DE4208455A1 - Contactless three=dimensional measurement e.g of teeth - using opto-electronic measurement in two dimensions and rotative or translation in third dimension and combining w.r.t actual position of measurement planes - Google Patents

Contactless three=dimensional measurement e.g of teeth - using opto-electronic measurement in two dimensions and rotative or translation in third dimension and combining w.r.t actual position of measurement planes

Info

Publication number
DE4208455A1
DE4208455A1 DE4208455A DE4208455A DE4208455A1 DE 4208455 A1 DE4208455 A1 DE 4208455A1 DE 4208455 A DE4208455 A DE 4208455A DE 4208455 A DE4208455 A DE 4208455A DE 4208455 A1 DE4208455 A1 DE 4208455A1
Authority
DE
Germany
Prior art keywords
measurement
planes
measured
measurement levels
levels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE4208455A
Other languages
German (de)
Inventor
Peter Dr Ing Brueckner
Andreas Bartels
Matthias Dipl Ing Triebel
Hans-Joerg Dr Schenk
Paul-Georg Dr M Jost-Brinkmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE4208455A priority Critical patent/DE4208455A1/en
Priority to DE4301538A priority patent/DE4301538A1/en
Publication of DE4208455A1 publication Critical patent/DE4208455A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The method involves optoelectronic measurement of two dimensions and detection of the third dimension by rotational or translational motion of the measurement material. The measurement material is detected in several measurement planes to capture all shape details. The planes are linearly displaced and inclined wrt. each other. Their number is first determined from information about the measurement material. Measurements are taken in each plane individually and combined to a single data set taking into account the position of the plane. ADVANTAGE - Enables complete detection of complicated objects, esp. with undercuts or covered corners.

Description

Es ist bekannt, daß zur dreidimensionalen berührungslosen Messung ein Lichtband auf das Meßgut projiziert wird und dieses Lichtband unter einem Winkel durch eine CCD- Kamera beobachtet wird. Durch Auswertung des seitlichen Versatzes wird eine Meß­ information erhalten. Ein solches Lichtschnittverfahren wird z. B. von Pfeifer in Wett­ bewerbsfaktor Produktionstechnik des Aachener Werkzeugmaschinen-Kolloquiums be­ schrieben. Nachteilig ist, daß bei diesem Verfahren nur unter einer Ebene das Meßgut erfaßt wird. Dadurch ist die dreidimensionale berührungslose Messung von nur sehr einfachen Objekten möglich.It is known that a three-dimensional non-contact measurement has a light band the measured material is projected and this light band at an angle through a CCD Camera is observed. A measurement is carried out by evaluating the lateral offset get information. Such a light section method is used, for. B. from Pfeifer in betting Production technology application factor at the Aachen Machine Tool Colloquium be wrote. It is disadvantageous that in this method the material to be measured is only at one level is detected. As a result, the three-dimensional contactless measurement is only very simple objects possible.

Ziel der Erfindung ist es, die im Stand der Technik genannten Mängel zu beseitigen, das heißt, ein Verfahren der dreidimensionalen berührungslosen Messung zu schaffen, welches eine vollständige Erfassung komplizierter Objekte, insbesondere mit Hinterschneidungen bzw. mit verdeckten Kanten, ermöglicht.The aim of the invention is to eliminate the shortcomings mentioned in the prior art, that means to create a method of three-dimensional non-contact measurement, which a complete detection of complicated objects, especially with undercuts or with hidden edges.

Zur Lösung dieser Aufgabe wird der Laser sowie die verwendete CCD-Matrixkamera in bestimmten Grenzen frei positionierbar im Raum angeordnet. Dies wird realisiert durch die Möglichkeit einer translatorischen und rotatorischen Verschiebung des Meßgutes und einer rotatorischen Bewegung des Tastkopfes, d. h. eine Kippung, bestehend aus einer festen Anordnung des Lasers zu der CCD-Kamera und deren Optiken. Bei einer berüh­ rungslosen dreidimensionalen Aufnahme wird das Meßgut auf der translatorischen und rotatorischen Einheit befestigt. Der Tastkopf befindet sich senkrecht über dem Meßgut. Durch den verwendeten Laser und eine astigmatische Kollimaroptik wird auf dem Meßgut ein Lichtband erzeugt, welches durch die CCD-Kamera erfaßt wird. Die Berechnung der Höheninformation erfolgt nach dem Triangulationsprinzip und wird mit der ebenfalls vorhandenen Ortsinformation (X-Koordinate oder Radius R) verknüpft. Die dritte benötigte Ortsinformation (Y-Koordinate oder Winkel Φ) wird durch Auswertung der Bewegung des Meßgutes (translatorisch oder rotatorisch oder kombiniert) realisiert. Die Abtastdichte kann variiert werden. Die gewonnenen dreidimensionalen Daten werden in einem einheitlichen Datensatz zusammengefaßt, der folgendes Format hat:
1. X-Koordinate, Y-Koordinate, Z-Koordinate
oder
2. Winkel Φ, Radius R, Z-Koordinate.
To solve this task, the laser and the CCD matrix camera used are freely positioned in space within certain limits. This is realized by the possibility of a translational and rotary displacement of the measured material and a rotary movement of the probe, ie a tilt, consisting of a fixed arrangement of the laser to the CCD camera and its optics. With a non-contact three-dimensional recording, the material to be measured is attached to the translatory and rotary unit. The probe is located vertically above the material to be measured. Due to the laser used and an astigmatic collimar optics, a light band is generated on the material to be measured, which is detected by the CCD camera. The height information is calculated according to the triangulation principle and is linked to the location information (X coordinate or radius R) that is also available. The third required location information (Y coordinate or angle Φ) is realized by evaluating the movement of the measured material (translatory or rotary or combined). The sampling density can be varied. The three-dimensional data obtained are summarized in a uniform data record, which has the following format:
1. X coordinate, Y coordinate, Z coordinate
or
2. Angle Φ, radius R, Z coordinate.

Der entstandene Datensatz beschreibt aus Speicherplatzgründen nur ein dreidimensionales Oberflächenmodell. Bei einem relativ einfachen, kleinen Meßobjekt ohne Hinterschneidun­ gen und einer räumlichen Ausdehnung kleiner der Länge des produzierten Lichtbandes, kann unter Verwendung von nur einer Meßebene (eindimensionale Bewegung des Objek­ tes) das gesamte Meßgut vollständig erfaßt werden. Wenn das projizierte Lichtband das Meßobjekt nicht vollständig überstreicht, wird das Objekt durch zwei oder mehr Meß­ ebenen aufgenommen. Dies wird durch eine oder mehrere Verschiebungen des Meßgutes realisiert. Es entstehen, je nach Anzahl der Meßebenen, mehrere Datensätze im oben beschriebenen Format, die im Anschluß zu einem, das gesamte Meßobjekt beschreibenden, Datensatz zusammengefaßt werden. Eventuell mehrfach erfaßte gleiche Oberflächenpunkte des Meßobjektes werden dabei eliminiert. Durch eine Kippung des Tastkopfes ist eine weitere Möglichkeit gegeben, komplizierte Strukturen des Meßgutes, d. h. mit Hinter­ schneidungen bzw. mit verdeckten Kanten, die aus einer senkrechten Position des Tastkop­ fes nicht beobachtet werden können, zu erfassen. Das System reagiert selbstständig auf eine Unterbrechung des produzierten Lichtbandes. Durch eine Kippung des Tastkopfes und eine Verschiebung des Meßgutes wird der Beobachtungswinkel verbessert und eine Erfassung von Hinterschneidungen wird ermöglicht. In Abhängigkeit der damit entstehen­ den Meßebenen werden einzelne Datensätze, die wie bereits beschrieben, zu einem Gesamtdatensatz zusammengefaßt und reduziert werden, der das zu vermessende Objekt umfassend beschreibt. Das beschriebene Verfahren und die vorgestellte Anordnung ist besonders zur Vermessung von Gebißmodellen geeignet.The resulting data record describes only a three-dimensional one for reasons of storage space  Surface model. With a relatively simple, small measurement object without an undercut conditions and a spatial extension smaller than the length of the light strip produced, can be performed using only one measuring plane (one-dimensional movement of the object tes) the entire material to be measured is completely recorded. If the projected light band is If the object to be measured is not completely covered, the object is covered by two or more measurements levels added. This is caused by one or more displacements of the measured material realized. Depending on the number of measurement levels, several data records are created in the above described format, which follows a description of the entire test object Data record can be summarized. The same surface points possibly recorded several times of the test object are eliminated. By tilting the probe is one another possibility given complicated structures of the measured material, d. H. with hind cuts or with hidden edges from a vertical position of the probe fes cannot be observed. The system reacts automatically an interruption in the light band produced. By tilting the probe and a shift in the measured material improves the observation angle and a Detection of undercuts is made possible. Depending on the result At the measurement levels, individual data records, as already described, become one Total data set can be summarized and reduced, the object to be measured comprehensively describes. The method described and the arrangement presented is especially suitable for measuring dentition models.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels näher beschrieben. In der zugehörigen Zeichnung zeigt Fig. 1 eine schematische perspektivische und block­ schaltbildartige Darstellung des Grundprinzips einer erfindungsgemäßen berührungslosen dreidimensionalen Meßeinrichtung.The invention is described below with reference to an embodiment. In the accompanying drawing, FIG. 1 shows a schematic perspective and block diagram-like representation of the basic principle of a contactless three-dimensional measuring device according to the invention.

In Fig. 1 ist erfindungsgemäß eine rotatorische Verstelleinheit 1 auf einer translatori­ schen Verstelleinheit 2 angeordnet, auf der das zu vermessende Objekt 3 in geeigneter Weise befestigt ist. An einem Meßträger 6 sind ein Laser 4 mit einer astigmatischen Kollimatoroptik 5, eine CCD-Matrixkamera 7 und ein Objektiv 8, das entsprechend dem Scheimpflugwinkel im Abbildungsstrahlengang angeordnet ist, befestigt. Dieser Meß­ träger 6 ist an einer senkrecht angeordneten rotatorischen Verstelleinheit 9 so angebracht, daß sich der Laser 4 senkrecht über dem Meßobjekt 3 befindet. Alle Antriebe der drei Verstelleinheiten werden über eine Steuerung 10 bedient. Die Auswertung der Kamerasi­ gnale sowie die Regelung der Antriebssteuerung erfolgt durch ein Rechnersystem 11 zur Bildverarbeitung und Objektdarstellung. In Abhängigkeit der äußeren Beschaffenheit der Meßobjekte erfolgt die berührungslose dreidimensionale Vermessung. Der sich senkrecht oder in einem definierte Kippwinkel über dem Meßobjekt befindende Meßträger mit Laser und CCD-Matrixkamera, erzeugt durch seine astigmatische Kollimatoroptik einen schmalen Lichtstreifen, welcher auf das Meßgut projiziert wird. Durch die CCD-Matrixka­ mera wird das projizierte Lichtband detektiert und die Höheninformation als Auslenkung erfaßt. Die Berechnung der exakten Höhenwerte erfolgt auf Grundlage des Triangulations­ prinzips. Die ermittelten Oberflächenkoordinaten (Z-Koordinate, Radius R oder Y-Koor­ dinate) sowie die dritte Ortsinformation der Verstelleinheiten (Winkel Φ der X-Koor­ dinate) werden in einem Datensatz abgelegt, der die Oberflächenkontur des Meßobjektes beschreibt. Im Anschluß erfolgt eine Verschiebung oder Drehung des Meßobjektes und die Auswertung des nächsten Lichtschnittes, wie beschrieben. Die Messung erfolgt, bis das gesamte Meßobjekt erfaßt wurde oder vorgegebene Grenzwerte erreicht sind. Die Ab­ tastdichte kann ebenfalls festgelegt werden. Wenn das Meßobjekt die Länge des produzier­ ten Lichtbandes überschreitet, muß es in zwei oder mehreren Meßvorgängen abgearbeitet werden. Je Meßvorgang wird ein eigenständiger Oberflächendatensatz generiert, der den betreffenden Abschnitt des Meßobjektes beschreibt. Nach erfolgter vollständiger Erfassung werden die Teildatensätze zu einem einheitlichen Datensatz, wobei eventuell auftretende Überschneidungen eliminiert werden. Weist ein Meßobjekt verdeckte Kanten bzw. Hinter­ schneidungen auf, ist eine Veränderung der Lage der Meßebene nicht nur durch eine Verschiebung des Meßgutes sondern auch durch eine Kippung des Meßträgers erforderlich. Diese durch Kippung erzeugte weitere Meßebene wird ebenso wie die oben beschriebenen, linear verschobenen Meßebenen, in den Gesamtdatensatz mit einbezogen, wobei der Winkel der Verkippung gemessen und bei der Berechnung der tatsächichen Oberflächen Koordinaten einbezogen wird. Die Verkippung kann anhand von Vorinformationen über das Meßobjekt festgelegt werden. Das System kann aber auch selbständig, z. B. auf eine Unterbrechung des produzierten Lichtbandes reagieren. Als weiteres Kriterium kann auch die Auswertung der Neigung des abgebildeten Lichtstreifens herangezogen werdnen Die Auswertung erfolgt analog in der oben beschriebenen Weise. Das beschriebene Verfahren und die vorgestellte Anordnung ist besonders zur Vermessung von Gebißmodellen ge­ eignet.In Fig. 1, a rotary adjustment unit 1 according to the invention is arranged on a translatori's adjustment unit 2 , on which the object 3 to be measured is fastened in a suitable manner. A laser 4 with an astigmatic collimator lens 5 , a CCD matrix camera 7 and a lens 8 , which is arranged in the imaging beam path in accordance with the Scheimpflug angle, are attached to a measuring carrier 6 . This measuring carrier 6 is attached to a vertically arranged rotary adjustment unit 9 so that the laser 4 is perpendicular to the measurement object 3 . All drives of the three adjustment units are operated via a control 10 . The evaluation of the camera signals and the regulation of the drive control is carried out by a computer system 11 for image processing and object representation. The non-contact three-dimensional measurement takes place depending on the external nature of the test objects. Due to its astigmatic collimator optics, the measuring carrier with laser and CCD matrix camera, which is located vertically or at a defined tilting angle above the object to be measured, creates a narrow strip of light which is projected onto the material being measured. The projected light band is detected by the CCD matrix camera and the height information is detected as a deflection. The exact height values are calculated on the basis of the triangulation principle. The determined surface coordinates (Z coordinate, radius R or Y coordinate) and the third location information of the adjustment units (angle Φ of the X coordinate) are stored in a data record that describes the surface contour of the measurement object. This is followed by a displacement or rotation of the measurement object and the evaluation of the next light section, as described. The measurement is carried out until the entire measuring object has been detected or predetermined limit values have been reached. The sample density can also be specified. If the measurement object exceeds the length of the light strip produced, it must be processed in two or more measurement processes. A separate surface data record is generated for each measurement process, which describes the relevant section of the measurement object. After complete recording, the partial data sets become a uniform data set, with any overlaps that may occur being eliminated. If a measurement object has hidden edges or undercuts, a change in the position of the measurement plane is not only necessary due to a displacement of the measured material but also due to a tilting of the measurement carrier. This further measuring plane generated by tilting is included in the overall data set, as are the linearly shifted measuring planes described above, the angle of the tilt being measured and coordinates being included in the calculation of the actual surfaces. The tilt can be determined on the basis of preliminary information about the measurement object. The system can also independently, e.g. B. respond to an interruption of the light strip produced. The evaluation of the inclination of the light strip shown can also be used as a further criterion. The evaluation is carried out analogously in the manner described above. The method described and the arrangement presented is particularly suitable for the measurement of dentition models.

Claims (6)

1. Verfahren zur berührungslosen dreidimensionalen Messung, bei dem zwei Dimensionen optoelektronisch aufgenommen werden und die dritte durch rotatorische oder durch trans­ latorische Relativbewegung des Meßgutes erfaßt wird, dadurch gekennzeichnet, daß zur Erfassung aller Formdetails, insbesondere von Hinterschneidungen, das Meßgut durch mehrere Meßebenen erfaßt wird,
daß diese Meßebenen gegeneinander linear verschoben und geneigt sind,
daß zunächst anhand von Informationen über das Meßgut die Anzahl und die Lage der Meßebenen bestimmt werden,
daß diese Meßebenen einzeln aufgenom­ men und
daß die Ergebnisse dieser Messungen unter Berücksichtigung der tatsächlichen Lage der einzelnen Meßebenen zu einem einheitlichen Datensatz zusammengefaßt werden.
1. A method for non-contact three-dimensional measurement, in which two dimensions are recorded optoelectronically and the third is detected by rotary or by translational relative movement of the measured material, characterized in that the measured material is detected by several measurement planes to record all shape details, in particular undercuts ,
that these measuring planes are linearly shifted and inclined towards each other,
that the number and the position of the measuring planes are first determined on the basis of information about the material to be measured,
that these measurement levels are taken individually and
that the results of these measurements are combined into a uniform data set, taking into account the actual position of the individual measurement levels.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Anzahl und die Lage der notwendigen Meßebenen automatisch während der Messung durch Auswertung geeigneter Kriterien korrigiert werden,
daß diese Meßebenen einzeln aufgenommen und
daß die Ergebnisse dieser Messungen unter Berücksichtigung der tatsächlichen Lage der einzelnen Meßebenen zu einem einheitlichen Datensatz zusammengefaßt werden.
2. The method according to claim 1, characterized in that the number and the position of the necessary measurement levels are automatically corrected during the measurement by evaluating suitable criteria,
that these measurement levels are recorded individually and
that the results of these measurements are combined into a uniform data set, taking into account the actual position of the individual measurement levels.
3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Anzahl und die Lage der notwendigen Meßebenen automatisch während der Messung durch Auswertung geeigneter Kriterien festgelegt werden,
daß diese Meßebenen einzelnen aufgenommen und
daß die Ergebnisse dieser Messungen unter Berücksichtigung der tatsächlichen Lage der einzelnen Meßebenen zu einem einheitlichen Datensatz zusammengefaßt werden.
3. The method according to claim 1, characterized in that the number and the position of the necessary measurement levels are automatically determined during the measurement by evaluating suitable criteria,
that these measurement levels are recorded individually and
that the results of these measurements are combined into a uniform data set, taking into account the actual position of the individual measurement levels.
4. Verfahren gemäß einem der Ansprüche 1-3, dadurch gekennzeichnet, daß die einzelnen Meßebenen nacheinander aufgenommen werden.4. The method according to any one of claims 1-3, characterized in that the individual Measurement levels are recorded one after the other. 5. Verfahren gemäß einem der Ansprüche 1-3, dadurch gekennzeichnet, daß die einzelnen Meßebenen gleichzeitig aufgenommen werden.5. The method according to any one of claims 1-3, characterized in that the individual Measurement planes are recorded simultaneously. 6. Anordnung zur Durchführung des Verfahrens nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß das Meßgut (3) in geeigneter Weise auf einem rotatorischen Tisch (1) befestigt ist,
daß dieser Tisch auf einem translatorischen Tisch (2) angeordnet ist,
daß ein Laser (4) mit einer astigmatischen Kollimatoroptik (5) an einem Meßträger (6) an­ geordnet ist,
daß eine CCD-Matrixkamera (7) mit einem im Abbildungstrahlengang befindlichen Objektiv (8) ebenfalls an diesem Meßträger (6) befestigt ist,
daß sich dieser Meßträger an einem vertikal angeordneten rotatorischen Tisch (9) befindet,
daß die An­ triebe der drei Tische an eine Steuerung (10) angeschlossen sind und
daß die Steuerung (10) über eine Schnittstelle mit einem Rechnersystem (11) zur Bildverarbeitung und Objektdarstellung verbunden ist.
6. Arrangement for performing the method according to any one of claims 1-5, characterized in that the material to be measured ( 3 ) is fastened in a suitable manner on a rotary table ( 1 ),
that this table is arranged on a translatory table ( 2 ),
that a laser ( 4 ) with an astigmatic collimator lens ( 5 ) is arranged on a measuring carrier ( 6 ),
that a CCD matrix camera ( 7 ) with an objective ( 8 ) located in the imaging beam path is also attached to this measuring carrier ( 6 ),
that this measuring carrier is located on a vertically arranged rotary table ( 9 ),
that the drives of the three tables are connected to a controller ( 10 ) and
that the controller ( 10 ) is connected via an interface to a computer system ( 11 ) for image processing and object display.
DE4208455A 1992-03-17 1992-03-17 Contactless three=dimensional measurement e.g of teeth - using opto-electronic measurement in two dimensions and rotative or translation in third dimension and combining w.r.t actual position of measurement planes Withdrawn DE4208455A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4208455A DE4208455A1 (en) 1992-03-17 1992-03-17 Contactless three=dimensional measurement e.g of teeth - using opto-electronic measurement in two dimensions and rotative or translation in third dimension and combining w.r.t actual position of measurement planes
DE4301538A DE4301538A1 (en) 1992-03-17 1993-01-21 Method and arrangement for contactless three-dimensional measurement, in particular for measuring denture models

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4208455A DE4208455A1 (en) 1992-03-17 1992-03-17 Contactless three=dimensional measurement e.g of teeth - using opto-electronic measurement in two dimensions and rotative or translation in third dimension and combining w.r.t actual position of measurement planes

Publications (1)

Publication Number Publication Date
DE4208455A1 true DE4208455A1 (en) 1993-09-23

Family

ID=6454239

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4208455A Withdrawn DE4208455A1 (en) 1992-03-17 1992-03-17 Contactless three=dimensional measurement e.g of teeth - using opto-electronic measurement in two dimensions and rotative or translation in third dimension and combining w.r.t actual position of measurement planes

Country Status (1)

Country Link
DE (1) DE4208455A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4407518A1 (en) * 1994-03-07 1995-09-14 Intecu Ges Fuer Innovation Tec Contactless measurement of three=dimensional objects using optical triangulation
DE19514692A1 (en) * 1995-04-13 1996-10-24 Sicon Spectroscopic Instr Gmbh Optical co-ordinate measuring machine
EP1195575A1 (en) * 2000-10-04 2002-04-10 Laurent Senee Procedure and device to determine surface coordinates and their application and positioning procedure for a laser emitter-detector
EP1574817A1 (en) * 2004-03-10 2005-09-14 Diener&AG&Precision&Machining Method ans system for scanning three-dimensional objects and holder for objects
DE102005006069A1 (en) * 2005-02-10 2006-08-24 Hubert Kammer Method and device for three-dimensional scanning of objects
DE102006002794A1 (en) * 2006-01-20 2007-07-26 Wash Tec Holding Gmbh Light-section method for use in controlling of car wash facility, involves washing vehicle using treatment device, where vehicle and treatment device are moved in washing direction relative to each other
DE102006031142A1 (en) * 2006-07-05 2008-01-10 Prüf- und Forschungsinstitut Pirmasens e.V. Surface coordinates three dimensional measurement and spatial detection method for e.g. foot ball, involves rotating object so that surface spherical segment is found by sensors, where detection is continued till full surfaces are detected
DE10344922B4 (en) * 2003-09-25 2008-06-26 Siemens Audiologische Technik Gmbh All-scanner
WO2011131161A1 (en) * 2010-03-17 2011-10-27 Peter Kronseder Device for evaluating the protection class test of ballistic protection vests or ballistic protection helmets
US8185344B2 (en) 2003-06-17 2012-05-22 Troxler Electronic Laboratories, Inc. Method of determining a dimension of a sample of a construction material and associated apparatus
US9086272B2 (en) 2010-10-27 2015-07-21 Nikon Corporation Profile measuring apparatus, method for manufacturing structure, and structure manufacturing system
US9273951B2 (en) 2011-06-06 2016-03-01 Troxler Electronic Laboratories, Inc. Optical method and apparatus for determining a characteristic such as volume and density of an excavated void in a construction material
US9587938B2 (en) 2003-06-17 2017-03-07 Troxler Electronic Laboratories, Inc. Method and apparatus for determining a characteristic of a construction material
CN110567366A (en) * 2019-08-12 2019-12-13 西安理工大学 non-contact laser measurement system and measurement method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177038A1 (en) * 1984-10-05 1986-04-09 Hitachi, Ltd. Method of measuring shape of object in non-contacting manner
WO1991008439A1 (en) * 1989-12-05 1991-06-13 Böhler Gesellschaft M.B.H. Process and arrangement for optoelectronic measurement of objects
DE4011407A1 (en) * 1990-04-09 1991-10-10 Steinbichler Hans Quantitative absolute measurer for three=dimensional coordinates - contains projector of test pattern, sensor and displacement device for surface evaluation of test object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177038A1 (en) * 1984-10-05 1986-04-09 Hitachi, Ltd. Method of measuring shape of object in non-contacting manner
WO1991008439A1 (en) * 1989-12-05 1991-06-13 Böhler Gesellschaft M.B.H. Process and arrangement for optoelectronic measurement of objects
DE4011407A1 (en) * 1990-04-09 1991-10-10 Steinbichler Hans Quantitative absolute measurer for three=dimensional coordinates - contains projector of test pattern, sensor and displacement device for surface evaluation of test object

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE-Z: MORGENSTERN, B.: Optisch-physikalische Grenzen, in: Industrie-Anzeiger 49, 50/1989, S. 22-24 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4407518A1 (en) * 1994-03-07 1995-09-14 Intecu Ges Fuer Innovation Tec Contactless measurement of three=dimensional objects using optical triangulation
DE19514692A1 (en) * 1995-04-13 1996-10-24 Sicon Spectroscopic Instr Gmbh Optical co-ordinate measuring machine
DE19514692C2 (en) * 1995-04-13 1998-12-17 Sicon Spectroscopic Instr Gmbh Optical coordinate measuring machine for non-contact, three-dimensional measurement of workpieces on a measuring surface
EP1195575A1 (en) * 2000-10-04 2002-04-10 Laurent Senee Procedure and device to determine surface coordinates and their application and positioning procedure for a laser emitter-detector
EP1636543B1 (en) * 2003-06-17 2019-12-11 Troxler Electronic Laboratories, Inc. Method of determining a dimension of a sample of a construction material and associated apparatus
US9587938B2 (en) 2003-06-17 2017-03-07 Troxler Electronic Laboratories, Inc. Method and apparatus for determining a characteristic of a construction material
US8185344B2 (en) 2003-06-17 2012-05-22 Troxler Electronic Laboratories, Inc. Method of determining a dimension of a sample of a construction material and associated apparatus
DE10344922B4 (en) * 2003-09-25 2008-06-26 Siemens Audiologische Technik Gmbh All-scanner
WO2005088242A2 (en) * 2004-03-10 2005-09-22 Diener Ag Precision Machining Method and scanning arrangement for the contactless scanning of three-dimensional objects and device for holding the objects
WO2005088242A3 (en) * 2004-03-10 2005-12-08 Diener Ag Prec Machining Method and scanning arrangement for the contactless scanning of three-dimensional objects and device for holding the objects
EP1574817A1 (en) * 2004-03-10 2005-09-14 Diener&AG&Precision&Machining Method ans system for scanning three-dimensional objects and holder for objects
US8467070B2 (en) 2004-03-10 2013-06-18 Dst Swiss Ag Method and scanning arrangement for the contactless scanning of three-dimensional objects and device for holding the objects
DE102005006069A1 (en) * 2005-02-10 2006-08-24 Hubert Kammer Method and device for three-dimensional scanning of objects
US7811385B2 (en) 2006-01-20 2010-10-12 Washtec Holding Gmbh Method and apparatus for controlling a vehicle washing installation
DE102006002794A1 (en) * 2006-01-20 2007-07-26 Wash Tec Holding Gmbh Light-section method for use in controlling of car wash facility, involves washing vehicle using treatment device, where vehicle and treatment device are moved in washing direction relative to each other
DE102006031142B4 (en) * 2006-07-05 2012-02-16 Prüf- und Forschungsinstitut Pirmasens e.V. Method and device for three-dimensional measurement and detection of the complete object surface of a spherical measurement object such as a sports ball
DE102006031142A1 (en) * 2006-07-05 2008-01-10 Prüf- und Forschungsinstitut Pirmasens e.V. Surface coordinates three dimensional measurement and spatial detection method for e.g. foot ball, involves rotating object so that surface spherical segment is found by sensors, where detection is continued till full surfaces are detected
WO2011131161A1 (en) * 2010-03-17 2011-10-27 Peter Kronseder Device for evaluating the protection class test of ballistic protection vests or ballistic protection helmets
US9086272B2 (en) 2010-10-27 2015-07-21 Nikon Corporation Profile measuring apparatus, method for manufacturing structure, and structure manufacturing system
EP2633268B1 (en) * 2010-10-27 2018-09-26 Nikon Corporation Profile measuring apparatus and method for manufacturing a structure.
US9273951B2 (en) 2011-06-06 2016-03-01 Troxler Electronic Laboratories, Inc. Optical method and apparatus for determining a characteristic such as volume and density of an excavated void in a construction material
CN110567366A (en) * 2019-08-12 2019-12-13 西安理工大学 non-contact laser measurement system and measurement method thereof
CN110567366B (en) * 2019-08-12 2021-05-25 西安理工大学 Non-contact laser measurement system and measurement method thereof

Similar Documents

Publication Publication Date Title
DE4301538A1 (en) Method and arrangement for contactless three-dimensional measurement, in particular for measuring denture models
DE3854348T2 (en) Method and device for measuring the shape of a three-dimensionally curved surface.
DE3881635T2 (en) MACHINE FOR MEASURING AND MATHEMATICALLY DETERMINING THE SURFACE OF THREE-DIMENSIONAL MODELS, ESPECIALLY FOR THE PRODUCTION OF COLD MOLDINGS BY MEANS OF NUMERICALLY CONTROLLED MACHINE TOOLS.
EP2961343B1 (en) Extraoral dental scanner
DE4208455A1 (en) Contactless three=dimensional measurement e.g of teeth - using opto-electronic measurement in two dimensions and rotative or translation in third dimension and combining w.r.t actual position of measurement planes
WO2001088471A1 (en) Method and device for determining the 3d profile of an object
DE102008048963B4 (en) 3D geometry detection method and apparatus
DE10137241A1 (en) Arrangement, for detecting and measuring objects, optically projects markers onto object, records partial views of object in global coordinate system using information re-detected markers
DE19936364A1 (en) Identification and localisation of marks in a 3D medical scanning process
EP1431740B1 (en) Measuring device for non-contact recording of object vibrations
DE102008027976A1 (en) Method and device for determining the position of a sensor
DE102019110508A1 (en) Method for controlling a coordinate measuring machine and a coordinate measuring machine
DE10127304C5 (en) Method and device for determining the three-dimensional contour of a specular surface of an object
DE102016014384A1 (en) Method and device for determining the 3D coordinates of an object
DE69108321T2 (en) Auxiliary device for manual placement of composite parts.
DE2259762B2 (en) Process for the automatic evaluation of stereo images
DE19902401C2 (en) Method and device for determining the geometry of sheet-like material or stacks thereof
DE10328523B4 (en) Method and measuring device for non-contact measurement of a contour of a surface
DE3411720C2 (en)
DE68906669T2 (en) MEASURING SYSTEM FOR A TOOL SETTING IN A MACHINE TOOL.
WO1997010488A1 (en) Process and device for detecting and measuring three-dimensional bodies or any surfaces
DE10048096A1 (en) Swivel unit has optical sensor calibration sensor creates coordinate transformations
DE102004050426A1 (en) Method and system for angle synchronization
DE10111130A1 (en) Coordinate measuring device with a video probe
DE102018208189B4 (en) Method and device for determining the torsional errors of a machine axis

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8122 Nonbinding interest in granting licences declared
AG Has addition no.

Ref country code: DE

Ref document number: 4301538

Format of ref document f/p: P

8139 Disposal/non-payment of the annual fee