DE4212231A1 - Doping with amorphous silicon@ - by gas discharge with addn. of tri:methyl-phosphine to gas, used in prodn. of electrophotographic recording material - Google Patents

Doping with amorphous silicon@ - by gas discharge with addn. of tri:methyl-phosphine to gas, used in prodn. of electrophotographic recording material

Info

Publication number
DE4212231A1
DE4212231A1 DE19924212231 DE4212231A DE4212231A1 DE 4212231 A1 DE4212231 A1 DE 4212231A1 DE 19924212231 DE19924212231 DE 19924212231 DE 4212231 A DE4212231 A DE 4212231A DE 4212231 A1 DE4212231 A1 DE 4212231A1
Authority
DE
Germany
Prior art keywords
gas
doping
amorphous silicon
discharge
prodn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19924212231
Other languages
German (de)
Inventor
Sabine Dipl Phys Dreihoefer
Manfred Dipl Phys Dr Lutz
Klaus Prof Dr Schade
Mathias Albert
Rumen Deltschew
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Licentia Patent Verwaltungs GmbH
Original Assignee
Licentia Patent Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Patent Verwaltungs GmbH filed Critical Licentia Patent Verwaltungs GmbH
Priority to DE19924212231 priority Critical patent/DE4212231A1/en
Priority to JP8058593A priority patent/JPH0649644A/en
Publication of DE4212231A1 publication Critical patent/DE4212231A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

In doping with amorphous Si, by gas-discharge sepn., (CH3)3P is added to the gas. The concn. of (CH3)3P is 10 power minus 4 -80 (pref. 10-3-1) mols.%. The gas is mono- or di-silane, to which CH4, C2H6 or C2H2 may be added. The gas-discharge is a high frequency discharge, in a flowing gas. USE/ADVANTAGE - The process is used for the prodn. of an electrophotographic recording material with at least 1 layer of amorphous Si (claimed), for the prodn. of diode structures of amorphous Si, of ohmic contacts on such structures, and in solar cells. (CH3)3P is a liq. with b.pt. 38 deg.C, and is safe w.r.t. health. A pre-determined doping concn. can be obtd.

Description

Die Erfindung betrifft ein Verfahren zum Dotieren von amorphem Silicium mit einem Donator bei der Abscheidung aus einer Gasentladung.The invention relates to a method for doping amorphous silicon with a donor during the deposition from a gas discharge.

Ein derartiges Verfahren ist aus "Philosophical Magazine", 1976, Bd. 33, Seiten 935-949, bekannt.Such a method is from "Philosophical Magazine", 1976, Vol. 33, Pages 935-949.

Zur Abscheidung des amorphen Siliciums wird als Gas ein Silan verwendet, wobei die Ionisierung des Gases, d. h. die Erzeugung des Plasmas, in einer Hochfrequenzentladung erfolgt. Auf einem beheizten und auf einem vorbestimmten Potential liegenden Substrat werden dann Siliciumatome aus der Gasentladung zur Bildung einer Schicht aus amorphem Silicium abgeschieden. Das so erhaltene amorphe Silicium ist schwach n-leitend. Für viele Anwendungszwecke ist jedoch eine höhere Dotierung wünschenswert. Deswegen wird im bekannten Fall dem Silan als Dotierungsgas Phosphin (PH3) zugesetzt, so daß bei der Abscheidung des Siliciums Phosphor in die amorphe Schicht eingebaut wird, der eine Erhöhung der n-Leitfähigkeit bewirkt.A silane is used as the gas to deposit the amorphous silicon, the ionization of the gas, ie the generation of the plasma, taking place in a high-frequency discharge. Silicon atoms are then deposited from the gas discharge to form a layer of amorphous silicon on a heated substrate lying at a predetermined potential. The amorphous silicon thus obtained is weakly n-conductive. However, higher doping is desirable for many applications. For this reason, in the known case, phosphine (PH 3 ) is added to the silane as the doping gas, so that when the silicon is deposited, phosphorus is incorporated into the amorphous layer, which causes an increase in the n-conductivity.

Bei der Verwendung von Phosphin ist es insbesondere von Nachteil, daß dieses Gas stark toxische Eigenschaften aufweist. Das führt aus sicherheitstechnischen Gründen zu aufwendigen Maßnahmen bei der Durchführung der plasmachemischen Abscheidung der dotierten Siliciumschichten.When using phosphine, it is particularly disadvantageous that this gas has highly toxic properties. That accomplishes safety-related reasons for complex measures at the Carrying out the plasma chemical deposition of the doped Silicon layers.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Dotieren von amorphem Silicium mit einem Donator bei der Abscheidung aus einer Gasentladung verfügbar zu machen, das ohne besonderen sicherheitstechnischen Aufwand durchführbar ist und auch die gezielte Einstellung einer bestimmten Dotierungskonzentration ermöglicht.The invention has for its object a method for doping amorphous silicon with a donor during the deposition from a To make gas discharge available without any special safety-related effort is feasible and also the targeted Setting a certain doping concentration allows.

Dieses Verfahren wird gemäß der Erfindung dadurch gelöst, daß dem Gas zur Dotierung Trimethylphosin zugesetzt wird.This method is achieved according to the invention in that the gas trimethylphosin is added for doping.

Trimethylphosphin mit der chemischen Strukturformel (CH₃)₃ P ist bei Zimmertemperatur und Normaldruck eine Flüssigkeit, die bei Normaldruck und einer Temperatur von etwa 38°C siedet. Trimethylphosphin ist gesundheitlich völlig unschädlich, so daß in dieser Hinsicht keine besonderen Vorkehrungen bei der Durchführung der Gasentladung getroffen werden müssen. Es ist lediglich zu beachten, daß Trimethylphosphin bei Luftkontakt entflammt und somit durch Verbrennung nicht mehr verfügbar ist.Trimethylphosphine with the chemical structural formula (CH₃) ₃ P is at Room temperature and normal pressure a liquid that at normal pressure and boiling at a temperature of about 38 ° C. Is trimethylphosphine completely harmless to health, so that in this regard none take special precautions when performing the gas discharge Need to become. It should only be noted that trimethylphosphine at Air contact ignites and is therefore no longer available due to combustion is.

Die Konzentration des Trimethylphosphin bei der Abscheidung von amorphem Silicium läßt sich in einem weiten Bereich von 10-4-80 Mol-% einstellen, so daß eine Dotierung für die unterschiedlichsten Anwendungsfälle möglich ist.The concentration of trimethylphosphine in the deposition of amorphous silicon can be set in a wide range from 10 -4 -80 mol%, so that doping is possible for the most varied of applications.

Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.Further developments of the invention can be found in the subclaims.

Das Wesen der Erfindung soll anhand der Zeichnungen näher erläutert werden.The essence of the invention will be explained in more detail with reference to the drawings will.

Es zeigenShow it

Fig. 1 eine Einrichtung zur Durchführung des Verfahrens und Fig. 1 shows a device for performing the method and

Fig. 2 die Abhängigkeit der Dunkel Leitfähigkeit einer abgeschiedenen Schicht in Abhängigkeit von dem Mengenverhältnis Trimethyl­ phosphin zu Monosilan bei der HF-Abscheidung mit strömendem Arbeitsgas. Fig. 2 shows the dependence of the dark conductivity of a deposited layer depending on the ratio of trimethyl phosphine to monosilane in the HF deposition with flowing working gas.

Die in Fig. 1 schematisch dargestellte Einrichtung zur plasmachemischen Abscheidung weist einen Rezipienten 1 auf, in dem eine Entladungskammer 2 angeordnet ist. The device for plasma chemical deposition shown schematically in FIG. 1 has a recipient 1 in which a discharge chamber 2 is arranged.

Der Rezipient 1 ist mit einem Gaseinlaß 3 und einem Gasauslaß 4 versehen. Während das Arbeitsgas über den Gaseinlaß 3 zugeführt wird, ist der Gasauslaß 4 an eine Vakuumpumpe angeschlossen. Bei geschlossenem Gaseinlaß wird der Rezipient zunächst evakuiert und anschließend der Gaseinlaß für das Arbeitsgas freigegeben. Durch Einstellung einer bestimmten Gaseinströmung und einer vorbestimmten Evakuierungsrate wird ein vorbestimmter Druck in dem Rezipienten 1 eingestellt, wobei auch die Entladungskammer 2 unter dem gleichen Druck steht.The recipient 1 is provided with a gas inlet 3 and a gas outlet 4 . While the working gas is supplied via the gas inlet 3, the gas outlet 4 is connected to a vacuum pump. When the gas inlet is closed, the recipient is first evacuated and then the gas inlet is released for the working gas. By setting a specific gas inflow and a predetermined evacuation rate, a predetermined pressure is set in the recipient 1 , the discharge chamber 2 also being at the same pressure.

In der Entladungskammer sind zwei Elektroden vorgesehen, eine heizbare Elektrode 5 und eine Gegenelektrode 7. Die Elektrode 5 weist eine Vertiefung auf, in der das Substrat 7 fixiert wird, auf dem die dotierte, amorphe Siliciumschicht abgeschieden werden soll. Die Temperatur des Substrats wird über die heizbare Elektrode 5 eingestellt. Im vorliegenden Fall ist eine Abscheidung mittels einer Hochfrequenzladung vorgesehen. Die nicht dargestellte Hochfrequenzquelle wird zwischen die Elektroden 5 und 6 gelegt.Two electrodes are provided in the discharge chamber, a heatable electrode 5 and a counter electrode 7 . The electrode 5 has a recess in which the substrate 7 is fixed, on which the doped, amorphous silicon layer is to be deposited. The temperature of the substrate is set via the heatable electrode 5 . In the present case, deposition by means of high-frequency charging is provided. The radio frequency source, not shown, is placed between the electrodes 5 and 6 .

Zum Abscheiden einer mit Phosphor dotierten amorphen Siliciumschicht wurde die Temperatur des Substrats auf 270°C eingestellt und die Hochfrequenzentladung bei einer HF-Spannung von 320 Volt mit einer Frequenz von 1,6 MHz betrieben. Der Rezipient wird zunächst (bei geschlossenem Gaseinlaß auf 0,01 Pa evakuiert. Anschließend wird unter ständiger Evakuierung über den Gaseinlaß 3 Monosilan eingeführt derart, daß sich eine konstante Einströmungsmenge von 100 Pal/s für das Monosilan ergibt. Anschließend wird dem Monosilan am Gaseinlaß 3 zusätzlich Trimethylphosphin zugesetzt, und zwar in einer derartigen Menge, daß das Trimethylphosphin zu dem Monosilan SiH4 in einem Verhältnis von 10-4 steht. Mittels der Evakuierungsrate der Vakuumpumpe wird dann in dem Rezipienten und in der Entladungskammer ein Arbeitsdruck von 40 Pa eingestellt. Nach Zündung der Niederdruck- Gasentladung wird bei einer Abscheidungszeit von 10 Min. eine n-leitende amorphe Siliciumschicht aus a-Si:H mit einer Dicke von 200 mm abgeschieden. Da als Abscheidungsgas ein Silan verwendet wird, wird in der Schicht in bekannter Weise auch Wasserstoff eingebaut. Die auf diese Weise abgeschiedene amorphe Siliciumschicht weist eine Dunkel Leitfähigkeit von 8×10-4 Ohm x cm-1 auf. To deposit an amorphous silicon layer doped with phosphorus, the temperature of the substrate was set to 270 ° C. and the high-frequency discharge was operated at an RF voltage of 320 volts at a frequency of 1.6 MHz. The recipient is first evacuated (with the gas inlet closed to 0.01 Pa. Subsequently, with constant evacuation via the gas inlet 3, monosilane is introduced in such a way that there is a constant inflow rate of 100 Pal / s for the monosilane. Then the monosilane at the gas inlet 3 trimethylphosphine was additionally added, in such an amount that the trimethylphosphine is in a ratio of 10 -4 to the monosilane SiH 4. Using the evacuation rate of the vacuum pump, a working pressure of 40 Pa is then set in the recipient and in the discharge chamber Ignition of the low-pressure gas discharge, an n-type amorphous silicon layer made of a-Si: H with a thickness of 200 mm is deposited with a deposition time of 10 minutes The amorphous silicon layer deposited in this way has a dark conductor ability from 8 × 10 -4 ohms x cm -1 .

Die Abscheiderate wird wesentlich durch die Strömungsmenge bestimmt, wobei sich durch die Abscheiderate auch die Schichteigenschaften beeinflussen lassen.The separation rate is essentially determined by the flow rate, whereby the deposition rate also changes the layer properties be influenced.

In Fig. 2 ist die Abhängigkeit der Dunkel Leitfähigkeit der amorphen Siliciumschichten in Abhängigkeit von der Dotierungskonzentration bei der Dotierung mit Phosphor dargestellt. Als Maß für die Dotierungskonzentration gilt das Mengenverhältnis des Trimethylphosphin zu dem Monosilan, wie es in der Entladungskammer bei strömendem Arbeitsgas eingestellt wird. Der mit einem Kreuz versehene Meßpunkt entspricht der Dunkel Leitfähigkeit, die bei der undotierten Siliciumschicht vorliegt. Wie man Fig. 2 entnimmt, steigt mit zunehmender Dotierung die Dunkel Leitfähigkeit an, um nach Erreichen eines Maximums dann wieder abzufallen.In Fig. 2 the dependence of the dark conductivity of the amorphous silicon layers is a function of the doping concentration in the doping shown with phosphorus. The quantity ratio of the trimethylphosphine to the monosilane, as set in the discharge chamber when the working gas is flowing, is a measure of the doping concentration. The measuring point marked with a cross corresponds to the dark conductivity which is present in the undoped silicon layer. As can be seen in FIG. 2, the dark conductivity increases with increasing doping and then drops again after a maximum has been reached.

In die amorphen Siliciumschichten wird verfahrensbedingt immer Kohlenstoff eingebaut. Eine Optimierung der Kohlenstoffkonzentration läßt sich durch zusätzliche Kohlenstoffquellen in dem Arbeitsgas erreichen. Hierzu sind besonders geeignet: Methan (CH4), Äthan (C2H6), Äthen (C2H4) oder Äthin (C2H2).Depending on the process, carbon is always built into the amorphous silicon layers. An optimization of the carbon concentration can be achieved by additional carbon sources in the working gas. The following are particularly suitable: methane (CH 4 ), ethane (C 2 H 6 ), ethene (C 2 H 4 ) or ethyne (C 2 H 2 ).

Die nach dem Verfahren hergestellten, mit Phosphor dotierten amorphen Siliciumschichten lassen sich besonders vorteilhaft bei der Herstellung eines elektrophotographischen Aufzeichnungsmaterials verwenden. Bei einem derartigen Aufzeichnungsmaterial befindet sich auf einem elektrisch leitenden Substrat neben eventuell weiteren Schichten mindestens eine photoleitende Schicht aus amorphem Silicium. In gewissen Fällen kann es günstig sein, diese photoleitende Schicht aus amorphem Silicium oder gegebenenfalls eine andere Schicht des Aufzeichnungsmaterials mit einer vorgegebenen Phosphorkonzentration zu dotieren.The amorphous doped with phosphorus produced by the process Silicon layers can be used particularly advantageously during production an electrophotographic recording material. At such a recording material is on a electrically conductive substrate in addition to any other layers at least one photoconductive layer made of amorphous silicon. In certain Cases, it may be beneficial to make this amorphous photoconductive layer Silicon or possibly another layer of the Recording material with a predetermined phosphorus concentration endow.

Es sind jedoch auch andere Anwendungsgebiete denkbar, wie z. B. die Herstellung von Diodenstrukturen aus amorphem Silicium, die Herstellung ohmscher Kontakte auf solche Strukturen oder bei Solarzellen.However, other areas of application are also conceivable, such as. B. the Manufacture of amorphous silicon diode structures, the manufacture ohmic contacts on such structures or in solar cells.

Claims (11)

1. Verfahren zum Dotieren von amorphem Silicium mit einem Donator bei der Abscheidung aus einer Gasentladung, dadurch gekennzeichnet, daß dem Gas zur Dotierung Trimethylphosphin zugesetzt wird.1. A method for doping amorphous silicon with a donor during the deposition from a gas discharge, characterized in that trimethylphosphine is added to the gas for doping. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Trimethylphosphin in einer Konzentration von 10-4 bis 80 Mol-% zugesetzt wird.2. The method according to claim 1, characterized in that the trimethylphosphine is added in a concentration of 10 -4 to 80 mol%. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß Trimethylphosphin in einer Konzentration von 10-3 bis 1 Mol-% verwendet wird.3. The method according to claim 2, characterized in that trimethylphosphine is used in a concentration of 10 -3 to 1 mol%. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Gas zur Abscheidung von Silicium Monosilan verwendet wird.4. The method according to any one of claims 1 to 3, characterized, that monosilane is used as the gas for the deposition of silicon. 5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Gas zur Abscheidung von Silicium Disilan verwendet wird.5. The method according to any one of claims 1 to 3, characterized, that is used as a gas for the deposition of silicon disilane. 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß dem Gas Methan zugesetzt wird. 6. The method according to any one of claims 1 to 5, characterized, that methane is added to the gas.   7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß dem Gas Äthan zugesetzt wird.7. The method according to any one of claims 1 to 5, characterized, that ethane is added to the gas. 8. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß dem Gas Äthin zugesetzt wird.8. The method according to any one of claims 1 to 5, characterized, that ethin is added to the gas. 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Gasentladung im strömendem Gas betrieben wird.9. The method according to any one of claims 1 to 8, characterized, that the gas discharge is operated in the flowing gas. 10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Gasentladung als Hochfrequenzentladung betrieben wird.10. The method according to any one of claims 1 to 9, characterized, that the gas discharge is operated as a high-frequency discharge. 11. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 10 zur Herstellung eines elektrophotographischen Aufzeichnungsmaterials mit mindestens einer Schicht aus amorphem Silicium.11. Use of the method according to one of claims 1 to 10 for Production of an electrophotographic recording material with at least one layer of amorphous silicon.
DE19924212231 1992-04-11 1992-04-11 Doping with amorphous silicon@ - by gas discharge with addn. of tri:methyl-phosphine to gas, used in prodn. of electrophotographic recording material Ceased DE4212231A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19924212231 DE4212231A1 (en) 1992-04-11 1992-04-11 Doping with amorphous silicon@ - by gas discharge with addn. of tri:methyl-phosphine to gas, used in prodn. of electrophotographic recording material
JP8058593A JPH0649644A (en) 1992-04-11 1993-04-07 Method of doping amorphous silicon and method of producing electrophotographic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19924212231 DE4212231A1 (en) 1992-04-11 1992-04-11 Doping with amorphous silicon@ - by gas discharge with addn. of tri:methyl-phosphine to gas, used in prodn. of electrophotographic recording material

Publications (1)

Publication Number Publication Date
DE4212231A1 true DE4212231A1 (en) 1993-10-14

Family

ID=6456641

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19924212231 Ceased DE4212231A1 (en) 1992-04-11 1992-04-11 Doping with amorphous silicon@ - by gas discharge with addn. of tri:methyl-phosphine to gas, used in prodn. of electrophotographic recording material

Country Status (2)

Country Link
JP (1) JPH0649644A (en)
DE (1) DE4212231A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089193A (en) * 2009-09-28 2011-05-06 Central Glass Co Ltd Oligomethylphosphine compound for amorphous semiconductor film and film deposition gas using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966427A (en) * 1958-11-07 1960-12-27 Union Carbide Corp Gas plating of alloys
US4363828A (en) * 1979-12-12 1982-12-14 International Business Machines Corp. Method for depositing silicon films and related materials by a glow discharge in a disiland or higher order silane gas
US4681826A (en) * 1984-02-14 1987-07-21 Sanyo Electric Co., Ltd. Electrophotographic photosensitive member
US4690830A (en) * 1986-02-18 1987-09-01 Solarex Corporation Activation by dehydrogenation or dehalogenation of deposition feedstock and dopant materials useful in the fabrication of hydrogenated amorphous silicon alloys for photovoltaic devices and other semiconductor devices
US4877753A (en) * 1986-12-04 1989-10-31 Texas Instruments Incorporated In situ doped polysilicon using tertiary butyl phosphine
US5076206A (en) * 1990-10-31 1991-12-31 Texas Instruments Incorporated Vertical LPCVD reactor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966427A (en) * 1958-11-07 1960-12-27 Union Carbide Corp Gas plating of alloys
US4363828A (en) * 1979-12-12 1982-12-14 International Business Machines Corp. Method for depositing silicon films and related materials by a glow discharge in a disiland or higher order silane gas
US4681826A (en) * 1984-02-14 1987-07-21 Sanyo Electric Co., Ltd. Electrophotographic photosensitive member
US4690830A (en) * 1986-02-18 1987-09-01 Solarex Corporation Activation by dehydrogenation or dehalogenation of deposition feedstock and dopant materials useful in the fabrication of hydrogenated amorphous silicon alloys for photovoltaic devices and other semiconductor devices
US4877753A (en) * 1986-12-04 1989-10-31 Texas Instruments Incorporated In situ doped polysilicon using tertiary butyl phosphine
US5076206A (en) * 1990-10-31 1991-12-31 Texas Instruments Incorporated Vertical LPCVD reactor

Also Published As

Publication number Publication date
JPH0649644A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
DE2743141C2 (en) Semiconductor component with a layer of amorphous silicon
DE2750597C2 (en) Process for applying a thin layer to a substrate by decomposing a gas in a plasma
DE2826752A1 (en) PHOTOELEMENT
DE112009004581T5 (en) Layer production method and layer production device
DE3124447A1 (en) METHOD FOR FORMING A DEPOSITION FILM
DE2736514A1 (en) METHOD AND DEVICE FOR APPLYING CARBON MATERIALS TO SURFACES
EP0381111B1 (en) Electroactive-passivation film
DE2711365C2 (en)
DE3807755A1 (en) METHOD FOR PRODUCING AN AMORPHOUS HYDROCARBON LAYER
DE69531528T2 (en) Semiconductor device with insulation between components, made in a diamond layer with hydrogen termination
DE2904171C2 (en)
DE2300813A1 (en) PROCESS FOR DEPOSITING NITROGEN-DOPED BETA-TANTALUM AND AN ARTICLE HAVING A BETA-TANTALUM THIN-LAYER
DE3209119A1 (en) METHOD FOR FORMING A DEPOSITION FILM
DE3128022A1 (en) METHOD FOR PRODUCING CARBON OVERLAYS FOR OPTICAL PURPOSES
DE3211081A1 (en) LIGHT SENSITIVE ELEMENT
DE1544190B2 (en) Method for introducing imperfections in diamond
DE102010053214A1 (en) Process for the hydrogen passivation of semiconductor layers
EP0381110B1 (en) Protection layer for electroactive passivation layers
DE3609456A1 (en) HEAT-GENERATING RESISTANCE AND HEAT-GENERATING RESISTANCE ELEMENT USING THE SAME
DE3609503C2 (en)
DE4212231A1 (en) Doping with amorphous silicon@ - by gas discharge with addn. of tri:methyl-phosphine to gas, used in prodn. of electrophotographic recording material
EP0291444B1 (en) Production of polymer-metal compounds by precipitation in glow discharge areas
DE3712205C2 (en)
DE1953070B2 (en) PROCESS FOR MANUFACTURING A TANTALOXINE NITRIDE LAYER RESISTANT
DE4312527A1 (en) Process for the formation of boron-doped, semiconducting diamond layers

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection