DE874181C - Process for the production of a photoelectrically active compound - Google Patents
Process for the production of a photoelectrically active compoundInfo
- Publication number
- DE874181C DE874181C DEP3160D DEP0003160D DE874181C DE 874181 C DE874181 C DE 874181C DE P3160 D DEP3160 D DE P3160D DE P0003160 D DEP0003160 D DE P0003160D DE 874181 C DE874181 C DE 874181C
- Authority
- DE
- Germany
- Prior art keywords
- sulfur
- metal
- crystals
- pressure
- selenium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 150000001875 compounds Chemical class 0.000 title claims description 13
- 238000000034 method Methods 0.000 title claims description 4
- 230000008569 process Effects 0.000 title claims description 3
- 238000004519 manufacturing process Methods 0.000 title description 4
- 239000013078 crystal Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 239000011593 sulfur Substances 0.000 claims description 8
- 238000000137 annealing Methods 0.000 claims description 7
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 5
- 229910052711 selenium Inorganic materials 0.000 claims description 5
- 239000011669 selenium Substances 0.000 claims description 5
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 4
- 230000002349 favourable effect Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000002425 crystallisation Methods 0.000 claims description 2
- 230000008025 crystallization Effects 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000007858 starting material Substances 0.000 claims description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 4
- 239000005083 Zinc sulfide Substances 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 150000003346 selenoethers Chemical class 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- FRLJSGOEGLARCA-UHFFFAOYSA-N cadmium sulfide Chemical class [S-2].[Cd+2] FRLJSGOEGLARCA-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052981 lead sulfide Inorganic materials 0.000 description 1
- 229940056932 lead sulfide Drugs 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical compound [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 150000004772 tellurides Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B1/00—Single-crystal growth directly from the solid state
- C30B1/02—Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
- Light Receiving Elements (AREA)
Description
Verfahren zur Herstellung einer photoelektrisch wirksamen Verbindung Natürliche Zinkblendekristalle sind bekanntlich photoelektrisch wirksam. Sie zeigen meist im Dunkeln einen sehr hohen elektrischen Widerstand, der sich bei Bestrahlung finit Licht von geeigneter Wellenlänge sehr stark vermindert, so daß diese Kristalle in Anordnungen nach Art der Selenzellen für photoelektrische Zwecke benutzt werden können.Process for the production of a photoelectrically active compound Natural zinc blende crystals are known to be photoelectrically effective. they show usually in the dark a very high electrical resistance, which increases when exposed to radiation finite light of suitable wavelength very much diminished, so that these crystals be used in arrangements of the selenium cell type for photoelectric purposes can.
Künstlich hergestellte Zinksulfidkristalle, die beispielsweise in besonders reiner Form als Zinksulfidleuchtstoffe Verwendung finden, sind jedoch vielfach nicht nur schlecht für photoelektrische Zwecke geeignet. Sie leiten bereits im Dunkeln beträchtlich, so daß (las Verhältnis des Hellstromes bei bestimmter l',elichtung zum Dunkelstrom, das ein Maß für die Brauchbarkeit einer derartigen photoelektrischen Widerstandszelle darstellt, zu klein ausfällt. Besonders ungünstig liegen in dieser Hinsicht die Verliä ltnisse bei Kadmiumsulfiden.Artificially produced zinc sulfide crystals, for example in However, they are used in a particularly pure form as zinc sulfide phosphors often not only badly suited for photoelectric purposes. You are already in charge Considerable in the dark, so that (read the ratio of the light current at a certain l ', elimination to the dark current, which is a measure of the usefulness of such a photoelectric Resistance cell is too small. Particularly unfavorable are in this Regarding the situation with cadmium sulphides.
Nach neueren Untersuchungen dieser Erscheinungen beruht die nachteilige Dunkelleitfähigkeit, z. B. der Sulfidkristalle, die an sich im Dunkeln Isolatoren sein sollten, auf der Anwesenheit geringer Mengen der betreffenden Grundmetalle, also des Zinks bzw. des Kadmiums. Bei der üblichen Herstellung dieser Verbindungen, bei der eine Mischung der Ausgangsstoffe einer Glühbehandlung unterworfen wird. tritt nämlich eine teilweise Dissoziation der Verbindungen unter Metallabscheidung eine; dies. insbesondere dann, wenn zur Erzielung großer Kristalle hohe Glühtemperaturen von etw 120o° und darüber angewendetwerden. Die gleichenErscheinungentreten bei Verbindungen des Schwefels mit anderen Metallen und auch bei Seleniden und Tellur Iden beliebiger Metalle auf.According to recent studies of these phenomena, the disadvantage is based Dark conductivity, e.g. B. the sulfide crystals, which are insulators in the dark should be on the presence of small amounts of the base metals concerned, that is, of zinc or cadmium. In the usual preparation of these compounds, in which a mixture of the starting materials is subjected to an annealing treatment. namely, a partial dissociation of the compounds occurs with metal deposition one; this. especially when high annealing temperatures are required to obtain large crystals be used from sth 120o ° and above. The same appearances in compounds of sulfur with other metals and also in selenides and tellurium Iden of any metals.
Die Erfindung bezweckt, diese bei der üblichen Glühbehandlung zur Herstellung der Verbindungen auftretende Dissoziation nachträglich wieder zu beseitigen, damit die Verbindungen, z. B. die Sulfidlcristalle, möglichst in der genauen stöchiometrischen Zusammensetzung erhalten werden. Bei den zu diesem Zweck angestellten Versuchen hat sich gezeigt, daß der spezifische Dunkelwiderstand geradezu ein Maß für die Abweichungen von den genauen stöchiometrischen Zusammensetzungen darstellt. Je sorgfältiger der Überschuß an Metallatomen beseitigt wird, desto geringer ist die Dunkelleitfähigkeit. Dieser schädliche Metallüberschuß ist naturgemäß außerordentlich klein. Er läßt sich z. B. kaum an der Körperfarbe der Verbindung feststellen. Auch werden die Lumineszenzeigenschaften dieser Verbindungen, die sich bekanntlich schon durch Verunreinigungen in der Größenordnung von 1o-6 merklich verändern, noch nicht durch einen Metallüberschuß beeinflußt, der die Verwendung dieser Stoffe als photoelektrisch wirksame Widerstände bereits unmöglich macht.The aim of the invention is to use these in the usual annealing treatment Establishing the connections, subsequently eliminating any dissociation that occurs, so that the connections, e.g. B. the Sulfidlcristalle, if possible in the exact stoichiometric Composition can be obtained. In the experiments made for this purpose it has been shown that the specific dark resistance is a measure of the Represents deviations from the exact stoichiometric compositions. The more careful the excess of metal atoms is eliminated, the lower the dark conductivity. This harmful metal excess is naturally extremely small. He let z. B. can hardly be found in the body color of the connection. Also the luminescence properties these compounds, which are known to be caused by impurities in the order of magnitude change noticeably from 1o-6, not yet influenced by an excess of metal, the use of these substances as photoelectrically effective resistors already makes impossible.
Eingehende Untersuchungen haben gezeigt, daß der Dunkelwiderstand der Kristalle einer bei Belichtung ihren elektrischen Widerstand ändernden chemischen. Verbindung eines Metalls mit einem der Elemente Schwefel, Selen oder Tellur sehr stark erhöht und damit eine hervorragende photoelektrische Wirksamkeit der Verbindung erreicht werden kann, wenn die durch Mischen der Ausgangsstoffe und Glühen hergestellte Verbindung, bei der die Metallkomponente im stöchiometrischen Überschuß vorhanden ist, nach der Erfindung zur Beseitigung des Metallüberschusses nachträglich noch in einem abgeschlossenen, druckbeständigen Gefäß in einem unter hohem Druck von mehr als 5 Atmosphären stehenden Dampf des nichtmetallischen Anteiles der chemischen Verbindung, also in Schwefel-, Selen- bzw. Tellurdampf, für kurze Zeit, in günstigen Fällen wenige Minuten, auf hohe Temperatur von etwa 8oo° erhitzt wird. Beispielsweise werden die nach üblichen Verfahren hergestellten Kristalle aus Zinksulfid unter Zusatz einer ausreichenden Schwefelmenge in einem abgeschlossenen, druckbeständigen Gefäß, vorzugsweise in einer starkwandigen Ouarzglasampulle, für kurze Zeit auf etwa 8oo° erhitzt, wobei der entstehende Schwefeldampf von hohem Druck unter Mitwirkung der hohen Temperatur zu einer-Bindung der freien, nachteilig' wirkenden Metallatome führt. In günstigen Fällen genügt schon eine Glühbehandlung von wenigen Minuten zur Erzielung eines sehr hohen _I@ruckwiderstandes und damit einer guten photoelektrischen Wirksamkeit der Verbindung.In-depth studies have shown that the dark resistance of the crystals a chemical that changes its electrical resistance when exposed to light. Compound of a metal with one of the elements sulfur, selenium or tellurium greatly increased and thus an excellent photoelectric effectiveness of the compound can be achieved if the prepared by mixing the raw materials and annealing Compound in which the metal component is present in a stoichiometric excess is, according to the invention to remove the excess metal afterwards in a closed, pressure-resistant vessel in a pressurized by more than 5 atmospheres standing steam of the non-metallic part of the chemical Compound, i.e. in sulfur, selenium or tellurium vapor, for a short time, in favorable Cases a few minutes, heated to a high temperature of about 8oo °. For example the crystals of zinc sulfide produced by conventional methods are under Add a sufficient amount of sulfur in a sealed, pressure-resistant Open the vessel for a short time, preferably in a thick-walled oarz glass ampoule about 8oo ° heated, with the resultant sulfur vapor of high pressure with the participation the high temperature leads to a bond of the free, detrimental 'metal atoms leads. In favorable cases, an annealing treatment of a few minutes is sufficient to achieve a very high jerk resistance and thus a good photoelectric Effectiveness of the connection.
Bei der Herstellung von Photowiderständen hat man bisher die genannten Verbindungen unter Schwefelzugabe lediglich in einem offenen Gefäß mit gegebenenfalls lose aufgesetztem Deckel, also bei etwa Atmosphärendruck, zur Erzielung einer geeigneten Kristallausbildung geglüht, wobei der entstehende Schwefeldampf zur Vermeidung einer Oxydation dient. Ein bei dem Verfahren nach der Erfindung erstrebter äußerst hoher Dunkelwiderstand ist dabei nicht zu erreichen. Es muß dazu wegen des großen Unterschiedes zwischen dem Dissoziationsdruck der Verbindung und dem Dampfdruck des Metalloids unbedingt ein v akuumclicht abgeschlossenes, druckbeständiges Gefäß vorgesehen und die Glühbehandlung der Kristalle bei einem sehr hohen, 5 Atmosphären übersteigendem Dampfdruck vorgenommen werden, um die gewünschte Gleichgewichtsreaktion herbeizuführen.So far, these have been used in the manufacture of photoresistors Connections with the addition of sulfur only in an open vessel with possibly loosely attached lid, so at about atmospheric pressure, to achieve a suitable Annealed crystal formation, the resulting sulfur vapor to avoid a Oxidation is used. An extremely high one striven for in the method according to the invention Dark resistance cannot be achieved here. It has to because of the big difference between the dissociation pressure of the compound and the vapor pressure of the metalloid It is essential that a pressure-resistant vessel is sealed and sealed in a vacuum annealing the crystals at a very high temperature exceeding 5 atmospheres Vapor pressure can be made to bring about the desired equilibrium reaction.
Auf einem ganz anderen Gebiet, nämlich bei der Herstellung von Gleichrichtern bzw. Detektoren, wo es auf die Erzeugung .dünner Sperrschichten mit Ventilwirkung ankommt, findet sich bereits die Angabe, daß feinpulverisierte Selenide, Telluride, Sulfide und Arsenide zuerst zu festen Körpern gepreßt und diese Pulverpreßlinge dann zur Verbesserung ihrer Gleichrichtereigenschaften in einem geschlossenen Gefäß in Schwefelhochdruckdampf geglüht werden sollen. Es wird dabei bemerkt, daß ein Druck von 2 oder mehr Atmosphären angewendet werden kann, daß aber so hohe Drücke nicht notwendig sind, und daß beispielsweise bei Bleisulfid ausgezeichnete Ergebnisse bei Atmosphärendruck erzielt werden können. Derart behandelte Detektorpreßkörper aus feinpulverisierten Stoffen zeigen jedoch keine brauchbaren photoelektrischen Widerstandseigenschaften, die eine bestimmte Kristallisation des Ausgangspulvers voraussetzen.In a completely different area, namely in the manufacture of rectifiers or detectors, where it is necessary to generate .thin barrier layers with valve action arrives, there is already the statement that finely powdered selenides, tellurides, Sulphides and arsenides first pressed into solid bodies and these powder pressed pieces then to improve their rectifying properties in a closed vessel are to be annealed in high pressure sulfur steam. It is noted that a Pressures of 2 or more atmospheres can be used, but pressures as high as that are not necessary and that, for example, with lead sulfide, excellent results can be achieved at atmospheric pressure. Detector compacts treated in this way from finely powdered materials, however, do not show any useful photoelectric Resistance properties that a certain crystallization of the starting powder presuppose.
Bekannt sind physikalische Untersuchungen über die Elektronenwanderung in durch Überschuß einer Komponente gefärbten Alkali-Halogenid-Kristallen, wobei man durch Glühen von Kaliumjodid-Kristallen in einer Jodatmosphäre von hohem Druck, etwa to at., einen starken Einbau von Jod unter auffallender Braunverfärbung der Kristalle erzielt hat.Physical studies on electron migration are known in alkali halide crystals colored by an excess of one component, wherein by glowing potassium iodide crystals in a high pressure iodine atmosphere, about to at., a strong incorporation of iodine with a noticeable brown discoloration of the Has scored crystals.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP3160D DE874181C (en) | 1940-04-27 | 1940-04-27 | Process for the production of a photoelectrically active compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP3160D DE874181C (en) | 1940-04-27 | 1940-04-27 | Process for the production of a photoelectrically active compound |
Publications (1)
Publication Number | Publication Date |
---|---|
DE874181C true DE874181C (en) | 1953-04-20 |
Family
ID=7358508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DEP3160D Expired DE874181C (en) | 1940-04-27 | 1940-04-27 | Process for the production of a photoelectrically active compound |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE874181C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1043536B (en) * | 1954-09-27 | 1958-11-13 | Rca Corp | Process for the production of photoconductive material consisting of a mixture of cadmium sulfide, cadmium selenide or cadmium sulfide selenide |
DE1046739B (en) * | 1954-07-30 | 1958-12-18 | Siemens Ag | Process for the production of thin semiconductor layers, in particular for Hall voltage generators |
DE980019C (en) * | 1954-01-22 | 1969-08-07 | Siemens Ag | Process for the production of compounds of the volatile components gallium or indium with the volatile components arsenic and phosphorus in crystalline form |
-
1940
- 1940-04-27 DE DEP3160D patent/DE874181C/en not_active Expired
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE980019C (en) * | 1954-01-22 | 1969-08-07 | Siemens Ag | Process for the production of compounds of the volatile components gallium or indium with the volatile components arsenic and phosphorus in crystalline form |
DE1046739B (en) * | 1954-07-30 | 1958-12-18 | Siemens Ag | Process for the production of thin semiconductor layers, in particular for Hall voltage generators |
DE1043536B (en) * | 1954-09-27 | 1958-11-13 | Rca Corp | Process for the production of photoconductive material consisting of a mixture of cadmium sulfide, cadmium selenide or cadmium sulfide selenide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69329233T2 (en) | HEAT TREATMENT OF A SEMICONDUCTOR DISC | |
DE2006714C3 (en) | Electrically conductive oxides containing bismuth | |
DE3319346A1 (en) | POLYCRYSTALLINE TRANSPARENT SPINNEL SINTER BODY AND METHOD FOR THE PRODUCTION THEREOF | |
DE2733354A1 (en) | METHOD OF MANUFACTURING A CERAMIC PRODUCT | |
DE1496540B1 (en) | Process for the production of coatings from metallic copper and / or silver on ceramic molded bodies that have been removed from glass | |
DE2038564C3 (en) | Quartz glass device part, in particular quartz glass tube, with nuclei that promote crystal formation contained in its outer surface layer for use at high temperatures, in particular for carrying out semiconductor technology processes | |
DE874181C (en) | Process for the production of a photoelectrically active compound | |
DE838693C (en) | Process for regulating the luminescence and conductivity of single crystal and coarse crystal layers | |
DE1558421B1 (en) | Process for producing arsenic of the highest purity | |
DE2225792A1 (en) | Screen for a dark lane cathode ray tubes and process for its manufacture | |
DE941560C (en) | Process for the production of photo resistors | |
DE1521330A1 (en) | Process for making thin layers of rare earth chalcogenides | |
Kamikawa | Formation of substitutional hydrogen centers in LiF: OH crystals | |
DE2148120A1 (en) | Process for depositing glass films | |
DE2447224A1 (en) | PROCESS FOR GROWING UP PYROLITIC SILICON DIOXIDE LAYERS | |
DE2031884A1 (en) | Method for forming a silicate gas layer on the surface of a silicon plate of a semiconductor component | |
DE1483245A1 (en) | Process for the production of ferromagnetic alloys | |
DE2065068A1 (en) | Mass for the production of electrical elements. Eliminated from: 2006714 | |
DE3015886A1 (en) | SILICON CARBIDE BODY AND METHOD FOR THEIR PRODUCTION | |
DE1011594B (en) | Process for the production of quartz glass | |
DE1098316B (en) | Process for the production of single-crystalline coatings from doped semiconductor raw materials by vapor deposition in a vacuum | |
DE913332C (en) | Process for the production of photoelectrically active selenides and tellurides | |
DE683330C (en) | Process for the production of metal compounds used as photoelectrically sensitive organ in barrier cells | |
DE976468C (en) | Method for producing an excess semiconductor from a defect semiconductor | |
DE2313865A1 (en) | METHOD OF MANUFACTURING LEAD (II) OXIDE FILM |