DE519456C - Electrodes for secondary elements - Google Patents

Electrodes for secondary elements

Info

Publication number
DE519456C
DE519456C DEI40179D DEI0040179D DE519456C DE 519456 C DE519456 C DE 519456C DE I40179 D DEI40179 D DE I40179D DE I0040179 D DEI0040179 D DE I0040179D DE 519456 C DE519456 C DE 519456C
Authority
DE
Germany
Prior art keywords
electrodes
nickel
copper
secondary elements
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DEI40179D
Other languages
German (de)
Inventor
Dr Karl Ackermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IG Farbenindustrie AG
Original Assignee
IG Farbenindustrie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IG Farbenindustrie AG filed Critical IG Farbenindustrie AG
Priority to DEI40179D priority Critical patent/DE519456C/en
Application granted granted Critical
Publication of DE519456C publication Critical patent/DE519456C/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

Elektroden für Sekundärelemente Nach dein Hauptpatent .49I 498 kann man Elektroden für Sekundärelemente, insbesondere solche mit alkalischen Elektrolyten, vorteilhaft durch Einbringung der aktiven Masse in die Poren eines aus porösem, metallisch leitendem Material bestehenden Elektrodengerüstes herstellen. Speziell als Träger für die positive aktive Masse werden Elektrodengerüste, «-elche im wesentlichen aus metallischem Nickel bestehen, vorgeschlagen.Electrodes for secondary elements According to your main patent .49I 498 can electrodes for secondary elements, especially those with alkaline electrolytes, advantageous by introducing the active material into the pores of a porous, Produce metallic conductive material existing electrode structure. Special Electrode scaffolds are essentially used as carriers for the positive active mass consist of metallic nickel, proposed.

Es hat sich nun gezeigt, daß das Nickel dieser Elektrodengerüste zum großen Teil durch Kupfer ersetzt werden kann. Solche aus einer Nickel-Kupfer-Legierung bestehenden Elektrodengerüste zeichnen sich durch praktisch vollkommene Ausnutzung der eingelagerten aktiven Masse und besonders gute Konstanz ihrer Kapazität aus; ferner zeigen sie die bei Verwendung anderer Elektrodengerüste oft auftretenden schädlichen Aufblähungserscheinungen nicht. Ihre Herstellung kann zweckmäßig durch Zusammensintern von Kupfer- und Nickelpulver, evtl. unter Zusatz von Verbindungen dieser Metalle, z. B. 'der Metallhydroxyde, erfolgen, wobei die Sinterung zweckmäßig bei langsam steigender Temperatur zunächst unterhalb 70o° vorgenommen wird, bis Gerüstbildung eingetreten ist, und dann anschließend eine zweite Sinterung zwischen goo und r roo° erfolgt,, durch welche die Platte ihre Festigkeit erhält und auf die gewünschte Porosität gebracht wird. Das Kupferpulver verwendet man vorteilhaft in der Form, in welcher es aus einer Lösung von Kupfersulfat mit Hilfe von Carbonyleisenpulver gefällt wird. Das Nickelpulver wird besonders vorteilhaft aus Nickelcarbonyl hergestellt. Beide werden vorteilhaft in solchem Verhältnis gemischt, daß das Kupfer überwiegt.It has now been shown that the nickel of these electrode structures to can be largely replaced by copper. Those made from a nickel-copper alloy existing electrode frameworks are characterized by practically complete utilization the stored active material and particularly good constancy of its capacity; they also show the ones that often occur when using other electrode structures harmful bloating symptoms are not. Their manufacture can expediently through Sintering together of copper and nickel powder, possibly with the addition of compounds these metals, e.g. B. 'of the metal hydroxides, the sintering being expedient when the temperature rises slowly, it is initially carried out below 70o ° until Framework formation has occurred, and then subsequently a second sintering between goo and r roo ° takes place, through which the plate receives its strength and on the desired porosity is brought. The copper powder is used advantageously in the form in which it is made from a solution of copper sulfate with the help of carbonyl iron powder is felled. The nickel powder is particularly advantageously produced from nickel carbonyl. Both are advantageously mixed in such a ratio that the copper predominates.

Die so hergestellten Elektroden können vorzugsweise als positive Elektroden verwendet werden.The electrodes thus produced can preferably be used as positive electrodes be used.

Beispiel Eine aus 5o °J" Nickel und 50 % Kupfer bestehende Sinterplatte von 78 °/o Porenvolurnen und 95 g Gewicht wurde mit Nickelnitratlösung getränkt. Durch Eintauchen in Kalilauge wurde das Nickelnitrat in Nickelhydroxvd verwandelt. Nach dreimaliger Wiederholung waren 33,1 g- Nickelh_vdr oxyd von der Platte aufgenommen. worden. Die erreichte Kapazität betrug 9,5 Amperestunden, entsprechend dein theoretisch zu erwartenden Wert von 9,6 Amperestunden; sie blieb über eine größere Anzahl Entladungen praktisch konstant.Example A sintered plate made of 50 ° J "nickel and 50% copper with a pore volume of 78% and a weight of 95 g was impregnated with nickel nitrate solution. The nickel nitrate was converted into nickel hydroxide by immersion in potassium hydroxide solution transformed. After three repetitions, 33.1 g of nickel hydroxide had been absorbed by the plate. been. The capacity achieved was 9.5 ampere hours, according to your theoretical expected value of 9.6 ampere hours; it remained over a large number of discharges practically constant.

Claims (1)

PATENTANSPRUCH: Elektroden für Sekundärelemente gemäß dem Hauptpatent 491 498, dadurch gekennzeichnet, daß die porösen Formstücke aus einer Kupfer-Nickel-Legierung, zweckmäßig mit erheblichem Kupfer-Behalt, hergestellt sind. PATENT CLAIM: Electrodes for secondary elements according to the main patent 491 498, characterized in that the porous shaped pieces are made of a copper-nickel alloy, expediently with a considerable amount of copper.
DEI40179D 1929-12-19 1929-12-19 Electrodes for secondary elements Expired DE519456C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DEI40179D DE519456C (en) 1929-12-19 1929-12-19 Electrodes for secondary elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEI40179D DE519456C (en) 1929-12-19 1929-12-19 Electrodes for secondary elements

Publications (1)

Publication Number Publication Date
DE519456C true DE519456C (en) 1931-02-28

Family

ID=7190237

Family Applications (1)

Application Number Title Priority Date Filing Date
DEI40179D Expired DE519456C (en) 1929-12-19 1929-12-19 Electrodes for secondary elements

Country Status (1)

Country Link
DE (1) DE519456C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1016336B (en) * 1952-07-26 1957-09-26 Accumulatoren Fabrik Ag Process for the production of negative electrodes for alkaline batteries
DE1496255B1 (en) * 1962-02-13 1970-07-23 Int Nickel Ltd Process for the continuous production of sintered metallic plates for alkaline accumulators

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1016336B (en) * 1952-07-26 1957-09-26 Accumulatoren Fabrik Ag Process for the production of negative electrodes for alkaline batteries
DE1496255B1 (en) * 1962-02-13 1970-07-23 Int Nickel Ltd Process for the continuous production of sintered metallic plates for alkaline accumulators

Similar Documents

Publication Publication Date Title
DE2163185A1 (en) Process for the production of electrode structures for chemoelectric cells
DE2615779C3 (en) Process for the production of sintered electrode bodies
DE491498C (en) Electrodes for secondary elements, especially those with alkaline electrolytes
DE2837468C3 (en) Mercury-free zinc electrode
DE2357333A1 (en) PENETRATING COMPOSITE METAL AS A CONTACT MATERIAL FOR VACUUM SWITCHES AND THE PROCESS FOR ITS MANUFACTURING
DE2716525C2 (en) Electrode grid for lead batteries
DE519456C (en) Electrodes for secondary elements
DE2524871A1 (en) ELECTRODE MATERIAL FOR MANUFACTURING ELECTRODES FOR ELECTROCHEMICAL POWER SOURCES
DE1197942B (en) Galvanic fuel element with solid electrolyte
DE1197066B (en) Double skeleton catalyst electrode and process for its manufacture
DE2829094C2 (en) Production of a porous aluminum framework for the negative electrode of a galvanic lithium-aluminum-metal sulfide element
DE2512049A1 (en) ACCUMULATOR GRID PLATE
DE2835976B2 (en) Galvanic element
DE2161373A1 (en) METHOD OF MANUFACTURING AN ELECTRODE FOR ALKALINE CELLS
DE929135C (en) Body for the reflection-free absorption of electromagnetic radiation of different wavelengths
DE1128899B (en) Process for the production of sintered electrodes for electrical accumulators
DE2920654C2 (en) Method of manufacturing an iron negative electrode
AT215502B (en) Current arrester for positive electrodes of galvanic elements
DE2460399C3 (en) Method of filling tube plates for lead-acid batteries
AT244416B (en) Silver-cadmium accumulator permanently sealed gas-tight
DE2721068A1 (en) ELECTROLYTIC CAPACITOR
AT234798B (en) Method of manufacturing a silver electrode
DE1964568C3 (en) Process for the production of a catalyst for a fuel electrode and an electrode with this catalyst
AT205759B (en)
DE889600C (en) Process for reducing or preventing shrinkage when manufacturing workpieces by sintering