DE4429387A1 - Thermal insulation system utilising solar energies - Google Patents

Thermal insulation system utilising solar energies

Info

Publication number
DE4429387A1
DE4429387A1 DE4429387A DE4429387A DE4429387A1 DE 4429387 A1 DE4429387 A1 DE 4429387A1 DE 4429387 A DE4429387 A DE 4429387A DE 4429387 A DE4429387 A DE 4429387A DE 4429387 A1 DE4429387 A1 DE 4429387A1
Authority
DE
Germany
Prior art keywords
thermal insulation
wall
approx
layer
insulation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4429387A
Other languages
German (de)
Inventor
Horst Troscheit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE4429387A priority Critical patent/DE4429387A1/en
Publication of DE4429387A1 publication Critical patent/DE4429387A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/66Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of facade constructions, e.g. wall constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/40Arrangements for controlling solar heat collectors responsive to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/60Thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

The system is intended for building outer walls and roofs, and for temp. reduction of inner rooms in summer. The wall and roof regions incorporate flexible, partial systems measuring sensors scan the temp. in front and behind the insulating layer. Accordingly electric servomotors open or close thermal insulators flaps in top or lower sections. The outer wall insulation consists of a low insulation value outer wall cladding, an air gap, an insulating layer with high effect, another air gap, and a thick lime stone layer.

Description

Eine der dringensten technischen Aufgaben unserer Zeit ist es den ständig steigenden CO₂-Anteil unserer Atmosphäre zu verringern.One of the most pressing technical tasks of our time is the constantly increasing proportion of CO₂ in our atmosphere to decrease.

Ein kleiner Baustein hierfür stellt die nachfolgende Neue­ rung zur optimalen Nutzung der Sonnenwärme für den Bausektor dar.The following new one is a small building block for this for optimal use of solar heat for the construction sector represents.

Bisher wurden zur Energieeinsparung die Außenwände und Dach­ bereiche von Gebäuden mit immer besserer Wärmedämmung einge­ setzt.So far, the outer walls and roof have been used to save energy areas of buildings with ever better thermal insulation puts.

Gemäß der Wärmeschutzverordnung (Mindestwärmeschutz nach DIN 4108) ab 01.01.1984 werden die geforderten K-Werte für die entsprechenden Gebäudeteile erreicht bzw. unterboten. Hierdurch wird der Wärmeverlust von Innenräumen nach außen verringert und man spart Energie im Winter.According to the thermal insulation ordinance (minimum thermal insulation according to DIN 4108) from 01/01/1984 the required K values for reached or undercut the corresponding parts of the building. This reduces the heat loss from the interior to the outside reduced and saves energy in winter.

Bei allen Baufirmen finden "starre" Wärmedämmsysteme Anwen­ dung, d. h. konstante Wärmedämmung der Außenwände und des Dachbereiches mit einem "starren" K-Wert für alle Jahres- und Tageszeiten."Rigid" thermal insulation systems are used by all construction companies dung, d. H. constant thermal insulation of the outer walls and the Roof area with a "rigid" K-value for all annual and times of day.

Der Nachteil dieser Bauausführung liegt darin, daß
die Tageswärme bei TA < Ti und
bei gewünschter Kühlung bei Nacht Ti < TA (TA = Außentemperatur, Ti = Innentemperatur)
mit Starrsystemen der Wärmedämmung nicht genutzt werden können.
The disadvantage of this construction is that
the daily heat at T A <T i and
when cooling at night T i <T A (T A = outside temperature, T i = inside temperature)
cannot be used with rigid insulation systems.

Bei der im Patentanspruch angegebenen Erfindung und bei dem in der Zeichnung angegebenen Ausführungsbeispiel werden diese Vorteile genutzt. Die Wärmedämmung der Außenwände, besonders der Süd-, Südwestwandflächen und der analogen Dachbereiche werden als Funktion der Zeit f(t) und bei den Randbedingungen Ta < Ti wahlweise verändert.These advantages are used in the invention specified in the patent claim and in the exemplary embodiment specified in the drawing. The thermal insulation of the outer walls, especially the south and south-west wall surfaces and the analog roof areas, are optionally changed as a function of time f (t) and under the boundary conditions T a <T i .

Der Nutzen derartiger Wärmesysteme liegt in der am Tage möglichen und gewünschten Wärmepufferung im Frühjahr, Sommer und Herbst oder der Nachtabsenkung im Sommer. The benefit of such heating systems lies in the daytime possible and desired heat buffering in spring, Summer and autumn or the night setback in summer.  

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird wie folgt beschriebenAn embodiment of the invention is in the Drawing shown and is described as follows

Die Zeichnung zeigt ein Segment eines zwischen tragenden Säulen angeordneten flexiblen Wärmedämmsystems.The drawing shows a segment of an in between Column-arranged flexible thermal insulation system.

Die obere und untere Dämmklappe, Teil 1 und Teil 2, sind so angeordnet, daß beim Versagen der Steuerung oder der Öffnungs- bzw. Schließmechanik aufgrund der Schwerkraft die Klappen schließen und der geforderte Mindestwärmeschutz nach DIN 4108 auch dann erfüllt wird.The upper and lower dampers, part 1 and part 2, are like this arranged that when the control or the failure Opening or closing mechanism due to gravity Close the flaps and the required minimum heat protection in accordance with DIN 4108.

Der Mittelteil der Wärmedämmplatte, Teil 3, ist fest zwi­ schen den Säulen verankert.The middle part of the thermal insulation board, part 3, is firmly between anchored between the pillars.

In der Außenverblendung, Teil 4, befindet sich der Außen­ meßfühler, während die Innenwand, Teil 5, mit dem Innen­ meßfühler versehen ist.In the outer veneer, part 4, is the outside probe, while the inner wall, part 5, with the inside sensor is provided.

Funktionfunction

bei TA < Ti öffnen sich T1 und T2 durch elektrische Stell­ motore, die erwärmte Luft im Raum I steigt nach oben, kühlt sich im Raum II am T5 ab und strömt durch die untere Öffnung in den Raum I und erwärmt sich wieder.at T A <T i T1 and T2 open by electric servomotors, the heated air in room I rises, cools down in room II on T5 and flows through the lower opening into room I and heats up again.

Bei eingestellter Kühlung Ti < TA erfolgt die Luftströmung entgegengesetzt.If cooling T i <T A is set, the air flow takes place in the opposite direction.

Claims (2)

Das Wärmedämmsystem mit Nutzung der Solarenergie für Außen­ wände und Dächer, sowie zur Temperaturabsenkung von Innen­ räumen im Sommer ist dadurch gekennzeichnet, daß im Außenwand- und Dachbereich flexible Wärmedämmsysteme verbaut werden.
Über Meßfühler werden die Temperaturen vor und hinter der Wärmedämmschicht (z. B. Mineralwolle von 10 cm Dicke, Glas­ schaumplatten o.a. Dämmstoffe) gemessen und über elek­ trische Stellmotore Wärmedämmklappen im oberen und unteren Bereich geöffnet bzw. geschlossen.
Der Außenwandaufbau gliedert sich konstruktiv wie folgt:
  • a) Außenwandverblendung (z. B. 12 cm Klinkerstein) mit geringer Wärmedämmzahl,
  • b) ca. 10 cm Luftschicht,
  • c) ca. 10 cm Dämmschicht mit hoher Wärmedämmung, bestehend aus einem fest installierten Mittelteil und zwei beweglichen Verstellelementen oben und unten,
  • d) ca. 10 cm Luftschicht,
  • e) ca. 12 cm bis 24 cm z. B. Kalksandsteine mit hohem Wärme­ inhalt, aber geringer Wärmedämmung zur Wärmespeicherung
The thermal insulation system using solar energy for exterior walls and roofs, as well as for lowering the temperature of indoor spaces in summer, is characterized in that flexible thermal insulation systems are installed in the exterior wall and roof area.
The temperatures in front of and behind the thermal insulation layer (e.g. mineral wool of 10 cm thickness, glass foam panels or similar insulation materials) are measured and thermal insulation flaps in the upper and lower area are opened or closed using electric actuators.
The structure of the outer wall is structured as follows:
  • a) external wall cladding (e.g. 12 cm clinker brick) with low thermal insulation number,
  • b) approx. 10 cm air layer,
  • c) approx. 10 cm insulation layer with high thermal insulation, consisting of a permanently installed middle section and two movable adjustment elements above and below,
  • d) approx. 10 cm air layer,
  • e) about 12 cm to 24 cm z. B. sand-lime bricks with high heat content, but low thermal insulation for heat storage
bei TA < Ti kann die Wärme von außen nach innen transportiert werden,
bei Ti < TA kann auf Wunsch gekühlt werden!
Die tragenden Elemente der Außenwände sind Säulen bzw. Sparren beim Dach, zwischen denen das flexible Wärmedämm­ system installiert ist.
with T A <T i the heat can be transported from outside to inside,
with T i <T A , cooling can be carried out on request!
The load-bearing elements of the outer walls are pillars or rafters on the roof, between which the flexible thermal insulation system is installed.
DE4429387A 1994-08-15 1994-08-15 Thermal insulation system utilising solar energies Withdrawn DE4429387A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4429387A DE4429387A1 (en) 1994-08-15 1994-08-15 Thermal insulation system utilising solar energies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4429387A DE4429387A1 (en) 1994-08-15 1994-08-15 Thermal insulation system utilising solar energies

Publications (1)

Publication Number Publication Date
DE4429387A1 true DE4429387A1 (en) 1996-02-22

Family

ID=6526054

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4429387A Withdrawn DE4429387A1 (en) 1994-08-15 1994-08-15 Thermal insulation system utilising solar energies

Country Status (1)

Country Link
DE (1) DE4429387A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936299A1 (en) * 2006-12-22 2008-06-25 M. François Clanchet Heliothermal heating and cooling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3345270A1 (en) * 1983-12-14 1985-07-04 Paul V. Hopewell Junction N.Y. DeLucia Hinge structure for the formation of a unitary movable warming-cabinet system
DE3523244A1 (en) * 1985-06-28 1987-01-08 Udo Heinrich Facade element
DE3623720A1 (en) * 1986-07-14 1988-01-21 Kaufmann Ralph A H Facing element for an air-conditioning wall
DE9401452U1 (en) * 1994-01-28 1994-03-17 Aschauer Johann Dipl Ing Thermal insulation and heat collector arrangement
DE4319027A1 (en) * 1993-06-08 1994-12-15 Karlfried Cost Countercurrent-air solar collector with light-transmissive and air-permeable absorber fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3345270A1 (en) * 1983-12-14 1985-07-04 Paul V. Hopewell Junction N.Y. DeLucia Hinge structure for the formation of a unitary movable warming-cabinet system
DE3523244A1 (en) * 1985-06-28 1987-01-08 Udo Heinrich Facade element
DE3623720A1 (en) * 1986-07-14 1988-01-21 Kaufmann Ralph A H Facing element for an air-conditioning wall
DE4319027A1 (en) * 1993-06-08 1994-12-15 Karlfried Cost Countercurrent-air solar collector with light-transmissive and air-permeable absorber fabric
DE9401452U1 (en) * 1994-01-28 1994-03-17 Aschauer Johann Dipl Ing Thermal insulation and heat collector arrangement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936299A1 (en) * 2006-12-22 2008-06-25 M. François Clanchet Heliothermal heating and cooling device

Similar Documents

Publication Publication Date Title
Chel et al. Thermal performance and embodied energy analysis of a passive house–case study of vault roof mud-house in India
Rehman Experimental performance evaluation of solid concrete and dry insulation materials for passive buildings in hot and humid climatic conditions
Alibaba et al. Energy performance and thermal comfort of double-skin and single-skin facades in warm-climate offices
Juras et al. Outdoor climate change analysis in university campus: Case study with heat-air-moisture simulation
DE4429387A1 (en) Thermal insulation system utilising solar energies
Sakhare et al. Development of sustainable retrofitting material for energy conservation of existing buildings
Sugo et al. A comparative study of the thermal performance of cavity and brick veneer construction
Nabiyev et al. Effect of external air temperature on buildings and structures and monuments
Mourid et al. Comparative experimental and numerical studies of usual insulation materials and PCMs in buildings at Casablanca
Stejskalová et al. Assessment of the Summer Thermal Stability of the Attic Room Using Two Different Software
Babaharra et al. Numerical study of the types of glazing on annual consumption loads and comparison with thermal regulations
Katunská et al. Selected problems of temperature conditions in the interior of large area of single store halls
Banionis et al. Impact of heat reflective coatings on heat flows through the ventilated roof with steel coatings
Heathcote Comparison of the summer thermal performance of three test buildings with that predicted by the admittance procedure
Hamdani et al. Orientation of buildings: predictive control based on the calculation of temperature and solar direct contribution
Wieprzkowicz et al. Thermal performance of PCM-glazing unit under moderate climatic conditions
Sugo et al. The study of heat flows in masonry walls in a thermal test building incorporating a window
Benaddi et al. Thermal Evaluation of Local Construction Materials under a Hot Semi-arid Climate of Marrakech
Alaboud Thermal Environmental Monitoring of Apartment Building in Saudi Arabia
Reddy et al. A Study of the Value of Time-Lag of Room Air Temperature: An Experimental Investigation
Griffiths et al. A Bibliography of Weather and Architecture
DE2817703A1 (en) Moisture repellent roof heat insulating element - has insulating material in shallow box comprising flat and deep drawn foil units
Katunská et al. Experimental measurement of thermal condition of one-floor hall
Xhexhi STUDY OF THERMAL PERFORMANCE OF PREFABRICATED LARGE PANEL BUILDINGS
A´ lvarez et al. A TRNSYS simulation and experimental comparison of the thermal behavior of a building located in desert climate

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8122 Nonbinding interest in granting licences declared
8110 Request for examination paragraph 44
8139 Disposal/non-payment of the annual fee