DE854073C - Method for producing bubble-free quartz glass - Google Patents

Method for producing bubble-free quartz glass

Info

Publication number
DE854073C
DE854073C DEP3267D DEP0003267D DE854073C DE 854073 C DE854073 C DE 854073C DE P3267 D DEP3267 D DE P3267D DE P0003267 D DEP0003267 D DE P0003267D DE 854073 C DE854073 C DE 854073C
Authority
DE
Germany
Prior art keywords
quartz glass
pressure
hydrogen
melting
free quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DEP3267D
Other languages
German (de)
Inventor
Gerhard Fest
Walter Dr Haenlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority to DEP3267D priority Critical patent/DE854073C/en
Application granted granted Critical
Publication of DE854073C publication Critical patent/DE854073C/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • C03B5/2252Refining under reduced pressure, e.g. with vacuum refiners

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

Verfahren zum Herstellen von blasenfreiem Quarzglas Das bisher am meisten angewendete Verfahren, Quarzglas zu erschmelzen, bestand darin, daß mau an ein vorhandenes Quarzglas- oder Quarzgutrohr in mühsa iner _\rheit kleine Bergkristallstücke im Wasserstoff-Sauerstoff-Gebläse anklebte und diese verglaste. Hierbei entstand ein einigermaßen blasenfreies Quarzglas erst nach mehrmaligem Durchschmelzen des aufgebauten Quarzglaskörpers. Versucht inan, Quarzglas in einem Schmelzgefäß zu erschmelzen, so entsteht meist ein sehr stark mit Wasen <ltirclisetzter Schnielzling. Es ist daher bereits vorgeschlagen worden, kleinkörnigen Bergkristall txler aber auch körnige Kieselsäure in einem elektrisclic@n Vakuumofen zu erschmelzen. Auch hierbei wurden jedoch ausreichend blasenfreie Quarzglaskörper nicht erhalten, weil bei der h.rschinelzting unter Vakuum eine starke Verdampfung der Kieselsäure eintrat und die hierdurch entstandeneii großen Blasen aus der zähen Quarzschmelze nicht genügend entweichen konnten. Uni dies zu vernicid@n hat man schon vorgeschlagen, beim Vakuumschmelzen von Bergkristall nach Erreichen der Schmelztemperatur die Schmelze der I:inwirkun:r eines unter einem Überdruck von 8 bis 12 Atin. und mehr stehenden Gases, insbesondere Kohlensäure, auszusetzen. Auch dieses Verfahren befriedigte jedoch nicht, da zwar durch die Druckeinwirkung des Gases die beim Schmelzvorgang entstandenen sehr kleinen Gasblasen beseitigt, größere jedoch nur auf kleinen Raum zusammengedrängt wurden, so daß als Endergebnis ein immerhin noch in gewissem Maße Gasblasen enthaltendes Quarzglas entstand.Method for producing bubble-free quartz glass The so far on Most of the methods used to melt quartz glass consisted of mau to an existing quartz glass or quartz tube in laboriously small pieces of rock crystal stuck in the hydrogen-oxygen blower and glazed them. This resulted in a somewhat bubble-free quartz glass only after the built-up quartz glass body. Try to put quartz glass in a melting pot melt, the result is usually a Schnielzling very strongly mixed with water. It has therefore already been suggested to txler small-grain rock crystal though also to melt granular silica in an electric vacuum furnace. Even here, however, sufficiently bubble-free quartz glass bodies were not obtained because During the h.rschinelzting, strong evaporation of the silica occurred under vacuum and the resulting large bubbles from the viscous quartz melt do not were able to escape sufficiently. Uni to vernicid @ n has already been suggested, in the vacuum melting of rock crystal after reaching the melting temperature the melt the I: effect: r one under an overpressure of 8 to 12 atins. and more standing Gas, especially carbon dioxide. This procedure was also satisfactory but not, because the pressure of the gas causes the melting process resulting Eliminates very small gas bubbles, but compresses larger ones only in a small space so that the end result is still a gas bubble to a certain extent Quartz glass was created.

Erfindungsgemäß kann praktisch blasenfreies 0uarzglas auf einfache und sichere Weise erhalten werden, wenn in dem zum Schmelzen des Ausgangsstoffes, etwa kleinkörniger Bergkristall oder körnige Kieselsäure, dienenden elektrisch beheizten Ofen bis zum Erreichen der Schmelztemperatur und auch noch während des mindestens io Minuten währenden .eigentlichen Schmelzvorganges eine unter einem Druck von io bis i5o Torr stehende Wasserstoffatmosphäre aufrechterhalten wird, deren Druck nach Beendigung des Schmelzvorganges auf etwa i bis 2 Atm. erhöht wird. Der zum Schmelzen dienende Ofen muß in bekannter Weise mit einem Vakuumanschluß versehen sein, um vor Einleitung des Wasserstoffes ihn weitgehend entlüften zu können. Der Ofen wird in einem Zeitraum von rund i Stunde von Zimmertemperatur bis auf die Schmelztemperatur des Ausgangsstoffes, die üblicherweise etwa 2ooo bis 22oo° beträgt, hochgeheizt. Die Schmelztemperatur wird vorzugsweise für eine Dauer von 15 bis 20 :Minuten aufrechterhalten. Der im Ofen während des Hochheizens und auch während der eigentlichen Schmeizzeit eingeleitete Wasserstoff steht vorzugsweise unter einem Druck von .5o Torr. Durch den Druck des schön beim Hochheizen des Ofens vorhandenen Wasserstoffes wird die Kieselsäureverdampfung des Ausgangsstoffes stark unterdrückt, so daß es nicht zur Bildung großer Kieselsäureverdampfungsblasen kommen kann. Der 1\'asserstoff dringt zwar andererseits in die Quarzschmelze ein und füllt auch die zwischen den einzelnen Ausgangskörnern vorhandenen kleinen Zwischenräume an, was jedoch nicht weiter von Schaden ist, da durch die nach Beendigung des Schmelzvorgailges stattfindende Erhöhung des Wasserstoffdruckes auf etwa i bis 2 Atm. die Schmelze etwas zusammengepreßt und der Druck in den Gasbläschen auf annähernd i Atm. erhöht wird. Da der in der Schmelze schon früher absorbierte M'asserstoff jedoch nur unter einem Druck von beispielsweise 5o Torr steht, wird der in den Bläschen vorhandene, auf höheren Druck gekommene Wasserstoff von der Schmelze praktisch restlos absorbiert, zumal es sich nur um sehr kleine Wasserstoffmengen handelt. Diese Absorption des Wasserstoffes wird dabei durch den Umstand, daß Wasserstoff von allen Gasen am leichtesten in Quarz hineindiffundiert, besonders unterstützt.According to the invention, practically bubble-free acrylic glass can be produced in a simple manner and safely obtained if, in the process of melting the starting material, Small-grain rock crystal or granular silica, for example, are used electrically heated Furnace until the melting temperature is reached and also during the at least 10 minutes of the actual melting process, one under a pressure of 10 until 15o Torr a standing hydrogen atmosphere is maintained, the pressure of which after End of the melting process to about 1 to 2 atm. is increased. The one to melt Serving furnace must be provided in a known manner with a vacuum connection in order to to be able to largely vent it before introducing the hydrogen. The furnace will in a period of around 1 hour from room temperature to the melting temperature of the starting material, which is usually about 2ooo to 22oo °, heated up. The melting temperature is preferably maintained for a period of 15 to 20 minutes. The one in the oven during heating up and also during the actual melting time introduced hydrogen is preferably under a pressure of .5o Torr. By the pressure of the hydrogen, which is present when the furnace is heated up, becomes the Silica evaporation of the starting material is strongly suppressed, so that it does not lead to Formation of large silica evaporation bubbles can occur. The hydrogen penetrates on the other hand into the quartz melt and also fills the between the individual Starting grains present small gaps, which, however, is not further from Damage is due to the increase occurring after the end of the melting process the hydrogen pressure to about 1 to 2 atm. the melt compressed a little and the pressure in the gas bubbles to approximately 1 atm. is increased. Since the in the However, melt previously only absorbed hydrogen under a pressure of for example 50 Torr, the pressure present in the vesicles is at a higher pressure Any hydrogen that has come into the melt is practically completely absorbed, especially since it is is only a very small amount of hydrogen. This absorption of hydrogen is made possible by the fact that hydrogen is the easiest of all gases in Quartz diffused into it, especially supported.

Claims (1)

PATENTANSPRUCH: Verfahren zum Herstellen von blasenfreiem Quarzglas, bei dein kleinstückiger Bergkristall oder körnige Kieselsäure in einem Ofen elektrisch geschmolzen werden, dadurch gekennzeichnet, daß in dein Ofen bis zum Erreichen der Schmelztemperatur und auch noch während des mindestens io Minuten währenden eigentlichen Schmelzvorganges eine unter einem Druck von io bis i5o Torr, vorzugsweise 5o Torr, stehende Wasserstoffatmosphäre aufrechterhalten wird, deren Druck nach Beendigung des Schmelzvorganges auf etwa i bis 2 Atm, erhöht wird.PATENT CLAIM: Process for the production of bubble-free quartz glass, with your small rock crystal or granular silica in an oven electrically be melted, characterized in that in your furnace until reaching the Melting temperature and also during the actual at least 10 minutes Melting process one under a pressure of 10 to 15o Torr, preferably 50 Torr, standing hydrogen atmosphere is maintained, the pressure of which after completion the melting process is increased to about 1 to 2 atm.
DEP3267D 1941-12-07 1941-12-07 Method for producing bubble-free quartz glass Expired DE854073C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DEP3267D DE854073C (en) 1941-12-07 1941-12-07 Method for producing bubble-free quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEP3267D DE854073C (en) 1941-12-07 1941-12-07 Method for producing bubble-free quartz glass

Publications (1)

Publication Number Publication Date
DE854073C true DE854073C (en) 1952-10-30

Family

ID=7358625

Family Applications (1)

Application Number Title Priority Date Filing Date
DEP3267D Expired DE854073C (en) 1941-12-07 1941-12-07 Method for producing bubble-free quartz glass

Country Status (1)

Country Link
DE (1) DE854073C (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE953557C (en) * 1953-08-01 1956-12-06 Siemens Ag Process for the production of quartz glass which essentially suppresses the ozone-forming radiation, in particular of covers for ultraviolet emitters
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE953557C (en) * 1953-08-01 1956-12-06 Siemens Ag Process for the production of quartz glass which essentially suppresses the ozone-forming radiation, in particular of covers for ultraviolet emitters
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Similar Documents

Publication Publication Date Title
DE854073C (en) Method for producing bubble-free quartz glass
EP0100001B1 (en) Method of forming a light-transmitting solid fire-screening layer from an intumescent material
DE1496025B2 (en) PROCESS FOR SEPARATING TWO BY MEANS OF A SINTERED GLASS FITTING, FASTENED PARTS OF THE BULB OF A CATHODE BEAM TUBE
DE2205560B2 (en) Process for producing bubble-free and OH-free quartz glass and device for carrying out the process
DE2163475C3 (en) Process for melting glass windows of optical quality into metal bodies while maintaining the original visibility
DE540760C (en) Process for the production of electron tubes
DE1061981B (en) Process for the production of double glazing from wired glass and double glazing produced by the process
DE2342494A1 (en) DISCHARGE LAMP WITH A NICKEL AND ALUMINUM ELECTRODE
AT77006B (en) Method for drying patent leather and the like.
AT120212B (en) Electron-emitting body and process for its manufacture.
DE1019443B (en) Method and device for lauting glass melts
DE2208347A1 (en) Process for the production of potassium peroxide
AT312747B (en) Process for the production of electrodes for electronic devices and gas discharge tubes
DE1421926B2 (en) PROCESS FOR INCREASING THE TENSILE STRENGTH OF GLASS OBJECTS THROUGH EXCHANGE DIFFUSION OF ALKALINE METAL IONS AT INCREASED TEMPERATURES
DE2948778A1 (en) Inexpensive thermal insulation, esp. panels - made of self:supporting layer of foamed water glass with metal foil backing
DE665838C (en) Process for the production of luminescent screens for Braun tubes using heat- or oxygen-sensitive luminous materials
DE915840C (en) Process for gas-tight soldering of beryllium discs
DE2913337C2 (en)
DE529544C (en) Process for the manufacture of electric cathode glow lamps
AT156472B (en) Electric heating element made of a rod-shaped resistance heating conductor and a ceramic protective tube.
AT113436B (en) Process for the production of high emission vacuum tubes.
DE569970C (en) Method for producing a discharge vessel using a getter material
DE1200186B (en) The use of magnesite bricks for the lining of regenerators for industrial furnaces
DE558131C (en) Production of anhydrous hydrofluoric acid
DE564463C (en) Process for the rapid cooling of shatterproof glass