pollution Control Administration Report No. TWRC-2, Dec. 1968), at ved behandling af offentligt og industrielt spildevand med granu-lært,aktiveret kul optræder der biologisk aktivitet i kulstof lej erne ved forlænget drift, hvilket medfører en betydelig opbygning af slam i kulstoflejet. Dannelsen af dette aerobe, biologiske slam resulterer, ud over at give anledning til et problem med hensyn til fjernelse og anbringelse af slammet, i tilstopning af kulstoflejerne således, at hyppig efterskylning for at genoprette og således regenerere absorptionskapaciteten af det aktiverede kul, nødvendiggøres. Denne biologiske aktivitet, som findes i det aktiverede kulstofleje, resulterer også i uønsket dannelse af hydrogensulfid, som strømmer ud fra kulstoflejet (se U.S. patentskriftet nr. 3.658.697)·To remove the organic pollutants from wastewater, especially industrial wastewater, it has recently been proposed to treat the industrial wastewater as well as the effluent stream from the secondary activated carbon treatment stage. Eg. methods are described in U.S. Pat. U.S. Patent Nos. 3,244,621, 3,455,820 and 3,658,697 to the removal of organic soluble pollutants from wastewater by passing the wastewater through a bed of activated charcoal. However, it has also been described (see Hopkins, C.B., Weber, W.J., Jr., Bloom, R., Jr., U.S. Department of the Interior Federal Water Pollution Control Administration Report No. TWRC-2, Dec. 1968) that by treatment of public and industrial wastewater with granular activated charcoal, biological activity occurs in the carbon beds during extended operation, which results in a significant build-up of sludge in the carbon bed. The formation of this aerobic biological sludge, in addition to giving rise to a problem of removal and deposition of the sludge, results in clogging of the carbon beds so that frequent flushing to restore and thus regenerate the absorbed capacity of the activated charcoal is necessary. This biological activity, which is found in the activated carbon bed, also results in undesirable formation of hydrogen sulfide flowing from the carbon bed (see U.S. Patent No. 3,658,697) ·

Disse mangler ved de hidtil anvendte fremgangsmåder afhjælpes imidlertid ved fremgangsmåden ifølge opfindelsen, som er ejendommelig ved, at spildevandet ledes gennem laget af aktiveret kul sammen med oxygen i en sådan mængde, at der opnås en kontrolleret aerob biologisk oxidation af de forureninger, der er adsorberet på det aktiverede kul, hvorhos denne oxygenmængde er 0,09-0,15 kg pr. kg COD-foru-reninger fjernet fra spildevandet, med mindre laget af aktiveret kul i forbindelse med efterskylningerne behandles med en oxygenholdig gasstrøm, i hvilket tilfælde den sammen med spildevandet gennemledte mængde oxygen er 0,05-0,12 kg pr. kg COD-forureninger fjernet fra spildevandet.However, these deficiencies in the methods used heretofore are remedied by the process according to the invention, which is characterized in that the waste water is passed through the layer of activated carbon together with oxygen in such an amount that a controlled aerobic biological oxidation of the pollutants adsorbed is obtained. on the activated charcoal, where this amount of oxygen is 0.09-0.15 kg per COg contaminants removed from the wastewater, unless the layer of activated charcoal in connection with the flushes is treated with an oxygen-containing gas stream, in which case the amount of oxygen dissipated with the wastewater is 0.05-0.12 kg per liter. kg of COD contaminants removed from the wastewater.

44

14306A14306A

Når den oxygenmængde, som tilsættes til og forbruges i lejet af aktiveret kulstof holdes indenfor de ovenfor angivne kritiske grænser, tilvejebringes en afbalancering af anaerob og aerob biologisk nedhrydning af de forureninger, som er adsorberet på det aktiverede kul. Således undertrykkes den udvikling af hydrogensulfid, der ville finde sted som resultat af ukontrolleret, anaerob biologisk vækst på kulstoffet. Endvidere minimeres den slammængde, som ifølge sagens natur dannes under den aerobe, biologiske oxidation, således at der undgås tilstopning af kontaktsystemet, d.v.s. lejet/lejerne af aktiveret kul. Hertil kommer, at den kontrollerede aerobe oxidation, som opnås ved udøvelse af opfindelsen, resulterer i en betydelig forøgelse af det aktiverede kulstofs effektive kapacitet med hensyn til fjernelse af organiske forureninger i forhold til den kapacitet, som opnås alene ved fysisk adsorption.When the amount of oxygen added to and consumed in the activated carbon bed is kept within the critical limits stated above, a balance of anaerobic and aerobic biodegradation of the contaminants adsorbed on the activated carbon is provided. Thus, the evolution of hydrogen sulfide that would occur as a result of uncontrolled, anaerobic biological growth on the carbon is suppressed. Furthermore, the amount of sludge which is naturally formed during the aerobic biological oxidation is minimized so as to avoid clogging of the contact system, i.e. activated charcoal (s). In addition, the controlled aerobic oxidation achieved by the practice of the invention results in a significant increase in the effective carbon of the activated carbon with regard to the removal of organic pollutants relative to the capacity obtained by physical adsorption alone.

Ved en anden udføreisesform for opfindelsen har det overraskende vist sig, at anvendelse af en koagulant af aktiveret ler i forbehandlingen af spildevandet med henblik på at fjerne den suspenderede olie og de suspenderede faste stoffer, der er tilbage efter sedimentation, forhindrer forureningen af det aktiverede kul i lejet, hvilken forurening vides at optræde ved anvendelse af opløselige, uorganiske koagulanter. Ved en anden foretrukken udførelsesform for opfindelsen, er det blevet opdaget, at ledning af spildevandet op gennem et ikke-afgræn-set leje af aktiveret kul foretrækkes frem for konventionel nedadrettet strømning af spildevandet i et pakket leje med aktiveret kul, på grund af, at teknikken med strømning op gennem et ekspanderet leje kræver mindre efterskylning og opretholder et konstant trykfald over lejet, således at bedre kontrol med koncentrationen af opløst oxygen i lejet gøres mulig.In another embodiment of the invention, it has surprisingly been found that the use of a activated clay coagulant in the wastewater pretreatment to remove the suspended oil and suspended solids remaining after sedimentation prevents contamination of the activated charcoal. in the bed, which contamination is known to occur using soluble inorganic coagulants. In another preferred embodiment of the invention, it has been discovered that conducting the wastewater up through an undefined activated charcoal bed is preferred over conventional downward flow of the wastewater into a activated charcoal packed bed. The technique of flowing up through an expanded bed requires less flushing and maintains a constant pressure drop across the bed, allowing better control of the dissolved oxygen concentration in the bed.

Spildevandet, som behandles ifølge opfindelsen, klares først ved bundfældning, inden det bringes i kontakt med det aktiverede kul i de til kontakt med kulstoffet beregnede søjler eller zoner. Det spildevand, som kan renses ifølge opfindelsen, omfatter toilet-, kommunale eller industrielle spildevandsstrømme, som indeholder opløste organiske forureninger såsom alifatiske, aromatiske og fenoliske kulbrinter. Fremgangsmåden ifølge opfindelsen er særlig anvendelig til fjernelse af bio-resistente forureninger såsom aromatiske forbindelser, halogenerede og nitrerede kulbrinter og lignende, hvilke bio-resistente forureninger er karakteristiske for spildevand fra raffinering af råolie og fabrikation af organiske kemikalier. Disse bio-resistente forureninger, som 5 1Α306Λ almindeligvis giver recipienterne en meget tydelig smag og lugt, fjernes i alt væsentligt fuldstændigt ved den aktiverede kulstofadsorption ifølge opfindelsen, skønt de i alt væsentligt ikke påvirkes ved konventionel biologisk behandling. Medens den ubehandlede spildevandsstrøm normalt forbehandles indledningsvis for at fjerne suspenderede faste stoffer og olier, må det bemærkes, at det aktiverede kul forårsager en filtrering ved fysisk adsorption af de tilbageværende, suspenderede faste stoffer i spildevandet ud over at fjerne opløst.organisk materiale ved adsorption og sideløbende nedbryde forureningerne på det aktiverede kul biologisk.The wastewater treated according to the invention is first cleared by settling before being contacted with the activated charcoal in the columns or zones intended for contact with the carbon. The wastewater which can be purified according to the invention comprises toilet, municipal or industrial wastewater streams containing dissolved organic pollutants such as aliphatic, aromatic and phenolic hydrocarbons. The process of the invention is particularly useful for removing bio-resistant contaminants such as aromatic compounds, halogenated and nitrated hydrocarbons and the like, which are bio-resistant contaminants characteristic of refining crude oil and producing organic chemicals. These bio-resistant contaminants, which generally give the recipients a very distinct taste and odor, are substantially completely removed by the activated carbon adsorption of the invention, although substantially unaffected by conventional biological treatment. While the untreated wastewater stream is usually initially pretreated to remove suspended solids and oils, it should be noted that the activated carbon causes a filtration by physical adsorption of the remaining suspended solids into the wastewater in addition to removing dissolved organic matter by adsorption and concurrently break down the pollutants on the activated charcoal biologically.

Koagulerende polymerer kan anvendes i bundfældningstrinet for at øge den totale fjernelse af suspenderede faste stoffer og olier. Normalt indeholder det ubehandlede spildevand, som skal renses, f.eks. fra et olieraffinaderi, væsentlige mængder olie og andre suspenderede faste stoffer. Disse suspenderede, små oliedråber og faste stoffer kan med fordel fjernes i den primære bundfældningszone ved hjælp af koagulanter. Ud over anvendelse af såvel organiske som uorganiske koa-gulanter, som vides at være egnede til at øge den totale fjernelse af suspenderede faste stoffer og olier, kan andre teknikker, såsom flotation under anvendelse af opløst luft, klaring ved kontakt med faste stoffer og filtreringsteknikker ved hjælp af to eller flere medier ligeledes være nyttige til at skille de suspenderede faste stoffer og olier fra det ubehandlede spildevand. Medens alle disse teknikker kan anvendes ved udøvelse af opfindelsen, har man overraskende fundet, at anvendelse af aktiveret ler, specielt i forbindelse med filtrering ved hjælp af to medier som en afsluttende forbehandlingsproceB er en effektiv forbehandlingsmetode for det omtalte kuladsorptionssystem. Brugen af opløselige, uorganiske koagulanter såsom alun med en polyelektrolyt i forbindelse med flotation under anvendelse af opløst luft fører ofte i løbet af et stykke tid til forurening af lejet af aktiveret kul. Dette antages at skyldes, at de opløste aluminiumsforbindelser, der er tilbage i udløbsstrømmen, udfælder på det aktiverede kul, hvilket fænomen forårsager alvorlige tilstopningsproblemer, når spildevandet ledes enten op eller ned gennem lejet af aktiveret kul, og hvilket fænomen også i væsentlig grad reducerer effektiviteten af det aktiverede kul med hensyn til fjernelse af organiske forureninger fra spildevandet efter termisk regenerering. Det aktiverede ler, som man overraskende har fundet, er egnet til den indledende primære behandling af det ubehandlede spildevand, og som består af et natrium montmorillonitler i forbindelse med et orga- 6 143064 nisk kationisk middel, såsom en amin eller en glycol, afværger de førnævnte tilstopningsproblemer og den permanente kulstofdeaktivering. Natrium montmorillonitleret kan aktiveres med en række kationiske midler omfattende primære, sekundære og tertiære aminer, såvel som de såkaldte ethylenaminer, såsom tetraethylen pentamin. De aktiverede ler-koagulanter, som er egnede til anvendelse i denne behandlingsform, omfatter alle sådanne lertyper, der specielt er beskrevet i U.S. patentskriftet nr. 3.487.928. En flocculerings-koaguleringsopløsning, der indeholder natrium montmorillonitler i forbindelse med et kationisk aktiveringsmiddel, tilsættes fortrinsvis til spildevandet i en mængde af størrelsesordenen fra ca. 10 - 50 ppm ler i forbindelse med 1 til 5 ppm af aktiveringsmidlet med henblik på at fremme udfældning af suspenderede olier og faste stoffer i den primære behandlingszone.Coagulating polymers can be used in the precipitation step to increase the total removal of suspended solids and oils. Usually, the untreated wastewater contains which must be purified, e.g. from an oil refinery, significant amounts of oil and other suspended solids. These suspended, small oil droplets and solids can advantageously be removed in the primary settling zone by coagulants. In addition to using both organic and inorganic coagulants, which are known to be suitable for increasing the total removal of suspended solids and oils, other techniques such as dissolved air flotation, solids contact filtration and filtration techniques may using two or more media also be useful in separating the suspended solids and oils from the untreated wastewater. While all of these techniques may be used in the practice of the invention, it has surprisingly been found that the use of activated clay, especially in connection with filtration by means of two media as a final pretreatment process, is an effective pretreatment method for the aforementioned carbon sorption system. The use of soluble inorganic coagulants such as alum with a polyelectrolyte in connection with flotation using dissolved air often over a period of time leads to contamination of the activated carbon bed. This is believed to be due to the dissolved aluminum compounds remaining in the outlet stream precipitating on the activated charcoal, which causes severe clogging problems when the wastewater is either directed up or down through the activated charcoal bed, which also significantly reduces the efficiency. of the activated charcoal for removal of organic pollutants from the wastewater after thermal regeneration. The activated clay, which has surprisingly been found to be suitable for the initial primary treatment of the untreated wastewater, consisting of a sodium montmorillonite in association with an organic cationic agent such as an amine or a glycol, the aforementioned clogging issues and the permanent carbon deactivation. Sodium montmorillonite clay can be activated by a variety of cationic agents comprising primary, secondary and tertiary amines, as well as the so-called ethyleneamines such as tetraethylene pentamine. The activated clay coagulants suitable for use in this form of treatment comprise all such clay types specifically described in U.S. Pat. U.S. Patent No. 3,487,928. A flocculation coagulation solution containing sodium montmorillonite in conjunction with a cationic activator is preferably added to the wastewater in an amount of about 10 - 50 ppm clay in conjunction with 1 to 5 ppm of the activating agent to promote precipitation of suspended oils and solids in the primary treatment zone.

Man har endvidere opdaget, at den kritiske mængde af det oxygen, som skal tilsættes og forbruges, påvirkes af den specielle efter-skylningsteknik, der anvendes. Efterskylning kræves, når ophobning af faste stoffer forårsager en forøgelse af trykfaldet, når spildevandet ledes ned gennem lejet af aktiveret kul, eller når der optræder en særligt stor ekspansion af lejet, når spildevand ledes op gennem lejet af aktiveret kul. Når efterskylningsteknikken, som gennemføres ved enten af pumpe den forbehandlede udløbsstrøm eller den kulstofbehandlede udløbsstrøm fra spildevandsbehandlingsprocessen op gennem lejet af aktiveret kul med en hastighed fra ca. 400 til ca. 800 liter pr. minut pr. kvadratmeter, med mellemrum afbrydes for at lede en gasstrøm, såsom luft, gennem lejet af aktiveret kul med henblik på at "luftrense" det aktiverede kul, har man opdaget, at den kritiske oxygenmængde, som skal tilsættes til lejet/lejerne af aktiveret kul for at opnå de ovennævnte resultater, ligger i området fra ca. 0,05 til ca. 0,12 kg oxygen pr. kg COD-forureninger, der er fjernet fra spildevandet. Det må antages, at nedsættelse af tilsætning og forbrug af den kritiske oxygenmængde fra ca. 0,09 kg oxygen pr. kg COD-forureninger, der er fjernet fra spildevandet, til ca. 0,05 kg oxygen pr. kg COD-forureninger, der er fjernet fra spildevandet, skyldes, at luftrensningen nedsætter tykkelsen af det biologiske slamlag på de aktiverede kulkugler effektivt, således at den mængde oxygen, der kræves til at opretholde en aerob-anaerob balance i lejet/lejerne af kul, nedsættes. Endvidere er denne reduktion af oxygenkravet også forårsaget af, at oxygen absorberes af det aktiverede kul under luftrensningen.Furthermore, it has been discovered that the critical amount of oxygen to be added and consumed is affected by the particular after-rinse technique used. Rinse is required when the accumulation of solids causes an increase in pressure drop when the wastewater is led down through the activated charcoal bed or when a particularly large expansion of the bed occurs when wastewater is led through the activated charcoal bed. When the flushing technique performed by either pumping the pretreated effluent stream or the carbon effluent effluent from the wastewater treatment process up through the bed of activated charcoal at a rate of approx. 400 to approx. 800 liters per per minute square meters, intermittently interrupted to conduct a gas flow, such as air, through the activated charcoal bed to "air purify" the activated charcoal, it has been discovered that the critical amount of oxygen to be added to the activated charcoal bed (s) for to achieve the above results, ranges from approx. 0.05 to approx. 0.12 kg oxygen per kg of COD contaminants removed from the wastewater. It must be assumed that the reduction of the addition and consumption of the critical oxygen amount from approx. 0.09 kg of oxygen per kg of COD contaminants removed from the wastewater to approx. 0.05 kg of oxygen per kg of COD contaminants removed from the wastewater is due to the fact that the air purification effectively reduces the thickness of the biological sludge layer on the activated charcoal so that the amount of oxygen required to maintain an aerobic anaerobic balance in the bed (s) of coal, reduced. Furthermore, this reduction in oxygen demand is also caused by oxygen being absorbed by the activated charcoal during air purification.

143064 7143064 7

Tilføring af denne kritiske mængde oxygen til lejet af aktiveret kul kan udføres ved enten at tilsætte luft, en gasstrøm, der indeholder oxygen, eller oxygen i en mængde, der er tilstrækkelig til at kontrollere den aerobe biologiske oxidation af de forureninger, som er adsorberet på kullet, og derved såvel undertrykke udviklingen af hydrogensulfid fra lejet/lejerne af aktiveret kul som minimere det aerobe biologiske slam, som nødvendigvis dannes på grund af tilsætningen af oxygen til lej et/lej erne. De ovennævnte kritiske oxygenmængder kan tilsættes direkte til lejet eller til spildevandsstrømmen, som skal føres ind i lej et/lejerne. Hvis sidstnævnte metode anvendes, kan den oxygen-holdige gas bobles ind i spildevandet ved indløbet til lej et/lej erne, således at oxygen gradvis opløses i det vand, der strømmer op gennem lej et/lejerne. Denne metode gør en kontrolleret mængde oxygen tilgængelig for alle dele af lejet, toppen inkluderet, hvor biologisk slam kan være til stede. Den kapacitet af det aktiverede kul, der opnåedes ved udøvelse af opfindelsen, var omtrent 3 gange den kapacitet, som kunne opnås ved ren fysisk-kemisk adsorbtion, d.v.s. 1,0 kg COD pr. kg kul mod 0,3 kg COD pr. kg kul.Addition of this critical amount of oxygen to the activated charcoal bed can be accomplished by either adding air, a gas stream containing oxygen, or oxygen in an amount sufficient to control the aerobic biological oxidation of the contaminants adsorbed on the coal, thereby suppressing the evolution of hydrogen sulphide from the activated charcoal bed (s) as well as minimizing the aerobic biological sludge which is necessarily formed due to the addition of oxygen to the bed (s). The above-mentioned critical oxygen amounts can be added directly to the bed or to the wastewater stream to be fed into bed (s). If the latter method is used, the oxygen-containing gas can be bubbled into the wastewater at the inlet to the bed (s), so that oxygen gradually dissolves in the water flowing through bed (s). This method makes a controlled amount of oxygen available to all parts of the bed, the top included where biological sludge may be present. The capacity of the activated charcoal obtained by the practice of the invention was about 3 times the capacity obtainable by pure physicochemical adsorption, i.e. 1.0 kg of COD per kg of coal against 0.3 kg of COD per kg of coal.

Når det ubehandlede spildevand ledes gennem et leje med aktiveret kul, der jævnligt efterskylles uden luftrensning, er mængden af oxygen, som tilføres lejet, følgelig af størrelsesordenen ca. 0,09 til ca. 0,15 kg pr. kg COD-forureninger, der er fjernet fra spildevandsstrømmen. Hvis det påtænkes at luftrense kulstoffet under efterskyl-ningstrinnet, som nævnt ovenfor, er det afgørende, at den oxygenmængde, som tilføres lejet, er beliggende i området fra ca. o,05 til ca. 0,12 kg pr. kg COD-forureninger, der er fjernet fra spildevandet.Accordingly, when the untreated wastewater is passed through an activated charcoal bed that is regularly rinsed without air purification, the amount of oxygen supplied to the bed is of the order of approx. 0.09 to approx. 0.15 kg per kg of COD contaminants removed from the effluent stream. If it is envisaged to purify the carbon during the rinse step, as mentioned above, it is essential that the amount of oxygen supplied to the bed is in the range of approx. o, 05 to approx. 0.12 kg per kg of COD contaminants removed from the wastewater.

Mange forskellige typer aktiveret kul kan anvendes ved udøvelse af opfindelsen. Det aktiverede kul har fortrinsvis et stort overfladeareal, fortrinsvis i området fra ca. 300 til ca. 1200, eller bedre i området fra ca. 400 til ca. 1000 m^ pr. g. På grund af, at det foretrækkes at lede spildevandet op, d.v.s. strømning i opadgående retning gennem lejet af aktiveret kul, foretrækkes det ydermere, at det anvendte aktiverede kul har en lav gnidningsmodstand for at forhindre, at der dannes store mængder meget fine partikler ved drift med opadgående strømning under dannelse af et ekspanderet leje. Ydermere foretrækkes det også at undgå aktiveret kul, som lejrer sig til gasbobler, der er dannet i det ekspanderede leje af aktiveret kul under anvendelse af den ved opadrettet strømning kendetegnede teknik, i betragtning af, 8 143064 at sådant kul, der lejrer sig til gasbobler, transporteres ud af kontaktzonen, som udgøres af det aktiverede kulleje.Many different types of activated charcoal can be used in the practice of the invention. The activated charcoal preferably has a large surface area, preferably in the range of from approx. 300 to approx. 1200, or better in the range of approx. 400 to approx. 1000 m 2 per g. Because it is preferable to direct the wastewater, i.e. flow upwardly through the activated charcoal bed, it is further preferred that the activated charcoal has a low frictional resistance to prevent the formation of large amounts of very fine particles when operating with upward flow to form an expanded bed. Furthermore, it is also preferred to avoid activated charcoal which deposits into gas bubbles formed in the expanded bed of activated charcoal using the upward flow characterized technique, given that such gas which is chargeable to gas bubbles , is transported out of the contact zone constituted by the activated ball bearing.

De mest foretrukne typer af aktiveret kul, som kan anvendes ved udøvelsen af opfindelsen, er sammensætninger af aktiveret, fluid koks som beskrevet i dansk pat.ans.nr. 3586/73. Disse nye sammensætninger af aktiveret, fluid koks er ejendommelige ved, at de har et overfladeareal på i det mindste 400 m pr. gram og et porevolumen på i det mindste 0,20 cnr pr. gram. Det aktiverede, fluide koks fremstilles ved at bringe fluid råoliekoks i kontakt med en gasblanding, som indeholder damp ved en temperatur på i det mindste 8l5°C i en sådan tid, at i det mindste 35 vægtprocent af kokspartiklerne omdannes til gasformige produkter, hvorved en ny aktiveret kokssammensætning dannes, som udviser virkelig gode egenskaber som absorbent.The most preferred types of activated charcoal that can be used in the practice of the invention are compositions of activated fluid coke as described in Danish Pat. 3586/73. These new compositions of activated fluid coke are peculiar in that they have a surface area of at least 400 m per minute. grams and a pore volume of at least 0.20 ccn. gram. The activated fluid coke is prepared by contacting fluid crude oil coke with a gas mixture containing steam at a temperature of at least 815 ° C for such a time that at least 35% by weight of the coke particles are converted into gaseous products, new activated coke composition is formed which exhibits really good properties as absorbent.

Der skal nu gives en nærmere beskrivelse af en foretrukken udførelsesform for opfindelsen, idet der henvises til den medfølgende tegning, hvor der er vist et skematisk arbejdsdiagram over apparatur, der er egnet til anvendelse ved udøvelse af opfindelsen.A more detailed description of a preferred embodiment of the invention will now be given, with reference to the accompanying drawing, in which is shown a schematic diagram of apparatus suitable for use in the practice of the invention.

Ubehandlet industrispildevand med et COD på niveauet ca. 800 mg pr. liter og som indeholder forureninger, der kan adsorberes, såsom aromatiske, aliphatiske og fenoliske kulbrinter, o.s.v,,såvel som suspenderede olier og faste stoffer ledes gennem rørledning 1 ind i forbehandlingszone 2. I forbehandlingszonen 2 fjernes suspenderet materiale, hvormed der menes materiale, som ikke kan passere gennem et 0,45μ Millipore® filter,således at en koncentration mindre end 25 ppm på vægtbasis, fortrinsvis mindre end 15 ppm på vægtbasis, opnås. De forbehandlingsprocesser, der kan anvendes, kan være meget forskellige og omfatter, men er ikke begrænset til, følgende: flotation under anvendelse af opløst luft, sedimentation, klaring ved kontakt med faste stoffer, filtrering ved hjælp af to eller flere medier samt sandfiltrering under anvendelse af opadrettet strømning. Den foretrukne forbehandlingsproces omfatter anvendelse af en aktiveret lerkoagulant, som ovenfor beskrevet, i forbindelse med filtrering ved hjælp af to medier, hvorved suspenderet materiale reduceres til mindre end 15 ppm på vægtbasis.Untreated industrial waste water with a COD of approx. 800 mg per per liter and containing contaminants which may be adsorbed, such as aromatic, aliphatic and phenolic hydrocarbons, etc., as well as suspended oils and solids are passed through pipeline 1 into pretreatment zone 2. cannot pass through a 0.45µ Millipore® filter so that a concentration less than 25 ppm by weight, preferably less than 15 ppm by weight, is achieved. The pretreatment processes that can be used can be very diverse and include, but are not limited to, the following: flotation using dissolved air, sedimentation, solids contact with solids, filtration using two or more media, and sand filtration using of upward flow. The preferred pretreatment process involves using an activated clay coagulant, as described above, in connection with filtration by two media, thereby reducing suspended material to less than 15 ppm by weight.

Det forbehandlede spildevand ledes herefter via rørledning 3 ind i en lagertank 4, for at tilvejebringe ensartet fødning til kuladsorbtionslejerne og efterskylningsvand til filtrene og kuladsorb-tionslejerne. Derefter ledes det forbehandlede spildevand via rørledning 5 ind i bunden af de første aktiverede kulbehandlings-zoner 7 via rørledning 8. I de til aktiveret kulbehandling anvendte be- 9 14306Λ holdere 7, 9 og 11 findes et leje med aktiveret kul, fortrinsvis aktiveret, fluid koks som ovenfor beskrevet. Spildevandet ledes via rørledning 8 op gennem kontaktbeholder 7 med aktiveret kul, hvorved en ekspansion af det aktiverede kulleje forårsages. Det aktiverede kulleje har sådanne fysiske egenskaber, at adsorptionslejernes volumen ekspanderes i det mindste 10#, men ikke mere end 100# ved strømningshastigheder for spildevandet mellem 163 og 285 liter pr. minut pr. kvadratmeter af lejets tværsnitsareal.The pretreated wastewater is then fed via pipeline 3 into a storage tank 4, to provide uniform feed to the carbonate bed bearings and flush water to the filters and carbonate bed bearings. Thereafter, the pretreated wastewater is fed via pipeline 5 into the bottom of the first activated coal treatment zones 7 via pipeline 8. In the tanks 7, 9 and 11 used for activated coal treatment there is a bed of activated charcoal, preferably activated, fluid. coke as described above. The waste water is led up via pipeline 8 through contact charcoal 7 with activated charcoal, causing an expansion of the activated charcoal bed. The activated charcoal bed has such physical properties that the volume of the adsorption beds is expanded at least 10 # but not more than 100 # at wastewater flow rates between 163 and 285 liters per liter. per minute square meters of the bearing cross-sectional area.

Det er væsentligt, at de ovennævnte kritiske oxygenmængder tilsættes til kontaktzonerne 7, 9 og 11 med aktiveret kul. Dette kan gennemføres ved forskellige fremgangsmåder, hvilke fremgangsmåder omfatter, men ikke er begrænset til, følgende: injektion af luft, oxygen-beriget luft eller oxygen i rørledning 8, injektion af luft, oxygen-be-riget luft eller oxygen i kontaktzone 7 med aktiveret kul og/eller injektion af luft, oxygen-beriget luft eller oxygen i det fri rum over kontaktzone 7 med aktiveret kul. Den foretrukne teknik består i at tilføre luft, oxygen-beriget luft eller oxygen gennem rørledning 13 ind i det spildevand, som føres gennem rørledningerne 8, 10 eller 12, for at opnå maksimal udnyttelse af den oxygenholdige gas, at minimere omkostninger for materiel til tilføring af den oxygenholdige gas og at opnå tilfredsstillende fordeling af oxygen over kulkontaktzonerne 7, 9 og 11.It is essential that the above-mentioned critical oxygen amounts be added to activated carbon contact zones 7, 9 and 11. This can be accomplished by various methods which include, but are not limited to, the following: injection of air, oxygen-enriched air or oxygen in pipeline 8, injection of air, oxygen-enriched air or oxygen in contact zone 7 with activated carbon and / or injection of air, oxygen-enriched air or oxygen in the free space over contact zone 7 with activated carbon. The preferred technique consists of supplying air, oxygen-enriched air or oxygen through pipeline 13 into the wastewater which is passed through pipelines 8, 10 or 12, to obtain maximum utilization of the oxygen-containing gas, to minimize the cost of feed materials. of the oxygen-containing gas and to obtain a satisfactory distribution of oxygen over the coal contact zones 7, 9 and 11.

Økonomisk drift af behandlingsprocessen med aktiveret kul kræver ofte, at kulstoffet kontaktes trinvis med spildevandet. Udøvelse af opfindelsen omfatter drift af kulkontaktområderne eller -lejerne under anvendelse af et ved opadrettet strømning fremkommet ekspanderet leje som ovenfor beskrevet, hvorhos kritiske oxygenmængder tilsættes til hver af kontaktzonerne 7, 9 og 11 med en hastighed, der svarer til den hastighed, hvormed COD fjernes i hver af de serieforbundne kontaktzoner. P.eks. tilsættes og forbruges ca. 45 ppm oxygen i kuladsorbtionslejet 7, hvor spildevandets COD nedsættes fra 800 til 300. Den delvis behandlede udgangsstrøm, som har en COD-koncentration på ca. 300, fjernes fra kul-kontaktbeholderen 7 via rørledning 10 og føres til bunden af kulkontakt-beholder 9 via rørledning 10. En tilstrækkelig mængde oxygen føres derefter via rørledning 13 ind i rørledning 10, således at 18 ppm oxygen forbruges i kulstofadsorbtionslejet 9» medens COD-koncentrationen af spildevandet nedsættes fra 300 til ca. 100. Derefter ledes udgangsstrømmen fra beholder 9 til kulkontaktbeholder 11 via rørledning 12, hvori 143064 ίο ca. 9 ppm oxygen indføres via rørledning 13, medens det resterende COD i spildevandet fjernes i kulkontaktbeholder 11. Udgangsstrømmen af hehandlet spildevand fjernes fra kontaktzonen 11 af aktiveret kul via rørledning 14. I alle de tre aktiverede kullejer 7, 9 og 11 blev den til lejet tilsatte mængde oxygen holdt på 0,09 kg oxygen forbrugt pr. kg COD-forureninger, som blev fjernet fra det spildevand, der blev behandlet i hvert leje af aktiveret kul. Strømningen af industrielt spildevand mellem serieforbundne kontaktbeholdere kan enten gennemføres ved at anvende pumper eller ved at indrette kontaktzonerne, således at strømning under anvendelse af tryngdekraften mellem trinnene gøres mulig. Trykket i lejet/lejerne holdes i området fra ca. 100 til ca. 310 kPa abs., og fortrinsvis omkring atmosfæretryk. Bestemmelse af det økonomisk mest fordelagtige antal kulbehandlingstrin er indlysende for en fagmand på området spildevandsbehandling med aktiveret kul.The economical operation of the activated carbon treatment process often requires that the carbon be contacted stepwise with the wastewater. Practice of the invention comprises operating the coal contact areas or bearings using an upwardly expanding bed as described above, wherein critical oxygen amounts are added to each of contact zones 7, 9 and 11 at a rate corresponding to the rate at which COD is removed. in each of the series connected contact zones. P.eks. is added and consumed approx. 45 ppm of oxygen in the carbon sorbent bed 7, where the waste water COD is reduced from 800 to 300. The partially treated starting stream having a COD concentration of approx. 300, is removed from carbon contact vessel 7 via pipeline 10 and fed to the bottom of carbon contact vessel 9 via pipeline 10. A sufficient amount of oxygen is then fed via pipeline 13 into pipeline 10 so that 18 ppm of oxygen is consumed in carbon adsorption bed 9 while COD - the concentration of the wastewater is reduced from 300 to approx. 100. Thereafter, the output current is conducted from vessel 9 to coal contact vessel 11 via pipeline 12, wherein 143064 approx. 9 ppm of oxygen is introduced via pipeline 13, while the remaining COD in the wastewater is removed in coal contact vessel 11. The effluent stream of treated wastewater is removed from contact zone 11 by activated charcoal via pipeline 14. In all three activated coal bearings 7, 9 and 11 it was added to the bed. amount of oxygen kept at 0.09 kg of oxygen consumed per kg of COD contaminants removed from the wastewater treated in each activated charcoal bed. The flow of industrial wastewater between series-connected contact vessels can be accomplished either by using pumps or by arranging the contact zones so that flow using the gravity between the steps is made possible. The pressure in the bearing (s) is kept in the range from approx. 100 to approx. 310 kPa abs., And preferably around atmospheric pressure. Determining the most economically advantageous number of coal treatment steps is obvious to one skilled in the art of activated charcoal wastewater treatment.

Med mellemrum bevirker opbygning af biologisk slam på det aktiverede kul, at der optræder for kraftig ekspansion af det aktiverede kulleje. En efterskylningsteknik anvendes for delvis at fjerne det slam, der lejrer sig til kulstofkornene, ved at lede fra ca. 400 til ca. 800 liter pr. minut pr. kvadratmeter af udgangsstrømmen fra forbehandlingen gennem rørledning 15, som er markeret med en stiplet linie, op gennem kontaktbeholderne 7, 9 og 11. Det foretrækkes at afbryde gennemledningen af denne forbehandlede udgangsstrøm med mellemrum ved via rørledning 16 at lede en oxygenholdig gasstrøm såsom luft op gennem det aktiverede kulleje/kullejerne med henblik på at rense kornene af aktiveret kul og formindske tykkelsen af det biologiske slamlag, som ophobes på det aktiverede kul. Almindeligvis efterskylles hver absorbtionssøjle med kul ca. hver anden dag, hvorhos den til ef-terskylningen nødvendige tid er fra ca. \ til ca. 1 time. Efterskylnin-gen afbrydes typisk omkring 3 eller 4 gange for at luftrense det aktiverede kul, fortrinsvis under tryk, ved i en periode på fra ca. 10 til ca. 30 sekunder at lede luft op gennem kullejet.At intervals, the build-up of biological sludge on the activated coal causes excessive expansion of the activated coal bed. A flushing technique is used to partially remove the sludge that deposits to the carbon grains by conducting from ca. 400 to approx. 800 liters per per minute square meter of the output stream from the pretreatment through pipeline 15, marked by a dotted line, up through the contact vessels 7, 9 and 11. It is preferred to interrupt the passage of this pretreated output stream by passing an oxygen-containing gas stream such as air through pipeline 16 the activated coal bed (s) in order to clean the granules of activated carbon and reduce the thickness of the biological sludge layer which accumulates on the activated coal. Usually, each absorption column is rinsed with coal for approx. every other day, the time needed for the post-rinse is from approx. \ to approx. 1 hour. The rinsing is typically interrupted about 3 or 4 times to air-purify the activated charcoal, preferably under pressure, for a period of from ca. 10 to approx. 30 seconds to run air through the ball bearing.

I de følgende eksempler 1-5 blev raffinaderispildevand med et COD-forureningsniveau i området fra ca. 400 til 1500 mg pr. liter ledt gennem et filter bestående af to medier, f.eks. antracit og sand, hvilket filter fjerner suspenderede olier og faste stoffer, således at der fremkommer et filtrat med et COD-forureningsniveau fra 300 til 1400 mg pr. liter. Dette filtrat blev med en hastighed på 0,25 liter pr. minut kontinuert ledet gennem 12 på hinanden følgende søjler med diameteren 5 cm og højden 1,8 meter, hvor hver søjle indeholdt en fyldning 11 143064 af aktiveret kul. Strømningen af spildevandet var rettet op gennem hver vertikal søjle, og udgangsstrømmen fra toppen af hver søjle blev indført i bunden af næste søjle. Med en strømningshastighed på 0,25 liter pr. minut (eller 122 liter pr. minut pr. kvadratmeter) ekspanderede lejerne med aktiveret, granulært kul ca. 10¾ i højden. Oxygen tilførtes det aktiverede kulleje ved indføring af den oxygenholdige gasstrøm i det spildevand, der indførtes i første søjle, og ligeledes i toppen af de aktiverede kullejer i 2., 4., 6., 8. og 10. søjle. Bestemmelser af opløst oxygen blev foretaget på det vand, der strømmede ud fra hver søjle, og bestemmelse af den totale mængde organisk carbon blev foretaget ved toppen af hver anden søjle, startende med 2. søjle. COD-bestemmelser blev foretaget på udgangsstrømmen fra sidste søjle.In the following Examples 1-5, refinery wastewater with a COD contamination level in the range of approx. 400 to 1500 mg per day liters passed through a filter consisting of two media, e.g. anthracite and sand, which removes suspended oils and solids, resulting in a filtrate with a COD contaminant level of 300 to 1400 mg per day. liter. This filtrate was produced at a rate of 0.25 liters per liter. per minute continuously passed through 12 consecutive columns of diameter 5 cm and height 1.8 meters, each column containing a load of activated charcoal. The flow of the wastewater was directed through each vertical column and the exit stream from the top of each column was introduced at the bottom of the next column. With a flow rate of 0.25 liters per per minute (or 122 liters per minute per square meter) the beds with activated granular coal expanded approx. 10¾ in height. Oxygen was supplied to the activated coal bed by introducing the oxygen-containing gas stream into the wastewater introduced into the first column, and also at the top of the activated coal bearings in the 2nd, 4th, 6th, 8th and 10th columns. Dissolved oxygen determinations were made on the water flowing from each column and determination of the total amount of organic carbon was made at the top of each other column, starting with the second column. COD determinations were made on the output current from the last column.

Den i hver søjle forbrugte oxygenmængde varieredes ved at berige den luft, der indførtes i søjlerne 2, .4, 6, 8 og 10, med oxygen.The amount of oxygen consumed in each column was varied by enriching the air introduced into columns 2, .4, 6, 8 and 10 with oxygen.

Eksempel 1 I eksempel 1 blev luft indført i søjlerne som ovenfor beskrevet, uberiget og ved 1 atmosfære. I alle fem søjler, d.v.s. søjlerne 2, 4, 6, 8 og 10 var den totale mængde oxygen, som blev tilsat til spildevandet og forbrugt, således 35 mg pr. liter. Udgangsstrømmen fra sidste søjle viste en fjernelse af COD, som til stadighed lå på ca. 90% i en periode på 2 uger, hvor disse betingelser blev opretholdt. Under denne periode på 2 uger var dannelsen af biologisk slam lav, uden besværlig akkumulering i nogen af kolonnerne. Efterskylning krævedes kun ca. 1 gang hver fjerde dag. Efter en uges drift konstateredes tilstedeværelse af hydrogensulfid såvel ved lugt og kemisk analyse af udgangsstrømmen fra toppen af den forreste søjle og bestemtes til at ligge i området fra ca. 20 til ca. 50 ppm hydrogensulfid. Efter 2 ugers drift blev hydrogensulfid ligeledes bestemt i udgangsstrømmen fra sidste søjle i en mængde i området fra ca. 2 ppm.Example 1 In Example 1, air was introduced into the columns as described above, enriched and at 1 atmosphere. In all five columns, i.e. columns 2, 4, 6, 8 and 10 were the total amount of oxygen added to the wastewater and consumed, thus 35 mg per ml. liter. The output current from the last column showed a removal of COD, which remained at approx. 90% over a 2-week period in which these conditions were maintained. During this 2-week period, biological sludge formation was low, with no cumbersome accumulation in any of the columns. Rinse only required approx. 1 time every four days. After one week of operation, the presence of hydrogen sulfide was detected both by odor and chemical analysis of the exit stream from the top of the anterior column and was determined to be in the range of approx. 20 to approx. 50 ppm hydrogen sulfide. After 2 weeks of operation, hydrogen sulphide was also determined in the last column exit stream in an amount in the range of approx. 2 ppm.

Eksempel 2 I eksempel 2 blev oxygen tilsat til lejet med aktiveret kul på samme måde som beskrevet i eksempel 1, med undtagelse af, at luften blev beriget til et indhold af oxygen på 60¾, og trykket i søj U3064 12 lerne blev Øget til 207 kPa overtryk, hvilket medførte en koncentration af opløst oxygen på ca. 40 ppm på de steder, hvor det indførtes i spildevandet. Fjernelsen af GOD, som påvistes ved bestemmelser på udgangsstrømmen fra sidste søjle, var i størrelsesordenen ca. 90% over den periode på 2 uger, hvor dette forsøg løb. Dannelsen af slam øgedes kraftigt, hvilket nødvendiggjorde hyppigere efterskylning for at undgå for stor forurening og ekspansion af lejet. Tilstedeværelse af hydrogensulfid kunne imidlertid hverken bestemmes ved lugt eller kemisk analyse på de forreste søjler eller udgangsstrømmen fra den sidste søjle under forsøget.Example 2 In Example 2, oxygen was added to the activated charcoal bed in the same manner as described in Example 1, except that the air was enriched to an oxygen content of 60 ° and the pressure in column U3064 was increased to 207 kPa. overpressure, resulting in a dissolved oxygen concentration of approx. 40 ppm in the places where it was introduced into the wastewater. The removal of GOD, as evidenced by determinations on the output column from the last column, was on the order of approx. 90% over the 2 week period during which this trial ran. The formation of sludge was greatly increased, necessitating more frequent flushing to avoid excessive contamination and expansion of the bed. However, the presence of hydrogen sulfide could not be determined by odor or chemical analysis on the front columns or the exit stream from the last column during the experiment.

Eksempel 3 I eksempel 3 blev oxygen tilført på samme måde som beskrevet i eksemplerne 1 og 2. Koncentrationen af tilført oxygen blev imidlertid nedsat til 35% ved 138 kPa overtryk, så at koncentrationen af opløst oxygen på indføringsstederne var ca. 12 ppm, hvorved den totalt forbrugte oxygenmængde blev ca. 50 ppm. Fjernelsen af COD holdt sig på 90%-niveauet over den syvdages periode, hvor dette forsøg løb. Ydermere påvistes der ikke hydrogensulfid, hverken i de forreste søjler eller i udgangsstrømmen fra sidste søjle. Hertil kommer, at det i løbet af denne syvdages periode dannede rumfang biologisk slam blev nedsat betydeligt. Der benyttedes luftrensning af kullejet under efter-skylningen for under denne cyklus delvis at fjerne det slam, der hæftede til kulstofkornene.Example 3 In Example 3, oxygen was fed in the same manner as described in Examples 1 and 2. However, the concentration of oxygen added was reduced to 35% at 138 kPa overpressure, so that the dissolved oxygen concentration at the introductory sites was about. 12 ppm, whereby the total amount of oxygen consumed was approx. 50 ppm. The removal of COD remained at the 90% level over the seven day period during which this trial ran. Furthermore, hydrogen sulphide was not detected, either in the front columns or in the last stream exit stream. In addition, the volume of biological sludge formed during this seven-day period was significantly reduced. Air purification of the ball bearing was used during the rinsing to partially remove the sludge attached to the carbon grains during this cycle.

Eksempel 4 I eksempel 4 blev oxygen indført i systemet på samme måde som beskrevet i eksemplerne 1-3, idet uberiget luft ved et tryk på 1 atmosfære blev indført i systemet, således at den totale mængde oxygen, der tilsattes til vandet og forbrugtes, i alle søjlerne var ca. 35 mg pr. liter. Under den treugers periode, hvor dette forsøg løb, var fjernelsen af COD i middel ca. 75$. Dannelsen af biologisk slam var lav, og efterskylning var kun nødvendig ca. hver sjette dag i denne periode. Udviklingen af hydrogensulfid var imidlertid ukontrolleret og var utilfredsstillende i betragtning af, at der påvistes hydrogensulfid i udgangsstrømmen i koncentrationer af størrelsesordenen fra ca. 4 til 50 ppm efter tre ugers drift.Example 4 In Example 4, oxygen was introduced into the system in the same manner as described in Examples 1-3, with un enriched air at a pressure of 1 atmosphere being introduced into the system so that the total amount of oxygen added to the water and consumed all the columns were approx. 35 mg per liter. During the three-week period during which this trial ran, the removal of COD in the mean was approx. $ 75. The formation of biological sludge was low, and flushing was only needed approx. every six days during this period. However, the evolution of hydrogen sulphide was uncontrolled and unsatisfactory considering that hydrogen sulphide was detected in the starting stream at concentrations of the order of ca. 4 to 50 ppm after three weeks of operation.

14 3 O 6 Λ 1314 3 O 6 Λ 13

Eksempel 5 I eksempel 5 blev oxygen igen indført i alt væsentligt på samme måde som beskrevet i de foregående eksempler 1 til 4, idet oxygen blev indført som uberiget luft ved et svagt forøget tryk, således at det spildevand, der førtes gennem kulstofsøj lerne, oxygeneredes. COD-fjernelsen var under dette forsøg i middel ca. 90%. Efterskylning udførtes ca. hver anden dag og omfattede luftrensningsteknikken. Under dette forsøg var dannelsen af biologisk slam ikke voldsom, og der var intet bemærkelsesværdigt indhold af hydrogensulfid i de forreste søjler eller i udgangsstrømmen fra den sidste søjle.Example 5 In Example 5, oxygen was again introduced in substantially the same manner as described in previous Examples 1 to 4, with oxygen being introduced as un enriched air at a slightly increased pressure, so that the wastewater passing through the carbon columns was oxygenated. . During this trial, the COD removal was approximately ca. 90%. Rinse was performed approx. every other day and included the air purification technique. During this experiment, the formation of biological sludge was not violent and there was no remarkable content of hydrogen sulfide in the front columns or in the exit stream of the last column.

Eksempel 6 I eksempel 6 anvendtes aktiveret, fluid koks som ovenfor beskrevet som det aktiverede kulmateriale. Det raffinaderispildevand, som blev behandlet, havde en CQD-koncentration på i middel 700 mg. pr. liter. Spildevandet blev med en hastighed på ca. 61 liter pr. minut pr. kvadratmeter ledt kontinuert gennem seks på hinanden følgende kolonner med diameteren 5 cm og med lejer bestående af aktiveret, fluid koks, som havde højden 60 cm, efter at materialet havde sat sig. Der indførtes oxygen i systemet ved at indføre den oxygenholdige gasstrøm i spildevandet på samme måde som beskrevet ovenfor i eksempel 1. Der anvendtes luft til oxygenering af spildevandet på samme måde som beskrevet i de tidligere eksempler, idet spildevandet blev mættet med oxygen i ligevægt med luft ved et tryk, som varierede fra atmosfæretryk til 207 kPa overtryk på den måde, der svarede til den for kommercielt aktiveret kul beskrevne i eksempel 1. I middel tilsattes pr. liter 50 mg oxygen til spildevandet og blev i alle søjlerne forbrugt i de fire uger, som dette forsøg varede. Fjernelsen af COD ved hjælp af dette system var i middel ca. 80$. Der anvendtes luftrensningsteknik under efterskylningsoperationen for delvis at fjerne den biologiske vækst, som akkumuleredes på det aktiverede, fluide koks. I de fire uger, som dette forsøg forløb over, var der intet tegn på udvikling af hydrogensulfid i udløbsstrømmen fra sidste søjle på noget tidspunkt under forsøget. Endvidere lå den af det biologiske slam frembragte modstand indenfor acceptable grænser, da der ikke forekom overvælden- 14Example 6 In Example 6, activated fluid coke as described above was used as the activated charcoal material. The refinery wastewater treated had a mean CQD concentration of 700 mg. per. liter. The wastewater became at a rate of approx. 61 liters per liter. per minute square meter passed continuously through six consecutive columns of diameter 5 cm and with bearings consisting of activated fluid coke, which had a height of 60 cm after the material had settled. Oxygen was introduced into the system by introducing the oxygen-containing gas stream into the wastewater in the same manner as described above in Example 1. Air was used to oxygenate the wastewater in the same way as described in the previous examples, the wastewater being saturated with oxygen in equilibrium with air. at a pressure which varied from atmospheric pressure to 207 kPa overpressure in a manner similar to that of commercially activated coal described in Example 1. Medium was added per day. liter of 50 mg of oxygen to the wastewater and was consumed in all the columns for the four weeks that this experiment lasted. The removal of COD by this system averaged approx. $ 80. Air purification technique was used during the rinse operation to partially remove the biological growth that accumulated on the activated fluid coke. During the four weeks during which this experiment was conducted, there was no evidence of the development of hydrogen sulphide in the effluent stream from the last column at any point during the experiment. Furthermore, the resistance produced by the biological sludge was within acceptable limits, as no overwhelming 14

14306A14306A

de voldsom akkumulation i lejet/lejerne.the rampant accumulation in the bearing (s).

En oversigt over de driftsbetingelser, der anvendtes i de ovenfor beskrevne eksempler,samt over totalvirkningerne er angivet i nedenstående Tabel 1.An overview of the operating conditions used in the examples described above as well as of the total effects is given in Table 1 below.

15 143064143064

-p O-p O.

ep o o σ\ ko 3 vo in o ed cd cd cd |J in · 1-3 1-3 >~3 ko i-1 ·Ρ o <m o ir\ cm aj in ft cr\ -=t- i—i cd cd cd cd £ J ΚΊ *1-3 h) ^ h)ep oo σ \ ko 3 vo in o ed cd cd cd | J in · 1-3 1-3> ~ 3 ko i-1 · Ρ o <mo ir \ cm aj in ft cr \ - = t- i — i cd cd cd cd £ J ΚΊ * 1-3 h) ^ h)

SPSP

CDCD

rPrP

ftft

SS

CDCD

m -p °o ,¾ <M O in ·Γ-3 -Γ-3 -t-3 <D 33- ft m m C3 Φ φ cd Φ [-3 ·=Γ * 25 l"P 25 β O epm -p ° o, ¾ <M O in · Γ-3 -Γ-3 -t-3 <D 33- ft m m C3 Φ φ cd Φ [-3 · = Γ * 25 l "P 25 β O ep

U CMU CM

(D O(D O

+3 I O+3 I O

cd k\ ^¾. o o co +3 in m m o cd cd cd cd rH mco · h> h> h> mcd k \ ^ ¾. o o co +3 in m m o cd cd cd cd rH mco · h> h> h> m

(D(D

H βH β

CMCM

J bC OJ bC O

Μ O I b- rn CM^OOin-r-3 *P> ·ρ>Μ O I b- rn CM ^ OOin-r-3 * P> · ρ>

<0 £ OOrHiHCDCdCDCD<0 £ OOrHiHCDCdCDCD

£h (D M3 C iP · £5 *”D 1¾ S£ h (D M3 C iP · £ 5 * ”D 1¾ S

CQ »-1 0 M C •HCQ »-1 0 M C • H

-p +3 in φ ep O in 00 -r-J *r-D '1-3 η H ft H m O Φ CD Cd 03-p +3 in φ ep O in 00 -r-J * r-D '1-3 η H ft H m O Φ CD Cd 03

m PI -=r .2 2 i-3 Sm PI - = r .2 2 i-3 S

43 ep43 ep

•H• H

β T3 I c β Q3 ft ° 03 Ό 8J Ήβ T3 I c β Q3 ft ° 03 Ό 8J Ή

> C 43 -P> C 43 -P

o cd m ^ &0o cd m ^ & 0

43 43 Ό ft C43 43 Ό ft C

43 03 -P i—I TZJ *H43 03 -P i — I TZJ * H

bfl β cd P o g •p β <h ^ CQ 43 03 S Pi ^bfl β cd P o g • p β <h ^ CQ 43 03 S Pi ^

β 03 ·ι-3 O bQ S *Hβ 03 · ι-3 O bQ S * H

Φ CO C 43 0-1 G -P ^ > > cd G Cd bO ·Η 10 Η rp O · bOCPedQC^Oe-1^®®1Φ CO C 43 0-1 G -P ^>> cd G Cd bO · Η 10 Η rp O · bOCPedQC ^ Oe-1 ^ ®®1

β CQ -ip rP O βΓ"Ι G Ρ*ί β -Pβ CQ -ip rP O βΓ "Ι G Ρ * ί β -P

C hD en .H O c ·Η ·Η 43 Η OC hD and .H O c · Η · Η 43 Η O

β 43 Η β > β Φ 43β 43 Η β> β Φ 43

r-ι ·ρρ μ >)“ ·ΰ φ Ar-ι · ρρ μ>) “· ΰ φ A

Φ βΟ cu.M-yCSOcdbOΦ βΟ cu.M-yCSOcdbO

ft 4300^ CQ Φ Τ3 β 43 ·Η 0 Oh cm β β ί-ι ft -Ρ Φ ft Η rP Ο 03 43 0η Φ 03 CQ rp ^ ’— 43 0-4 i—I bO C3 β χ Φ bObObO'PP5 ft-H ° 3 Μ (D g Β X ω Η 03 Ό < Οft 4300 ^ CQ Φ Τ3 β 43 · Η 0 Oh cm β β ί-ι ft -Ρ Φ ft Η rP Ο 03 43 0η Φ 03 CQ rp ^ '- 43 0-4 i — I bO C3 β χ Φ bObObO' PP5 ft-H ° 3 Μ (D g Β X ω Η 03 Ό <Ο

Claims (2)

16 163064 Som det ses af resultaterne i Tabel 1, er den forbrugte oxygenmængde pr. kg fjernet COD kritisk i henseende til at kontrollere den aerobe biologiske oxidation af de på det aktiverede kul adsor-berede kontaminanter for således at forhindre en for voldsom slamproduktion, der vil bevirke tilstopning af lejet, og på samme tid undertrykke udviklingen af hydrogensulfid. Når luftrensning under efter-skylningen ikke anvendes, viser forsøgene 1 og 2 tydeligt, at det er væsentligt at holde mængden af tilført oxygen til lejerne på et niveau fra ea. 0,09 til ca. 0,15 kg oxygen pr. kg COD fjernet, for såvel at undertrykke udvikling af hydrogensulfid fra lejet som at minimere dannelsen af biologisk slam på det aktiverede kulmateriale. Yderligere kan det ses, at når luftrensning anvendes i efterskylningsteknikken, som f.eks. i forsøgene 3, 5 og 6, kan mindre mængder oxygen anvendes, d.v.s. 0,05 til ca. 0,12 kg forbrugt oxygen pr. kg fjernet COD, og fortrinsvis i området fra ca. 0,08 til ca. 0,12 kg oxygen pr. kg COD fjernet for at opnå fordelene ved opfindelsen. Patentkrav.As seen from the results in Table 1, the amount of oxygen consumed per Critically, CO 2 removed COD to control the aerobic biological oxidation of the activated charcoal adsorbed contaminants, thus preventing excessive sludge production which would clog the bed and at the same time suppress the development of hydrogen sulfide. When air purification during the rinsing is not used, experiments 1 and 2 clearly show that it is essential to keep the amount of oxygen supplied to the bearings at a level from ea. 0.09 to approx. 0.15 kg oxygen per kg COD removed to suppress the evolution of hydrogen sulfide from the bed as well as to minimize biological sludge formation on the activated charcoal. Further, it can be seen that when air purification is used in the post-rinse technique, e.g. In experiments 3, 5 and 6, smaller amounts of oxygen can be used, i.e. 0.05 to approx. 0.12 kg of oxygen consumed per kg of COD removed, and preferably in the range of approx. 0.08 to approx. 0.12 kg oxygen per kg of COD removed to obtain the advantages of the invention. Claims. 1. Fremgangsmåde til fjernelse af suspenderede og opløste organiske forureninger fra industrispildevand, hvorved spildevandet forbehandles for at fjerne suspenderede forureninger derfra og derefter ledes gennem et lag af aktiveret kul for at fjerne opløste organiske forureninger, idet gennemledningen gennem laget af aktiveret kul, hvis det findes ønskeligt, periodevis afbrydes af efterskylnin-ger af kullaget ved at lede vand op gennem laget med tilstrækkelig stor hastighed til at formindske den mængde biologisk vækst, der er akkumuleret på det aktive kul, kendetegnet ved, at spildevandet ledes gennem laget af aktiveret kul sammen med oxygen i en sådan mængde, at der opnås en kontrolleret aerob biologisk oxidation af de forureninger, der er adsorberet på det aktiverede kul, hvorhos denne oxygenmængde er 0,09-0,15 kg pr. kg COD-forureninger fjernet fra spildevandet, med mindre laget af aktiveret kul i forbindelse med efterskylningerne behandles med en oxygenholdig gasstrøm, i hvilket tilfælde den sammen med spildevandet gennemledte mængde oxygen er 0,05-0,12 kg pr. kg COD-forureninger fjernet fra spildevandet.A process for removing suspended and dissolved organic pollutants from industrial wastewater, thereby pretreating the wastewater to remove suspended contaminants therefrom and then passing through a layer of activated carbon to remove dissolved organic pollutants, passing through the activated carbon layer, if present desirably, intermittently interrupted by flushing of the coal layer by passing water up through the layer at a sufficiently high rate to reduce the amount of biological growth accumulated on the activated carbon, characterized in that the wastewater is passed through the layer of activated carbon together with oxygen in such an amount that a controlled aerobic biological oxidation of the pollutants adsorbed on the activated charcoal is obtained, where this amount of oxygen is 0.09 to 0.15 kg per liter. kg COD contaminants removed from the wastewater unless the layer of activated charcoal in connection with the flushes is treated with an oxygen-containing gas stream, in which case the amount of oxygen dissipated together with the wastewater is 0.05-0.12 kg per kg of COD contaminants removed from the wastewater.
DK358573A 1972-06-28 1973-06-28 PROCEDURE FOR THE REMOVAL OF ORGANIC POLLUTIONS FROM INDUSTRIAL WASTE WATER DK143064C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26723172A 1972-06-28 1972-06-28
US26723172 1972-06-28

Publications (2)

Publication Number Publication Date
DK143064B true DK143064B (en) 1981-03-23
DK143064C DK143064C (en) 1981-11-09

Family

ID=23017885

Family Applications (1)

Application Number Title Priority Date Filing Date
DK358573A DK143064C (en) 1972-06-28 1973-06-28 PROCEDURE FOR THE REMOVAL OF ORGANIC POLLUTIONS FROM INDUSTRIAL WASTE WATER

Country Status (10)

Country Link
JP (1) JPS4951760A (en)
BE (1) BE801541A (en)
CA (1) CA1033669A (en)
DE (1) DE2332298A1 (en)
DK (1) DK143064C (en)
FR (1) FR2190744B1 (en)
GB (1) GB1439401A (en)
IT (1) IT985802B (en)
NL (1) NL7308951A (en)
SE (1) SE388598B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2526095C3 (en) * 1975-06-11 1982-09-02 Standard Oil Co., 60601 Chicago, Ill. Process for cleaning waste water, in particular oil and fat-containing waste water
US4080287A (en) 1976-10-20 1978-03-21 Union Carbide Corporation Activated carbon treatment of oxygenated wastewater
DE2739690A1 (en) * 1977-09-02 1979-03-08 Willy F Palmer METHOD AND DEVICE FOR CLEANING WASTE WATER
FR2443426A1 (en) * 1978-12-07 1980-07-04 Rech Prod Agents Chimi Et METHOD FOR THE BIOLOGICAL TREATMENT OF A LIQUID EFFLUENT ON A BED OF ADSORBENT MATERIAL
DE3025353A1 (en) * 1980-07-04 1982-01-28 Basf Ag, 6700 Ludwigshafen Waste water purificn. with active charcoal columns - the first being aerated, giving reduced charcoal losses
AU551752B2 (en) * 1980-09-25 1986-05-08 Sterling Drum Inc. Treatment of waste water
US4568463A (en) * 1983-02-24 1986-02-04 Klein Samuel H Method and apparatus for the purification of water and other aqueous liquids
DE3436453A1 (en) * 1984-10-05 1986-04-17 Bayer Ag, 5090 Leverkusen METHOD FOR WASTEWATER CLEANING
JPS63158193A (en) * 1987-12-15 1988-07-01 Ebara Infilco Co Ltd Aerobic biological treatment of sewage
DE3815271A1 (en) * 1988-05-05 1989-11-16 Sandoz Ag METHOD FOR CLEANING INDUSTRIAL SEWAGE
DE3920551A1 (en) * 1989-06-23 1991-01-03 Diemert Klaus Dr Device for cleaning heavily contaminated water - divides water flow into a number of streams so that the flow rate through and the problems involved with using larger vessels are avoided
EP0442157B1 (en) * 1990-02-14 1994-12-28 Tauw Milieu B.V. A method for the purification of contaminated water and apparatus for carrying out said method.
GB0215501D0 (en) * 2002-07-04 2002-08-14 Ws Atkins Consultants Ltd Floating media filter
CN102583879A (en) * 2012-01-16 2012-07-18 宁波工程学院 High-concentration integrated chemical organic wastewater treatment process

Also Published As

Publication number Publication date
DE2332298A1 (en) 1974-01-10
DK143064C (en) 1981-11-09
BE801541A (en) 1973-12-27
JPS4951760A (en) 1974-05-20
FR2190744B1 (en) 1980-03-14
CA1033669A (en) 1978-06-27
IT985802B (en) 1974-12-20
GB1439401A (en) 1976-06-16
FR2190744A1 (en) 1974-02-01
AU5726773A (en) 1975-01-09
NL7308951A (en) 1974-01-02
SE388598B (en) 1976-10-11

Similar Documents

Publication Publication Date Title
US4053396A (en) Control of aerobic biological growth in activated carbon waste water treatment
JP5745276B2 (en) Suspended solvent granular activated carbon membrane bioreactor system and process
US4069148A (en) Industrial waste water treatment process
KR101802534B1 (en) Wastewater treatment system and process including irradiation of primary solids
DK143064B (en) PROCEDURE FOR THE REMOVAL OF ORGANIC POLLUTIONS FROM INDUSTRIAL WATER
Kim et al. Application of microfiltration systems coupled with powdered activated carbon to river water treatment
Mikhak et al. Refinery and petrochemical wastewater treatment
KR20120099626A (en) Low concentration wastewater treatment system and process
US5230803A (en) Ground- and wastewater purification
US4239620A (en) Cyanide removal from wastewaters
KR100861554B1 (en) Filtration and adsorption multistage wastewater processing unit that remove t-p of discharge waterway a sewage disposal
US3836460A (en) Process for removal of algae,diatoms and organic contaminants from water
US20180086647A1 (en) Method and device for treating water by contact with an adsorbent material
JP2006281215A (en) Apparatus for treating organic waste water and method therefor
US4252643A (en) Removal of toxic and odorous organics from waste water by saturated activated carbon
KR200336701Y1 (en) Polluted river-water purification system using direct aeration
BE1010340A6 (en) Method and apparatus for the purification of contaminated water.
JPS6344989A (en) Treatment of washing waste water containing oxidizing agent
Chittala et al. Performance studies on a pharmaceutical wastewater treatment plant with a special reference to total dissolved solids removal
JPH03118891A (en) Treatment of organic sewage
JP3697938B2 (en) Wastewater treatment equipment
JPH0338289A (en) Biologically activated carbon water-treatment apparatus
JPH04334593A (en) Advanced water treatment system and method for starting up the same
Jyothi et al. Feasibility of Anaerobic Fluidized Membrane Bioreactor (AFMBR) in the Treatment of Dairy Wastewater—A Review
BE1023949B1 (en) Method for purifying waste water