DE845338C - Production of magnesium-aluminum-hydride - Google Patents

Production of magnesium-aluminum-hydride

Info

Publication number
DE845338C
DE845338C DEW5310A DEW0005310A DE845338C DE 845338 C DE845338 C DE 845338C DE W5310 A DEW5310 A DE W5310A DE W0005310 A DEW0005310 A DE W0005310A DE 845338 C DE845338 C DE 845338C
Authority
DE
Germany
Prior art keywords
magnesium
aluminum
hydride
production
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DEW5310A
Other languages
German (de)
Inventor
Richard Dipl-Chem Bauer
Egon Dr Wiberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DEW5310A priority Critical patent/DE845338C/en
Application granted granted Critical
Publication of DE845338C publication Critical patent/DE845338C/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/24Hydrides containing at least two metals; Addition complexes thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)

Description

Herstellung von Magnesium-aluminium-hydrid In neuerer Zeit haben die bisher bekannten Hydrierungsverfahren durch Anwendung des ätherlöslichen Lithium-aluminium-hvdrids LiA1H4 eine bedeutsame Erweiterung und Ergänzung erfahren. Dieses neue Hydrierungsmittel zeichnet sich vor allem durch eine überaus einfache, rasche und sichere Handhabung sowie durch eine strenge Spezifität der damit durchgeführten Hydrierungsreaktionen aus. Dem,steht der durch den Lithiumgehalt bedingte 'hohe Preis gegenüber, der eine allgemeine Anwendung der Verbindung in der Praxis erschwert.Manufacture of magnesium-aluminum-hydride In more recent times, the hitherto known hydrogenation process by using the ether-soluble lithium-aluminum-hvdrids LiA1H4 experienced a significant expansion and addition. This new hydrogenating agent is characterized above all by an extremely simple, quick and safe handling as well as a strict specificity of the hydrogenation reactions carried out with it the end. This is offset by the high price due to the lithium content, the one general application of the compound in practice is difficult.

Das bisher unbekannte Nlagne.sium-aluminiumhydrid Mg (A1 H4)" dessen Darstellung im folgenden beschrieben wird und dessen reduktive Eigenschaften denen des 1,itliium-aluminium-hydrids entsprechen, besitzt infolge des Ersätzes von Lithium durch Magnesium den Vorzug der Billigkeit und ermöglicht dementsprechend eine ausgedehntere Verwendung zu Hydrierungen in Laboratorium und Technik. Seine Darstellung geht von Magnesiumwasserstoff aus, der seinerseits durch Pyrolyse von -%lagnesiumdialkylen oder Grignard-Verbindungen erhältlich ist.The previously unknown Nlagne.sium-aluminumhydrid Mg (A1 H4) "of Representation is described below and its reductive properties those des 1, itliium-aluminum-hydrids, possesses as a result of the replacement of lithium by magnesium the advantage of cheapness and accordingly enables a more extensive one Use for hydrogenation in laboratories and technology. His representation goes from Magnesium hydrogen, in turn by pyrolysis of -% lagnesiumdialkylen or Grignard compounds.

Dementsprechend werden zur Herstellung von llagnesium-aluminium-hydrid .Magnesiumdialkyle (i) oder Grignard-Verbindungen (?) bei 200' thermisch zersetzt: Mg(CQ H5)2 --> Mg H2 + z C2 H4, ( r) 2 .#ig(C.,HS)X --> MgHQ + MgX, + 2 C,H4, (2) worauf man den hierbei entstehenden Magnesiumwasserstoff in feingepulvertem Zustand mit Äther aufschlämmt und zu der Suspension unter kräftigern Rühren und Rückflußkühlung eine ätherische Aluminiumhalogenidlösung, etwa 2/3 dertheoretisch erforderlichen Menge, so zugibt, daß der Äther zu kräftigem Sieden kommt, aber eine allzuheftige Reaktion vermieden wird. Zur Vollendung der sich hierbei abspielenden Reaktion 4 Mg H2 + 2 A1 C13 --> Mg(A1 H4)2 + 3 Mg C12 (3) wird die Reaktionsmischung zweckmäßig noch etwa i Stunde am Sieden erhalten. Wie im Fall der Lithium-aluminium-hydrid-Darstellung kann auch hier die Reaktion gegebenenfalls verzögert einsetzen, um dann explosionsartig abzulaufen. Dies kann durch eine Zugabe von Jod zum ersten Anteil der Aluminiumh.alogenidlösung vermieden werden, wodurch ein ruhiger und handhabungssicherer Ablauf der Reaktion gewährleistet wird. Auch bei der Darstellung von Lithium-aluminium=hydrid hat nach unseren Untersuchungen das Jod die gleiche Wirkung, so daß hier bei Verwendung von Jod die vorgeschriebene Verwendung von vorgebildetem Li A1 H4 als Initialzünder entbehrlich wird. Die erhaltene ätherische Reaktionslösung kann nach dem Abfiltrieren der festen Rückstände direkt zu Hydrierungsreaktionen verwendet werden. Beispiel Aus 24 g Magnesium und 9o g Äthylbromid wird in üblicher Weise eine ätherische Lösung von Äthyl-magnesiumbromid gewonnen, das dann im Vakuum, zuletzt bei Wasserbadtemperatur, vom Äther befreit und anschließend durch 24stündiges Erhitzen auf Zoo ° gemäß (2) unter Abspaltung von Äthylen (8,67 Liter) und Bildung eines Gemisches von Magnesiumwasserstoff (5,o3 g, berechnet aus Äthylenmenge) und Magnesiumbromid thermisch zersetzt wird. Das Zersetzungsprodukt wird dann fein gepulvert und in Äther suspendiert. im Verlauf von 30 Minuten unter kräftigemRühren und unter Zugabe einiger Körnchen Jod mit einer ätherischen Lösung von 6,5 g Aluminiumchlorid versetzt und anschließend noch etwa 45 -Minuten am Rückflußkühler auf dem Wasserbad erhitzt, wobei sich die Reaktion (3) abspielt. Nach dem Absitzen der Suspension kann die überstehende, verwendungsbereite, klare Ätherlösung abdekantiert werden; der Rest des gebildeten Magnesium-aluminium-hydrids wird durch gründliches Waschen des Rückstandes mit Äther und Abfiltrieren der Suspension durch eine Glasfritte gewonnen. 5 ccm der insgesamt 145 ccm betragenden Ätherlösung entwickelten mit Wasser 15o ccm Wasserstoff, entsprechend einer Gesamtausbeute von 2,09 g :@l agnesium-aluminium=hydrid = tooo/o der theoretisch zu erwartenden Ausbeute (?, t g), bezogen auf das angewandte Aluminiumchlorid.Accordingly, for the production of magnesium aluminum hydride, magnesium dialkyls (i) or Grignard compounds (?) Are thermally decomposed at 200 ': Mg (CQ H5) 2 -> Mg H2 + z C2 H4, (r) 2. # Ig (C., HS) X -> MgHQ + MgX, + 2 C, H4, (2) whereupon the resulting magnesium hydrogen is slurried in a finely powdered state with ether and an ethereal aluminum halide solution, about 2/3 of the theoretically required amount, is added to the suspension with vigorous stirring and reflux cooling so that the ether boils vigorously, but an overly violent reaction is avoided . To complete the reaction taking place here 4 Mg H2 + 2 A1 C13 -> Mg (A1 H4) 2 + 3 Mg C12 (3) the reaction mixture is expediently kept boiling for about 1 hour. As in the case of the lithium aluminum hydride representation, the reaction can also start with a delay, if necessary, in order to then proceed in an explosive manner. This can be avoided by adding iodine to the first portion of the aluminum halide solution, which ensures that the reaction proceeds smoothly and safely. According to our investigations, iodine also has the same effect in the representation of lithium aluminum hydride, so that here, when iodine is used, the prescribed use of preformed Li A1 H4 as an initial igniter is unnecessary. The ethereal reaction solution obtained can be used directly for hydrogenation reactions after the solid residues have been filtered off. EXAMPLE An ethereal solution of ethyl magnesium bromide is obtained in the usual way from 24 g of magnesium and 90 g of ethyl bromide, which is then freed from ether in vacuo, finally at water bath temperature, and then by heating for 24 hours at Zoo ° according to (2) with elimination of ethylene (8.67 liters) and formation of a mixture of magnesium hydrogen (5, o3 g, calculated from the amount of ethylene) and magnesium bromide is thermally decomposed. The decomposition product is then finely powdered and suspended in ether. In the course of 30 minutes with vigorous stirring and with the addition of a few grains of iodine, an ethereal solution of 6.5 g of aluminum chloride was added and then heated for about 45 minutes on the reflux condenser on the water bath, during which reaction (3) took place. After the suspension has settled, the supernatant, ready-to-use, clear ether solution can be decanted off; the remainder of the magnesium aluminum hydride formed is obtained by thoroughly washing the residue with ether and filtering off the suspension through a glass frit. 5 cc of the total of 145 cc of ether solution developed 150 cc of hydrogen with water, corresponding to a total yield of 2.09 g: @ magnesium-aluminum = hydride = tooo / o the theoretically expected yield (?, Tg), based on the applied Aluminum chloride.

Claims (1)

PATENTANSPRUCH: Verfahren zur Herstellung von Magnesiumaluminium-hydrid, dadurch gekennzeichnet, daß man Magnesiumdialkyle oder Grignard-Verbindungen thermisch zersetzt und den entstehenden Magnesiumwasserstoff mit:Xlttminiunihalogenid in Gegenwart von Jod umsetzt. Claim: Process for the production of magnesium aluminum hydride, characterized in that magnesium dialkyls or Grignard compounds are thermally decomposed and the resulting magnesium hydrogen is reacted with: Xlttminiunihalogenid in the presence of iodine.
DEW5310A 1951-03-07 1951-03-07 Production of magnesium-aluminum-hydride Expired DE845338C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DEW5310A DE845338C (en) 1951-03-07 1951-03-07 Production of magnesium-aluminum-hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEW5310A DE845338C (en) 1951-03-07 1951-03-07 Production of magnesium-aluminum-hydride

Publications (1)

Publication Number Publication Date
DE845338C true DE845338C (en) 1952-07-31

Family

ID=7592682

Family Applications (1)

Application Number Title Priority Date Filing Date
DEW5310A Expired DE845338C (en) 1951-03-07 1951-03-07 Production of magnesium-aluminum-hydride

Country Status (1)

Country Link
DE (1) DE845338C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469463A1 (en) * 1990-07-31 1992-02-05 Studiengesellschaft Kohle mbH Metal-magnesium compounds, process for preparing same and the use thereof for the preparation of finely divided metal and alloy powders and intermetallic compounds
US5565183A (en) * 1993-10-27 1996-10-15 Th. Goldschmidt Ag Method for the preparation of aluminum hydride (AlH3) by reacting magnesium hydride with aluminum halide
US5670129A (en) * 1994-12-24 1997-09-23 Th. Goldschmidt Ag. Method for synthesizing aluminum hydride
US5831103A (en) * 1992-10-20 1998-11-03 Th. Goldschmidt Ag Halogen-magnesium-aluminum hydridohalides, methods for their synthesis and their use as reducing agents

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469463A1 (en) * 1990-07-31 1992-02-05 Studiengesellschaft Kohle mbH Metal-magnesium compounds, process for preparing same and the use thereof for the preparation of finely divided metal and alloy powders and intermetallic compounds
US5385716A (en) * 1990-07-31 1995-01-31 Studiengesellschaft Kohle Mbh Metal-magnesium compounds, process for preparing same and the use thereof for the preparation of finely divided metal and alloy powders and intermetallic compounds
US5498402A (en) * 1990-07-31 1996-03-12 Studiengesellschaft Kohle Mbh Metal-magnesium compounds
US5831103A (en) * 1992-10-20 1998-11-03 Th. Goldschmidt Ag Halogen-magnesium-aluminum hydridohalides, methods for their synthesis and their use as reducing agents
US5565183A (en) * 1993-10-27 1996-10-15 Th. Goldschmidt Ag Method for the preparation of aluminum hydride (AlH3) by reacting magnesium hydride with aluminum halide
US5670129A (en) * 1994-12-24 1997-09-23 Th. Goldschmidt Ag. Method for synthesizing aluminum hydride

Similar Documents

Publication Publication Date Title
DE1181217B (en) Process for the production of dialkyl aluminum hydrides with alkyl radicals with more than 2 carbon atoms
DE845338C (en) Production of magnesium-aluminum-hydride
DE1216499B (en) Enamel with a high dielectric constant applied to iron or iron alloys
DE1169902B (en) Process for the production of electrically conductive cubic boron nitride
DE1768858A1 (en) Process for the production of cyclohexene or methylcyclohexene
DE2517292A1 (en) METHOD FOR MANUFACTURING GALLIUM OXIDE
DE911131C (en) Process for the production of aluminum hydrogen solutions or of addition compounds of aluminum hydrogen to aluminum halides
DE815346C (en) Process for the preparation of (Diaethylamino-2'-propyl-1 ') -10-thioxanthene
DE411228C (en) Process for splitting hydrocarbons
DE734621C (en) Process for the preparation of hydrogenation products of the follicular hormone
DE711152C (en) Process for the simultaneous improvement of the initial permeability and its constancy in hardenable alloys based on iron-nickel
DE859311C (en) Process for the preparation of 1,3-dimethyl-4-amino-5-formylamino-2,6-dioxypyrimidine from 1,3-dimethyl-4-amino-5-nitroso-2,6-dioxypyrimidine
DE1242216B (en) Process for the preparation of inamine salts
DE2230560C3 (en) Process for the preparation of 2,2'-bipyridyl
DE670968C (en) Process for the preparation of 2-alkylhexahydrobenzothiazoles and 2-alkylhexahydrobenzoselenazoles
DE852988C (en) Process for the production of cobalt carbonyl hydrogen and optionally cobalt carbonyl
DE941668C (en) Process for the preparation of alcohols of the cyclopentanopolyhydrophenanthrene series
DE674444C (en) Process for obtaining hydrogenation products of naphthalene in which the original carbon skeleton has not been split, in particular of tetrahydronaphthalene and decahydronaphthalene
DE352431C (en) Process for the preparation of a catalyst for the hydrogenation of unsaturated organic compounds
DE834850C (en) Process for the preparation of 1-phenyl-2, 3-dimethyl-4-dimethylamino-5-pyrazolone
DE717201C (en) Process for the preparation of olefin oxides
DE935429C (en) Process for the digestion of silica-rich clays
DE609026C (en) Process for the preparation of 5,5-disubstituted 6-aminohydrouracil and its coagulates
DE637030C (en) Process for the production of alloys of alkaline earth metals with lead or cadmium
AT143123B (en) Process for the production of metal bodies consisting of a single crystal or large crystals (rods, wires, incandescent bodies, etc.) from refractory metals.