DE4125201C1 - - Google Patents

Info

Publication number
DE4125201C1
DE4125201C1 DE4125201A DE4125201A DE4125201C1 DE 4125201 C1 DE4125201 C1 DE 4125201C1 DE 4125201 A DE4125201 A DE 4125201A DE 4125201 A DE4125201 A DE 4125201A DE 4125201 C1 DE4125201 C1 DE 4125201C1
Authority
DE
Germany
Prior art keywords
compounds
alkyl
aryl
hydrogen
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE4125201A
Other languages
English (en)
Inventor
Herbert Dipl.-Chem. Dr. 6975 Gerchsheim De Wolter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE4125201A priority Critical patent/DE4125201C1/de
Priority to AT92110752T priority patent/ATE141607T1/de
Priority to DK92110752.0T priority patent/DK0525392T3/da
Priority to DE59206939T priority patent/DE59206939D1/de
Priority to EP92110752A priority patent/EP0525392B1/de
Priority to US07/916,584 priority patent/US5414093A/en
Priority to JP20410792A priority patent/JP3187150B2/ja
Application granted granted Critical
Publication of DE4125201C1 publication Critical patent/DE4125201C1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Silicon Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

Die Erfindung betrifft hydrolysierbare und polymerisierbare Silane, ein Verfahren zu deren Herstellung und deren Verwendung zur Herstellung von Kieselsäurepolykondensaten bzw. -heteropolykondensaten und zur Herstellung von Polymerisaten bzw. Heteropolymerisaten.
Hydrolysierbare, organisch modifizierte Silane finden eine breite Anwendung bei der Herstellung von kratzfesten Beschichtungen für die unterschiedlichsten Substrate, von Füllstoffen, von Klebe- und Dichtungsmassen oder von Formkörpern. Dabei werden diese Silane entweder alleine, in Mischungen oder in Gegenwart weiterer hydrolysierbarer und/oder kondensierbarer Komponenten hydrolytisch kondensiert, wobei die endgültige Härtung thermisch oder photochemisch erfolgt.
So sind z. B. aus der DE 34 07 087 C2 kratzfeste Beschichtungen bekannt, die durch hydrolytische Kondensation einer Mischung entstehen, die u. a. aus einer hydrolysierbaren titan- oder zirkonorganischen Verbindung MR₄ und aus einem hydrolysierbaren, organofunktionellen Silan R′m(R′′Y)nSiX(4-m-n) besteht, wobei R z. B. Halogen, Hydroxy, Alkoxy oder Acyloxy bedeutet, R′ z. B. Alkyl oder Alkenyl, R′′ z. B. Alkylen oder Alkenylen und X einen hydrolysierbaren Rest.
Aus der DE 35 36 716 A1 sind z. B. Klebe- und Dichtungsmassen bekannt, die erhalten worden sind durch hydrolytische Kondensation eines oder mehrerer Organosilane der allgemeinen Formel RmSiX4-m und gegebenenfalls einer oder mehrerer der Komponenten SiX₄ und/oder Rn(R′′Y)pSiX4-n-p, wobei R und R′′ z. B. Alkyl, Alkenyl, Aryl, Alkylaryl, Arylalkyl, Alkenylaryl oder Arylalkenyl, X z. B. Wasserstoff, Halogen, Hydroxy, Alkoxy oder Acyloxy bedeutet, und Y z. B. ein Halogen oder eine gegebenenfalls substituierte Amino-, Amid-, Aldehyd-, Alkylcarbonyl-, Carboxy-, Hydroxy-, Mercapto- oder Cyano-Gruppe darstellt.
Ferner sind handelsübliche Silane mit reaktiven Doppelbindungen bekannt, wie z. B. (Meth)acryloxysilane des folgenden Typs,
wobei R Wasserstoff oder Methyl bedeutet und X z. B. Halogen oder Alkoxy ist. Diese Silane sind hydrolysier- und polymerisierbar und können für die Herstellung der oben genannten Systeme eingesetzt werden. Sie bieten den großen Vorteil, das die resultierende Beschichtung, die resultierende Füll-, Klebe- oder Dichtungsmasse oder der resultierende Formkörper durch Polymerisation an den reaktiven Doppelbindungen thermisch oder photochemisch gehärtet werden kann.
Nachteilig wirkt sich jedoch bei all diesen Systemen die Tatsache aus, daß bei der Polymerisation eine Volumenabnahme, d. h. ein sog. Härtungsschrumpf auftritt, der dazu führt, daß in der Beschichtung, in der Füll-, Klebe- oder Dichtungsmasse oder in den Formkörpern Spannungen entstehen und/oder die Maßhaftigkeit verloren geht. Die Spannungen können zu makroskopischen Zerstörungen führen, d. h. zu Rissen oder gar zu Abplatzungen, oder zu mikroskopischen Zerstörungen, wie z. B. zu optischen Störungen (ortsabhängiger Brechungsindex, Interferenzen), zu geringeren mechanischen Stabilitäten, zu Oberflächenstrukturen. Der Verlust der Maßhaftigkeit macht sich besonders bei Abformmassen (optische Gitter) und bei Formkörpern (z. B. beim Spritzguß) als sehr störend bemerkbar.
Aufgabe der vorliegenden Erfindung war es deshalb, neue, organisch modifizierte Silane bereit zu stellen, die hydrolysier- und polymerisierbar sind, die alleine, in Mischungen oder zusammen mit anderen hydrolysier-, kondensier- oder polymerisierbaren Komponenten zu kratzfesten Beschichtungen, zu Füll-, Klebe- oder Dichtungsmassen, zu Formkörpern oder zu Einbettmaterialien verarbeitet werden können, und die zu Beschichtungs-, Füll-, Klebe- oder Dichtungsmassen, zu Formkörpern oder zu Einbettmaterialien führen, die bei der Härtung keine Volumenabnahme erleiden und die eine gute Substrathaftung aufweisen. Diese Silane sollen universell einsetzbar sein, dort wo kein oder ein reduzierter Schrumpf, oder gar eine Expansion gefragt ist, und sie sollen in ein anorganisch-organisches Verbundsystem, d. h. in ein anorganisch-organisches Netzwerk eingebaut werden können. Ferner sollen diese Silane schnell und einfach, d. h. ohne aufwendigen Syntheseprozeß herzustellen sein.
Gelöst wird diese Aufgabe durch hydrolysierbare und polymerisierbare Silane der allgemeinen Formel (I),
YnSiXmR4-(n+m) (I)
in der die Reste X, Y und R gleich oder verschieden sind und die folgende Bedeutung haben:
R = Alkyl, Alenyl, Aryl, Alkylaryl oder Arylalkyl,
X = Wasserstoff, Halogen, Hydroxy, Alkoxy, Acyloxy, Alkylcarbonyl, Alkoxycarbonyl oder NR′₂,
mit R′ = Wasserstoff, Alkyl oder Aryl,
Y = ein Substituent, der einen substituierten oder unsubstituierten 1,4,6-Trioxaspiro-[4,4]-nonan-Rest enthält,
n = 1, 2 oder 3,
m = 1, 2 oder 3, mit n+m4.
Die Reste X sind hydrolysierbar und die Reste Y sind polymerisierbar, wobei jeweils mindestens ein Rest X und Y mit der oben genannten Bedeutung in den erfindungsgemäßen Silanen vorhanden ist.
Die Alkyl-Reste sind z. B. geradkettige, verzweigte oder cyclische Reste mit 1 bis 20, vorzugsweise mit 1 bis 10 Kohlenstoff-Atomen, und besonders bevorzugt sind niedere Alkyl-Reste mit 1 bis 6 Kohlenstoff-Atomen. Spezielle Beispiele sind Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, s-Butyl, t-Butyl, i-Butyl, n-Pentyl, n-Hexyl, Cyclohexyl, 2-Ethylhexyl, Dodecyl und Octadecyl.
Die Alkenyl-Reste sind z. B. geradkettige, verzweigte oder cyclische Reste mit 2 bis 20, vorzugsweise mit 2 bis 10 Kohlenstoff-Atomen, und besonders bevorzugt sind niedere Alkenyl-Reste mit 2 bis 6 Kohlenstoff-Atomen, wie z. B. Vinyl, Allyl oder 2-Butenyl.
Bevorzugte Aryl-Reste sind Phenyl, Biphenyl und Naphthyl. Die Alkoxy-, Acyloxy-, Alkylcarbonyl-, Alkoxycarbonyl- und Amino-Reste leiten sich vorzugsweise von den oben genannten Alkyl- und Aryl-Resten ab. Spezielle Beispiele sind Methoxy, Ethoxy, n- und i-Propoxy, n-, i-, s- und t-Butoxy, Methylamino, Ethylamino, Dimethylamino, Diethylamino, N-Ethylanilino, Acetyloxy, Propionyloxy, Methylcarbonyl, Ethylcarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Benzyl, 2-Phenylethyl und Tolyl.
Die genannten Reste können gegebenenfalls einen oder mehrere Substituenten tragen, z. B. Halogen, Alkyl, Hydroxyalkyl, Alkoxy, Aryl, Aryloxy, Alkylcarbonyl, Alkoxycarbonyl, Furfuryl, Tetrahydrofurfuryl, Amino, Alkylamino, Dialkylamino, Trialkylammonium, Amido, Hydroxy, Formyl, Carboxy, Mercapto, Cyano, Nitro, Epoxy, SO₃H und PO₄H₂.
Unter den Halogenen sind Fluor, Chlor und Brom bevorzugt.
Die substituierten bzw. unsubstituierten 1,4,6-Trioxaspiro-[4,4]-nonan-Gruppen sind über Alkylen- oder über Alkenylen-Reste, die durch Ether- oder Ester-Gruppen unterbrochen sein können, an das Si-Atom gebunden. Spezielle Beispiele und bevorzugte Ausführungsformen der Reste Y sind
wobei das Ringsystem, das sich vom γ-Butyrolacton ableitet, auch wie in Anspruch 2 dargestellt, substituiert sein kann. Die Substituenten können Wasserstoff, Hydroxyl-, Alkyl-, Alkenyl-, Aryl-, Alkylaryl-, Arylalkyl-, Alkylcarbonyl- oder Alkoxycarbonyl-Gruppen sein. Konkrete Beispiele hierfür sind
Konkrete Beispiele der erfindungsgemäßen Silane sind:
Die Herstellung der erfindungsgemäßen Silane erfolgt durch Umsetzung von Silanen der allgemeinen Formel (II),
Y′nSiXmR4-(n+m) (II)
mit substituierten oder unsubstituierten γ-Butyrolactonen in Anwesenheit einer Lewis-Säure und gegebenenfalls in einem inerten, wasserfreien Lösungsmittel, wobei das γ-Butyrolacton im Überschuß zugesetzt wird. Die Reste X, Y′ und R in der allgemeinen Formel (II) sind gleich oder verschieden, X, R, n und m haben dieselbe Bedeutung wie in den erfindungsgemäßen Silanen der allgemeinen Formel (I), und Y′ ist einen Rest, der einen substituierten Oxiran-Ring darstellt. Für die möglichen Ausgestaltungen der Reste X und R gilt das für die erfindungsgemäßen Silane der allgemeinen Formel (I) Gesagte.
Spezielle Beispiele für Silane der allgemeinen Formel (II) sind: Glycidoxymethyltrimethoxysilan, Glycidoxymethyltriethoxysilan, 2-Glycidoxyethyltrimethoxysilan, 2-Glycidoxyethyltriethoxysilan, 3-Glycidoxypropyltrimethoxysilan, 3-Glycidoxypropyltriethoxysilan, 3-Glycidoxypropyltri(methoxyethoxy)silan, 3-Glycidoxypropyltriacetoxysilan, 4-Glycidoxybutyltrimethoxysilan, 4-Glycidoxybutyltriethoxysilan, Glycidoxymethyl(methyl)dimethoxysilan, Glycidoxymethyl(ethyl)dimethoxysilan, Glycidoxymethyl(phenyl)dimethoxysilan, Glycidoxymethyl(vinyl)dimethoxysilan, Glycidoxymethyl(dimethyl)methoxysilan, 2-Glycidoxyethyl(methyl)dimethoxysilan, 2-Glycidoxyethyl(ethyl)dimethoxysilan, 2-Glycidoxyethyl(dimethyl)methoxysilan, 3-Glycidoxypropyl(methyl)dimethoxysilan, 3-Glycidoxypropyl(ethyl)dimethoxysilan, 3-Glycidoxypropyl(dimethyl)methoxysilan, 4-Glycidoxybutyl(methyl)dimethoxysilan, 4-Glycidoxybutyl(ethyl)dimethoxysilan, 4-Glycidoxybutyl(dimethyl)methoxysilan, Bis-(glycidoxymethyl)dimethoxysilan, Bis-(glycidoxymethyl)diethoxysilan, Bis-(glycidoxyethyl)dimethoxysilan, Bis-(glycidoxyethyl)diethoxysilan, Bis-(glycidoxypropyl)dimethoxysilan, Bis-(glycidoxypropyl)diethoxysilan, Tris-(glycidoxymethyl)methoxysilan, Tris-(glycidoxymethyl)ethoxysilan, Tris-(glycidoxyethyl)methoxysilan, Tris-(glycidoxyethyl)ethoxysilan, Tris-(glycidoxypropyl)methoxysilan, Tris-(glycidoxypropyl)ethoxysilan, Glycidylmethyltrimethoxysilan, Glycidylmethyltriethoxysilan, 2-Glycidylethyltrimethoxysilan, 2-Glycidylethyltriethoxysilan, 3-Glycidylpropyltrimethoxysilan, 3-Glycidylpropyltriethoxysilan, 3-Glycidylpropyltri(methoxyethoxy)silan, 3-Glycidylpropyltriactoxysilan, 3,4-Epoxycyclohexylmethyltrimethoxysilan, 3,4-Epoxycyclohexylmethyltriethoxysilan, 3,4-Epoxycyclohexylethyltrimethoxysilan, 3,4-Epoxycyclohexylpropyltrimethoxysilan, 3,4-Epoxycyclohexylbutyltrimethoxysilan.
Silane mit der allgemeinen Formel (II) sind käuflich erwerbbar, so z. B. das 3-Glycidoxypropyldimethylethoxysilan, das (3-Glycidoxypropyl)methyldiethoxysilan, das 3-Glycidoxypropylmethyl-di-iso-propenoxysilan, das (3-Glycidoxypropyl)trimethoxysilan, das 2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilan oder das [2- (3,4-Epoxy-4-methylcyclohexyl)propyl]-methyldiethoxysilan.
All diese Silane können mit γ-Butyrolactonen in die entsprechenden, erfindungsgemäßen Spiro-Silane übergeführt werden.
Geeignete γ-Butyrolactone zur Herstellung der erfindungsgemäßen Spiro-Silane sind das unsubstituierte γ-Butyrolacton, sowie mit Hydroxy-, Alkyl-, Alkenyl-, Aryl-, Alkylaryl-, Arylalkyl-, Alkylcarbonyl- oder Alkoxycarbonyl-Gruppen substituierte γ-Butyrolactone.
Die Alkyl-Reste sind z. B. geradkettige, verzweigte oder cyclische Reste mit 1 bis 10 Kohlenstoff-Atomen, und besonders bevorzugt sind niedere Alkyl-Reste mit 1 bis 6 Kohlenstoff-Atomen. Spezielle Beispiele sind Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, s-Butyl, t-Butyl, i-Butyl, n-Pentyl, n-Hexyl.
Die Alkenyl-Reste sind z. B. geradkettige, verzweigte oder cyclische Reste mit 2 bis 10 Kohlenstoff-Atomen, und besonders bevorzugt sind niedere Alkenyl-Reste mit 2 bis 6 Kohlenstoff-Atomen, wie z. B. Vinyl, Allyl oder 2-Butenyl.
Spezielle Beispiele und bevorzugte Ausführungsformen für Lewis-Säuren sind BF₃ ˙Et₂O oder AlCl₃.
Die Umsetzung der Silane der allgemeinen Formel (II) mit den γ-Butyrolactonen zu den erfindungsgemäßen Spiro-Silanen erfolgt unter Wasserausschluß, gegebenenfalls in einem inerten Lösungsmittel. Zur Reinigung der erfindungsgemäßen Spiro-Silane werden bekannte Techniken, wie z. B. die Hochvakuumdestillation, angewendet.
Am Beispiel der Umsetzung von γ-Butyrolacton mit dem (3-Glycidoxypropyl)trimethoxysilan in Anwesenheit von BF₃ ˙Et₂O wird die Darstellung der erfindungsgemäßen Spiro-Silane schematisch dargestellt.
Es ist auch möglich, die gemäß der obigen Reaktion erhaltenen Spiro-Silane nach bekannten Methoden weiter zu modifizieren und andere Substituenten einzuführen, z. B. in dem Ringsystem, das sich vom γ-Butyrolacton ableitet. So ist z. B. im Journal f. prakt. Chemie, Band 330, Heft 2, 1988, S. 316 bis 318, beschrieben, wie an diesem Ringsystem Methacrylgruppen in spirocyclische Orthoester eingeführt werden können.
Die erfindungsgemäßen Spiro-Silane sind stabile Verbindungen, und können entweder alleine oder zusammen mit anderen hydrolysierbaren, kondensierbaren und/oder polymerisierbaren Komponenten zu Kieselsäurepolykondensaten oder zu Kieselsäureheteropolykondensaten verarbeitet werden, deren endgültige Härtung dann durch Polymerisation über eine Ringöffnung der 1,4,6-Trioxaspiro-[4,4]-nonan-Gruppe erfolgt. Die erfindungsgemäßen Silane können aber auch alleine oder zusammen mit anderen hydrolysierbaren, kondensierbaren und/oder polymerisierbaren Komponenten zu Polymerisaten verarbeitet werden, die durch anschließende hydrolytische Kondensation verfestigt werden können.
Kieselsäure(hetero)polykondensate, die mit organischen Gruppen modifiziert sind, sowie Verfahren zu deren Herstellung (z. B. ausgehend von hydrolytisch kondensierbaren Organosilanen nach dem Sol-Gel-Prozeß) sind in großer Zahl bekannt. Derartige Kondensate finden für die verschiedensten Zwecke Verwendung, z. B. als Formmassen, als Lacke für Überzüge, etc. Aufgrund der vielfältigen Anwendungsmöglichkeiten dieser Substanzklasse besteht aber auch ein ständiges Bedürfnis nach Modifizierung der bereits bekannten Kondensate, zum einen, um dadurch neue Anwendungsgebiete zu erschließen und zum anderen, um deren Eigenschaften für bestimmte Verwendungszwecke noch weiter zu optimieren.
Die erfindungsgemäßen Spiro-Silane sind im basischen Milieu hydrolysier- und kondensierbar, ohne daß der Spirokomplex vorzeitig geöffnet wird. Dadurch ist es möglich, die erfindungsgemäßen Spiro-Silane durch hydrolytische Kondensation im anorganisch-organisches Netzwerk einzubauen. Die erfindungsgemäßen Spiro-Silane enthalten hydrolysierbare Gruppen X, z. B. Alkoxy-Gruppen, so daß damit ein anorganisches Netzwerk (Si-O-Si-Einheiten) aufgebaut werden kann, während die im Rest Y enthaltenden Spiro-Gruppen unter Aufbau eines organischen Netzwerkes polymerisiert werden können. Dadurch ist es möglich, organisch modifizierte, hydrolysier- und kondensierbare Silane in Beschichtungs-, Füll-, Klebe- und Dichtungsmassen, in Formkörpern und Einbettmassen nach dem Stand der Technik durch die erfindungsgemäßen Spiro-Silane zu ersetzen.
Zum Aufbau des anorganischen Netzwerkes werden die erfindungsgemäßen Silane, gegebenenfalls unter Zusatz anderer cokondensierbarer Komponenten hydrolysiert und polykondensiert. Die Polykondensation erfolgt vorzugsweise nach dem Sol-Gel-Verfahren, wie es z. B. in den DE-A1 27 58 414, 27 58 415, 30 11 761, 38 26 715 und 38 35 968 beschrieben ist.
Zum Aufbau des organischen Netzwerkes werden die erfindungsgemäßen Spiro-Silane gegebenenfalls unter Zusatz anderer copolymerisierbarer Komponenten polymerisiert. Die Polymerisation kann z. B. thermisch oder photochemisch unter Einsatz von Methoden erfolgen, wie sie in den DE-A1 31 43 820, 38 26 715 und 38 35 968 beschrieben sind.
Als weitere polymerisierbare Komponenten können Verbindungen zugesetzt werden, die radikalisch und/oder ionisch polymerisierbar sind. Radikalisch polymerisierbare Verbindungen, die zugesetzt werden können, sind solche mit C=C-Doppelbindungen, wie z. B. Acrylate oder Methacrylate, wobei die Polymerisation über die C=C-Doppelbindungen erfolgt. Ionisch polymerisierbare Verbindungen, die zugesetzt werden können, enthalten z. B. Ringsysteme, die kationisch, ringöffnend polymerisierbar sind, wie etwa Spiroorthoester, Spiroorthocarbonate, bicyclische Spiroorthoester, Mono- oder Oligoepoxide. Es können aber auch Verbindungen zugesetzt werden, die sowohl kationisch als auch radikalisch polymerisierbar sind, wie z. B. Methacryloyl-Spiroorthoester. Diese sind radikalisch über die C=C-Doppelbindung und kationisch unter Ringöffnung polymerisierbar. Die Herstellung dieser Systeme ist z. B. im Journal f. prakt. Chemie, Band 330, Heft 2, 1988, S. 316 bis 318, beschrieben.
Ferner ist es möglich, andere bekannte, silan-gebundene cyclische Systeme zuzusetzen, die mit einpolymerisiert werden können. Solche Systeme sind z. B. solche, die Epoxide enthalten und u. a. für die Herstellung der erfindungsgemäßen Spiro-Silane eingesetzt werden. Solche Systeme sind bei der Herstellung der erfindungsgemäßen Spiro-Silane beschrieben.
Die erfindungsgemäßen Spiro-Silane stellen hochreaktive Systeme dar, die zu Poly(hetero)kondensaten führen, die z. B. bei UV-Bestrahlung innerhalb kürzester Zeit zu mechanisch stabilen Überzügen oder Form- bzw. Füllkörpern führen. Die erfindungsgemäßen Spiro-Silane sind über einfache Additionsreaktionen herstellbar und können durch geeignete Auswahl der Ausgangsverbindungen eine variierbare Anzahl reaktiver Gruppen unterschiedlicher Funktionalität aufweisen.
Bei Anwesenheit von zwei oder mehr Resten Y ist die Ausbildung eines dreidimensionalen, organischen Netzwerkes möglich. Über den Abstand zwischen dem Si-Atom und der Spiro-Gruppe, d. h. über die Kettenlänge, und über die Anwesenheit weiterer funktioneller Gruppen in dieser Kette können die mechanischen Eigenschaften (z. B. Flexibilität) und die physikalisch-chemischen Eigenschaften (Adsorption, Brechzahl, Haftung) der Poly(hetero)kondensate beeinflußt werden. Durch die Ausbildung eines anorganischen Netzwerkes können je nach Art und Anzahl der hydrolysierbaren Gruppen (z. B. Alkoxy-Gruppen) silicon- oder glasartige Eigenschaften der Poly(hetero)kondensate eingestellt werden.
Berücksichtigt man dann noch die Variationsmöglichkeiten der cokondensierbaren und copolymerisierbaren Komponenten, so wird offenbar, daß über die erfindungsgemäßen Spiro-Silane Kieselsäurepoly(hetero)kondensate zur Verfügung gestellt werden, die in vielfältiger Weise an vorgegebene Einsatzgebiete angepaßt werden können, und die deshalb auf allen Gebieten, auf denen bereits bisher Kieselsäure(hetero)polykondensate eingesetzt werden, Verwendung finden können, aber auch neue Verwendungsmöglichkeiten eröffnen, z. B. auf dem Gebiet der Optik, der Elektronik, der Medizin, der Optoelektronik und der Verpackungsmittel für Lebensmittel.
Die erfindungsgemäßen Spiro-Silane können entweder als solche verwendet werden oder in Zusammensetzungen, die zusätzlich an den Verwendungszweck angepaßte Additive enthalten, z. B. übliche Lackadditive, Lösungsmittel, Füllstoffe, Photoinitiatoren, thermische Initiatoren, Verlaufmittel und Pigmente. Die erfindungsgemäßen Spiro-Silane oder die silanhaltigen Zusammensetzungen eignen sich z. B. zur Herstellung von Beschichtungs-, Füllstoff- oder Bulkmaterialien, von Klebstoffen und Spritzgießmassen, von Fasern, Folien, Haftvermittlern, von Abformmassen und von Einbettmaterialien. Aufgrund der vorhandenen Spiro-Gruppen erfahren sie bei der Aushärtung keine oder nur eine geringe Schrumpfung, oder, wenn gewünscht, sogar eine Expansion. Der Schrumpf ist also an die vorgegebenen Bedingungen des jeweiligen Anwendungsfalles anpaßbar. Beschichtungen und Formkörper aus den erfindungsgemäßen Spiro-Silanen haben den Vorteil, daß sie photochemisch strukturierbar sind. Spezielle Anwendungsgebiete sind z. B. die Beschichtung von Substraten aus Metall, Kunststoff, Papier, Keramik durch Tauchen, Gießen, Streichen, Spritzen, elektrostatisches Spritzen, Elektrotauchlackierung, der Einsatz für optische, optoelektrische oder elektronische Komponenten, die Herstellung von Füllstoffen, die Herstellung von kratzfesten, abriebfesten Korrosionsschutzbeschichtungen, die Herstellung von Formkörpern, z. B. durch Spritzguß, Formgießen oder Extrusion, und die Herstellung von Compositen, z. B. mit Fasern, Füllstoffen oder Geweben.
Neben den erfindungsgemäßen Spiro-Silanen der Formel (I) können noch weitere hydrolytisch kondensierbare Verbindungen des Siliciums, des Bors, des Aluminiums, des Phosphors, des Zinns, des Bleis, der Übergangsmetalle, der Lanthaniden oder Actiniden eingesetzt werden. Diese Verbindungen können entweder als solche oder bereits in vorkondensierter Form zur Herstellung der Polykondensate herangezogen werden. Bevorzugt ist es, wenn mindestens 10 Mol-%, insbesondere mindestens 80 Mol-% und speziell mindestens 90 Mol-%, auf der Basis monomerer Verbindungen, der zur Herstellung der Kieselsäure(hetero)polykondensate herangezogenen Ausgangsmaterialien Silicium-Verbindungen sind.
Ebenso ist es bevorzugt, wenn den Kieselsäure(hetero)polykondensaten mindestens 5 Mol-%, z. B. 25 bis 100 Mol-%, insbesondere 50 bis 100 Mol-% und speziell 75 bis 100 Mol-%, jeweils auf der Basis monomerer Verbindungen, an einem oder mehreren der erfindungsgemäßen Spiro-Silane zugrundeliegen.
Unter den von Silanen der allgemeinen Formel (I) verschiedenen, hydrolytisch kondensierbaren Silicium-Verbindungen, die gegebenenfalls eingesetzt werden können, sind solche der allgemeinen Formel (III) besonders bevorzugt,
Ra(R′′Z′)bSiX4-(a+b) (III)
in der die Reste R, R′′, X und Z′ gleich oder verschieden sind und folgende Bedeutung haben:
R = Alkyl, Alkenyl, Aryl, Alkylaryl oder Arylalkyl,
R′′ = Alkylen oder Alkenylen, wobei diese Reste durch Sauerstoff- oder Schwefelatome oder -NH-Gruppen unterbrochen sein können,
X = Wasserstoff, Halogen, Hydroxy, Alkoxy, Acyloxy, Alkylcarbonyl, Alkoxycarbonyl oder NR′₂,
mit R′ = Wasserstoff, Alkyl oder Aryl,
Z′ = Halogen oder eine gegebenenfalls substituierte Amino-, Amid-, Aldehyd-, Alkylcarbonyl-, Carboxy-, Mercapto-, Cyano-, Alkoxy-, Alkoxycarbonyl-, Sulfonsäure-, Phosphorsäure-, Acryloxy-, Methacryloxy-, Epoxy- oder Vinyl-Gruppe,
a = 0, 1, 2 oder 3,
b = 0, 1, 2 oder 3, mit a+b = 1, 2 oder 3.
Solche Silane sind z. B. in der DE 34 07 087 C2 beschrieben. Die Alkyl-Reste sind z. B. geradkettige, verzweigte oder cyclische Reste mit 1 bis 20, vorzugsweise 1 bis 10 Kohlenstoff-Atomen, und besonders bevorzugt sind niedere Alkyl-Reste mit 1 bis 6 Kohlenstoff-Atomen. Spezielle Beispiele sind Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, s-Butyl, t-Butyl, i-Butyl, n-Pentyl, n-Hexyl, Cyclohexyl, 2-Ethylhexyl, Dodecyl und Octadecyl.
Die Alkenyl-Reste sind z. B. geradkettige, verzweigte oder cyclische Reste mit 2 bis 20, vorzugsweise mit 2 bis 10 Kohlenstoff-Atomen, und besonders bevorzugt sind niedere Alkenyl-Reste mit 2 bis 6 Kohlenstoff-Atomen, wie z. B. Vinyl, Allyl oder 2-Butenyl.
Bevorzugte Aryl-Reste sind Phenyl, Biphenyl und Naphthyl.
Die Alkoxy-, Acyloxy-, Alkylcarbonyl-, Alkoxycarbonyl- und Amino-Reste leiten sich vorzugsweise von den oben genannten Alkyl- und Aryl-Resten ab. Spezielle Beispiele sind Methoxy, Ethoxy, n- und i-Propoxy, n-, i-, si- und t-Butoxy, Methylamino, Ethylamino, Dimethylamino, Diethylamino, N-Ethylanilino, Acetyloxy, Propionyloxy, Methylcarbonyl, Ethylcarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Benzyl, 2-Phenylethyl und Tolyl.
Die genannten Reste können gegebenenfalls einen oder mehrere Substituenten tragen, z. B. Halogen, Alkyl, Hydroxyalkyl, Alkoxy, Aryl, Aryloxy, Alkylcarbonyl, Alkoxycarbonyl, Furfuryl, Tetrahydrofurfuryl, Amino, Alkylamino, Dialkylamino, Trialkylammonium, Amido, Hydroxy, Formyl, Carboxy, Mercapto, Cyano, Nitro, Epoxy, SO₃H und PO₄H₂.
Unter den Halogenen sind Fluor, Chlor und Brom bevorzugt.
Spezielle Beispiele für hydrolytisch kondensierbare Silane der allgemeinen Formel (III) sind:
CH₃-Si-Cl₃, CH₃-Si-(OC₂H₅)₃, C₂H₅-Si-Cl₃, C₂H₅-Si-(OC₂H₅)₃, CH₂=CH-Si-(OC₂H₅)₃, CH₂=CH-Si-(OC₂H₄OCH₃)₃, (CH₃)₂-Si-Cl₂, CH₂=CH-Si-(OOCCH₃)₃, (CH₃)₂-Si-(OC₂H₅)₂, (C₂H₅)₃-Si-Cl, (C₂H₅)₂-Si-(OC₂H₅)₂, (CH₃)₂(CH₂=CH)-Si-Cl₂, (CH₃)₃-Si-Cl, (t-C₄H₉)(CH₃)₂-Si-Cl, (CH₃O)₃-Si-C₃H₆-NH-C₂H₄-NH-C₂H₄-NH₂, (CH₃O)₃-Si-C₃H₆-SH, (CH₃O)₃-Si-C₃H₆-NH-C₂H₄-NH₂, (CH₃O)₃-Si-C₃H₆-Cl, (CH₃O)₃-Si-C₃H₆-O-C(O)-C(CH₃)=CH₂, (CH₃)₂(CH₂=CH-CH₂)-Si-Cl, (C₂H₅O)₃-Si-C₃H₆-NH₂, (C₂H₅O)₃-Si-C₃H₆-CN,
Unter den von Silanen der allgemeinen Formel (I) verschiedenen, hydrolytisch kondensierbaren Silicium-Verbindungen, die gegebenenfalls eingesetzt werden können, sind solche der allgemeinen Formel (IV) ebenfalls bevorzugt,
{XnRk(Si[R²(A)₁]4-(n+k)}xB (IV)
in der die Reste A, R R² und X gleich oder verschieden sind und folgende Bedeutung haben:
A = O, S, PR′, POR′, oder NHC(O)O,
mit R′ = Wasserstoff, Alkyl oder Aryl,
B = geradkettiger oder verzweigter organischer Rest, der sich von einer Verbindung B′ mit mindestens einer (für 1 = 1 und A = NHC(O)O oder NHC(O)NR′) bzw. mindestens zwei C=C-Doppelbindungen und 5 bis 50 Kohlenstoff-Atomen ableitet,
mit R′ = Wasserstoff, Alkyl oder Aryl,
R = Alkyl, Alkenyl, Aryl, Alkylaryl oder Arylalkyl,
R² = Alkylen, Arylen oder Alkylenarylen,
X = Wasserstoff, Halogen, Hydroxy, Alkoxy, Acyloxy, Alkylcarbonyl, Alkoxycarbonyl oder NR′₂,
mit R′ = Wasserstoff, Alkyl oder Aryl,
n = 1, 2 oder 3,
k = 0, oder 2,
l = 0 oder 1,
x = eine ganze Zahl, deren Maximalwert der Anzahl von Doppelbindungen in der Verbindung B′ minus 1 entspricht, bzw. gleich der Anzahl von Doppelbindungen in der Verbindung B′ ist, wenn 1 = 1 und A für NHC(O)O oder NHC(O)NR′ steht.
Solche Silane sind in der DE 40 11 044 und in der EP 9 11 05 355 beschrieben.
Die Alkyl-Reste sind z. B. geradkettige, verzweigte oder cyclische Reste mit 1 bis 20, vorzugsweise mit 1 bis 10 Kohlenstoff-Atomen, und besonders bevorzugt sind niedere Alkyl-Reste mit 1 bis 6 Kohlenstoff-Atomen. Spezielle Beispiele sind Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, s-Butyl, t-Butyl, i-Butyl, n-Pentyl, n-Hexyl, Cyclohexyl, 2-Ethylhexyl, Dodecyl und Octadecyl.
Die Alkenyl-Reste sind z. B. geradkettige, verzweigte oder cyclische Reste mit 2 bis 20, vorzugsweise mit 2 bis 10 Kohlenstoff-Atomen, und besonders bevorzugt sind niedere Alkenyl-Reste mit 2 bis 6 Kohlenstoff-Atomen, wie z. B. Vinyl, Allyl oder 2-Butenyl.
Bevorzugte Aryl-Reste sind Phenyl, Biphenyl und Naphthyl.
Die Alkoxy-, Acyloxy-, Alkylcarbonyl-, Alkoxycarbonyl- und Amino-Reste leiten sich vorzugsweise von den oben genannten Alkyl- und Aryl-Resten ab. Spezielle Beispiele sind Methoxy, Ethoxy, n- und i-Propoxy, n-, i-, s- und t-Butoxy, Methylamino, Ethylamino, Dimethylamino, Diethylamino, N-Ethylanilino, Acetyloxy, Propionyloxy, Methylcarbonyl, Ethylcarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Benzyl, 2-Phenylethyl und Tolyl.
Die genannten Reste können gegebenenfalls einen oder mehrere Substituenten tragen, z. B. Halogen, Alkyl, Hydroxyalkyl, Alkoxy, Aryl, Aryloxy, Alkylcarbonyl, Alkoxycarbonyl, Furfuryl, Tetrahydrofurfuryl, Amino, Alkylamino, Dialkylamino, Trialkylammonium, Amido, Hydroxy, Formyl, Carboxy, Mercapto, Cyano, Nitro, Epoxy, SO₃H und PO₄H₂.
Unter den Halogenen sind Fluor, Chlor und Brom bevorzugt.
Der Rest B leitet sich von einer substituierten oder unsubstituierten Verbindung B′ mit mindestens zwei C=C-Doppelbindungen ab, z. B. Vinyl-, Allyl-, Acryl- und/oder Methacrylat-Gruppen, und 5 bis 50, vorzugsweise 6 bis 30 Kohlenstoff-Atomen. Vorzugsweise leitet sich B ab, von einer substituierten oder unsubstituierten Verbindung B′ mit zwei oder mehreren Acrylat- oder Methacrylat-Gruppen (derartige Verbindungen werden im folgenden als (Meth)acrylate bezeichnet).
Falls die Verbindung B′ substituiert ist, können die Substituenten unter den oben genannten Substituenten ausgewählt sein.
Die erfindungsgemäßen Spiro-Silane müssen für die Weiterverarbeitung zu den Poly(hetero)kondensaten nicht unbedingt extra isoliert werden. Es ist auch möglich, in einem Eintopf-Verfahren, diese Silane zunächst herzustellen und dann - gegebenenfalls nach Zusatz weiterer hydrolysierbarer Verbindungen - hydrolytisch zu kondensieren.
Unter den gegebenenfalls eingesetzten hydrolysierbaren Aluminium-Verbindungen sind diejenigen besonders bevorzugt, die die allgemeine Formel (V) aufweisen,
AlR˙₃ (V)
in der die Reste R˙, die gleich oder verschieden sein können, ausgewählt sind aus Halogen, Alkoxy, Alkoxycarbonyl und Hydroxy. Hinsichtlich der näheren (bevorzugten) Definitionen dieser Reste kann auf die Ausführungen im Zusammenhang mit den geeigneten hydrolysierbaren Silicium-Verbindungen verwiesen werden. Die soeben genannten Gruppen können auch ganz oder teilweise durch Chelatliganden (z. B. Acetylaceton oder Acetessigsäureester, Essigsäure) ersetzt sein.
Besonders bevorzugte Aluminium-Verbindungen sind die Aluminiumalkoxide und -halogenide. In diesem Zusammenhang können als konkrete Beispiele genannt werden
Al(OCH₃)₃, Al(OC₂H₅)₃, Al(O-n-C₃H₇)₃, Al(O-i-C₃H₇)₃, Al(OC₄H₉)₃, Al(O-i-C₄H₉)₃, Al(O-s-C₄H₉)₃, AlCl₃, AlCl(OH)₂.
Bei Raumtemperatur flüssige Verbindungen, wie z. B. Aluminium-sek-butylat und Aluminium-isopropylat, werden besonders bevorzugt.
Geeignete, hydrolysierbare Titan- oder Zirkonium-Verbindungen, die gegebenenfalls eingesetzt werden können, sind solche der allgemeinen Formel (VI),
MXyRz (VI)
in der M Ti oder Zr bedeutet, y eine ganze Zahl von 1 bis 4 ist, insbesondere 2 bis 4, z für 0, 1, 2 oder 3 steht, vorzugsweise für 0, 1 oder 2, und X und R wie im Falle der allgemeinen Formel (I) definiert sind. Dies gilt auch für die bevorzugten Bedeutungen. Besonders bevorzugt handelt es sich bei den Verbindungen der Formel (VI) um solche, in denen y gleich 4 ist.
Wie im Falle der obigen Al-Verbindungen können auch komplexierte Ti- oder Zr-Verbindungen eingesetzt werden. Zusätzliche bevorzugte Komplexbildner sind hier Acrylsäure und Methacrylsäure.
Konkrete Beispiele für einsetzbare Zr- und Ti-Verbindungen sind die folgenden:
TiCl₄, Ti(OC₂H₅)₄, Ti(OC₃H₇)₄, Ti(O-i-C₃H₇)₄, Ti(OC₄H₉)₄, Ti(2-ethylhexoxy)₄, ZrCl₄, Zr(OC₂H₅)₄, Zr(OC₃H₇)₄, Zr(O-i-C₃H₇)₄, Zr(OC₄H₉)₄, Zr(2-ethylhexoxy)₄, ZrOCl₂.
Weitere hydrolysierbare Verbindungen, die zur Herstellung der Polyheterokondensate eingesetzt werden können, sind z. B. Bortrihalogenide und Borsäureester, wie z. B. BCl₃, B(OCH₃)₃ und B(OC₂H₅)₃, Zinntetrahalogenide und Zinntetraalkoxide, wie z. B. SnCl₄ und Sn(OCH₃)₄, und Vanadyl-Verbindungen, wie z. B. VOCl₃ und VO(OCH₃)₃.
Wie bereits erwähnt, kann die Herstellung der Poly(hetero)kondensate in auf diesem Gebiet üblicher Art und Weise erfolgen. Werden praktisch ausschließlich Silicium-Verbindungen eingesetzt, kann die hydrolytische Kondensation in den meisten Fällen dadurch erfolgen, daß man den zu hydrolysierenden Silicium-Verbindungen, die entweder als solche oder gelöst in einem geeigneten Lösungsmittel vorliegen, das erforderliche Wasser bei Raumtemperatur oder unter leichter Kühlung direkt zugibt (vorzugsweise unter Rühren und in Anwesenheit eines Hydrolyse- und Kondensationskatalysators) und die resultierende Mischung daraufhin einige Zeit (ein bis mehrere Stunden) rührt.
Bei Anwesenheit der reaktiven Verbindungen von Al, Ti oder Zr empfiehlt sich in der Regel eine stufenweise Zugabe des Wassers. Unabhängig von der Reaktivität der anwesenden Verbindungen erfolgt die Hydrolyse in der Regel bei Temperaturen zwischen -20 und 130°C, vorzugsweise zwischen 0 und 30°C bzw. dem Siedepunkt des gegebenenfalls eingesetzten Lösungsmittels. Wie bereits angedeutet, hängt die beste Art und Weise der Zugabe von Wasser vor allem von der Reaktivität der eingesetzten Ausgangsverbindungen ab. So kann man z. B. die gelösten Ausgangsverbindungen langsam zu einem Überschuß an Wasser tropfen oder man gibt Wasser in einer Portion oder portionsweise den gegebenenfalls gelösten Ausgangsverbindungen zu. Es kann auch nützlich sein, das Wasser nicht als solches zuzugeben, sondern mit Hilfe von wasserhaltigen organischen oder anorganischen Systemen in das Reaktionssystem einzutragen. Als besonders geeignet hat sich in vielen Fällen die Eintragung der Wassermenge in das Reaktionsgemisch mit Hilfe von feuchtigkeitsbeladenen Adsorbentien, z. B. von Molekularsieben, und von wasserhaltigen, organischen Lösungsmitteln, z. B. von 80%igem Ethanol, erwiesen. Die Wasserzugabe kann aber auch über eine chemische Reaktion erfolgen, bei der Wasser im Laufe der Reaktion freigesetzt wird. Beispiele hierfür sind Veresterungen.
Wenn ein Lösungsmittel verwendet wird, kommen neben den niederen aliphatischen Alkoholen (z. B. Ethanol oder i-Propanol) auch Ketone, vorzugsweise niedere Dialkylketone, wie Aceton oder Methylisobutylketon, Ether, vorzugsweise niedere Dialkylether wie Diethylether oder Dibutylether, THF, Amide, Ester, insbesondere Essigsäureethylether, Dimethylformamid, Amine, insbesondere Triethylamin, und deren Gemische in Frage.
Bevorzugt wird die Hydrolyse in einem bzgl. der Spiro-Silane basischen Milieu durchgeführt. Dies wird entweder durch ein basisches Lösungsmittel, wie z. B. durch Triethylamin, erzeugt, oder durch Zugabe von basischen Hydrolyse- und Kondensationskatalysatoren, wie z. B. von NH₃, NaOH, KOH, Methylimidazol.
Die Ausgangsverbindungen müssen nicht notwendigerweise bereits alle zu Beginn der Hydrolyse (Polykondensation) vorhanden sein, sondern in bestimmten Fällen kann es sich sogar als vorteilhaft erweisen, wenn nur ein Teil dieser Verbindungen zunächst mit Wasser in Kontakt gebracht wird und später die restlichen Verbindungen zugegeben werden.
Um insbesondere bei Verwendung von von Silicium-Verbindungen verschiedenen hydrolysierbaren Verbindungen Ausfällungen während der Hydrolyse und der Polykondensation so weit wie möglich zu vermeiden, kann die Wasserzugabe in mehreren Stufen, z. B. in drei Stufen, durchgeführt werden. Dabei kann in der ersten Stufe z. B. ein Zehntel bis ein Zwanzigstel der zur Hydrolyse benötigten Wassermenge zugegeben werden. Nach kurzem Rühren kann die Zugabe von einem Fünftel bis zu einem Zehntel der erforderlichen Wassermenge erfolgen und nach weiterem kurzen Rühren kann schließlich der Rest zugegeben werden.
Die Kondensationszeit richtet sich nach den jeweiligen Ausgangskomponenten und deren Mengenanteilen, dem gegebenenfalls verwendeten Katalysator, der Reaktionstemperatur, etc. Im allgemeinen erfolgt die Polykondensation bei Normaldruck, sie kann jedoch auch bei erhöhtem oder bei verringertem Druck durchgeführt werden.
Das so erhaltene Poly(hetero)kondensat kann entweder als solches oder nach teilweiser nahezu vollständiger Entfernung des verwendeten Lösungsmittels weiterverarbeitet werden. In einigen Fällen kann es sich als vorteilhaft erweisen, in dem nach der Polykondensation erhaltenen Produkt das überschüssige Wasser und das gebildete und gegebenenfalls zusätzlich eingesetzte Lösungsmittel durch ein anderes Lösungsmittel zu ersetzen, um das Poly(hetero)kondensat zu stabilisieren. Zu diesem Zweck kann die Reaktionsmischung z. B. im Vakuum bei leicht erhöhter Temperatur so weit eingedickt werden, das sie noch problemlos mit einem anderen Lösungsmittel aufgenommen werden kann.
Sollen diese Poly(hetero)kondensate als Lacke für die Beschichtung (z. B. von Kunststoffen wie etwa PVC, PC, PMMA, PE, PS, von Glas, Papier, Holz, Keramik, Metall) eingesetzt werden, so können diese spätestens vor der Verwendung gegebenenfalls noch übliche Lackadditive zugegeben werden, wie z. B. Färbemittel (Pigmente oder Farbstoffe), Füllstoffe, Oxidationsinhibitoren, Verlaufmittel, UV- Absorber oder Stabilisatoren. Auch Zusätze zur Erhöhung der Leitfähigkeit (z. B. Graphit-Pulver, Silber- Pulver) verdienen in diesem Zusammenhang Erwähnung. Im Falle der Verwendung als Formmasse kommt insbesondere die Zugabe von anorganischen und/oder organischen Füllstoffen in Frage, wie z. B. (Glas-)Faser, Mineralien.
Die endgültige Härtung der Poly(hetero)kondensate erfolgt entweder thermisch oder photochemisch nach Zugabe geeigneter Initiatoren. Dabei werden im Zugabe einer kationischen Polymerisation die Ringe der Spiro-Gruppen geöffnet und es wird das organische Netzwerk aufgebaut. Überraschenderweise wurde festgestellt, daß sich im Laufe dieser Polymerisation das Volumen der Poly(hetero)kondensate nicht oder nur geringfügig ändert. In Abhängigkeit von der Zahl der Spiro-Gruppen wird eine nur geringfügige Volumenabnahme, keine Volumenänderung oder sogar eine Volumenzunahme erhalten, wobei mit steigender Zahl der Spiro-Gruppen die Volumenabnahme geringer wird. Mit Hilfe der erfindungsgemäßen Spiro-Silane ist es also möglich geworden, Beschichtungen, Füll- und Formkörper sowie Klebe- und Dichtungsmassen auf der Basis von Kieselsäure(hetero)kondensate zu erhalten, die bei der Härtung keinen Härtungsschrumpf erleiden.
Es ist aber auch möglich, dem Poly(hetero)kondensat vor der endgültigen Härtung, also vor der Polymerisation weitere ionisch und/oder radikalisch polymerisierbare Komponenten zuzusetzen. Radikalisch polymerisierbare Verbindungen, die zugesetzt werden können, sind z. B. solche mit C=C-Doppelbindungen, wie etwa Acrylate oder Methacrylate, wobei die Polymerisation über die C=C-Doppelbindungen erfolgt. Ionisch polymerisierbare Verbindungen, die zugesetzt werden können, enthalten z. B. Ringsysteme, die kationisch, ringöffnend polymerisierbar sind, wie etwa Spiroorthoester, Spiroorthocarbonate, bicyclische Spiroorthoester, Mono- oder Oligoepoxide. Es können aber auch Verbindungen zugesetzt werden, die sowohl kationisch als auch radikalisch polymerisierbar sind, wie z. B. Methacrylolyl-Spiroorthoester. Diese sind radikalisch über die C=C-Doppelbindung und kationisch unter Ringöffnung polymerisierbar. Diese Systeme sind z. B. im Journal f. prakt. Chemie, Band 330, Heft 2, 1988, 316 bis 318, oder im Journal of Polymer Science: Part C: Polymer Letters, Vol. 26, S 517 bis 520 (1988) beschrieben.
Erfolgt die Härtung des Poly(hetero)kondensates photochemisch, so werden diesem kationische Photoinitiatoren zugesetzt. Geeignete Photoinitiatoren sind Verbindungen, die bei Bestrahlung Säuren freisetzen, wie z. B. C₆H₅-N₂BF₄, o- NO₂-C₆H₄-CH₂-O-SO₂CF₃, Triarylsulfoniumsalze der allgemeinen Formeln (VII), (VIII) und (IX), in denen die Reste Ar gleich oder verschieden sein können und Aryl bzw. Arylen, z. B. Phenyl und Phenylen, bedeuten, mit X-=BF₄-, AsF₆-, PF₆- oder SbF₆-.
Diese Photoinitiatoren sind kommerziell erwerbbar. Z. B. von der Firma Union Carbide das Triphenylsulfoniumhexafluorophosphat als 50%ige Lösung in Propylencarbonat unter dem Handelsnamen UVI-6990, oder KI-85 (Initiator gemäß Formel (IX) mit Ar=Phenyl bzw. Phenylen und X-=PF₆- als 50%ige Lösung in Propylencarbonat). Prinzipiell sind aber alle Photoinitiatoren geeignet, die für die Polymerisation von Oxiran-haltigen Molekülen, wie z. B. cycloaliphatischen Epoxiden, eingesetzt werden.
Unter dem Einfluß der UV-Bestrahlung wird das Triarylsulfonium- Salz einer Photolyse unterzogen und es entsteht eine Broenstedsäure, welche die Ringöffnung der Spiro-Gruppen katalysiert, wobei das Poly(hetero)kondensat polymerisiert.
Erfolgt die Härtung des Poly(hetero)kondensates thermisch, so werden diesem thermische Initiatoren zugesetzt. Geeignete thermische Initiatoren sind z. B. BF₃ als BF₃ ˙H₂NC₂H₅; ZnCl₂, TiCl₄ oder SnCl₂. Auch hier können alle die thermischen Initiatoren eingesetzt werden, die für die Polymerisation von Epoxidgruppen geeignet sind.
Der Initiator kann in üblichen Mengen zugegeben werden. So kann z. B. einer Mischung, die 30 bis 50 Gew.-% Feststoff (Polykondensat) enthält, Initiator in einer Menge von z. B. 0,5 bis 5 Gew.-%, insbesondere von 1 bis 3 Gew.-%, bezogen auf die Mischung, zugesetzt werden.
Werden zur Herstellung der Poly(hetero)kondensate neben den erfindungsgemäßen Spiro-Silanen weitere Komponenten eingesetzt, die reaktive Doppelbindungen enthalten, wie z. B. die Silane gemäß der allgemeinen Formel (IV), so kann über diese Doppelbindung ebenfalls eine Polymerisation ablaufen, die thermisch oder photochemisch initiiert werden kann.
Als Photoinitiatoren können z. B. die im Handel erhältlichen eingesetzt werden. Beispiel hierfür sind Iracure 184 (1- Hydroxycyclohexylphenylketon), Iracure 500 (1-Hydroxycyclo­ hexylphenylketon/Benzophenon), und andere erhältliche Photoinitiatoren vom Iracure-Typ; Darocure 1173, 1116, 1398, 1174 und 1020, Benzophenon, 2-Chlorthioxanthon, 2-Methylthioxanthon, 2-Isopropylthioxanthon, Benzoin, 4,4′-Dimethoxybenzoin und andere.
Als thermische Initiatoren kommen insbesondere organische Peroxide in Form von Diacylperoxiden, Peroxydicarbonaten, Alkylperestern, Dialkylperoxiden, Perketalen, Ketonperoxiden und Alkylhydroperoxiden in Frage. Konkrete und bevorzugte Beispiele für thermische Initiatoren sind Dibenzoylperoxid, t-Butylperbenzoat und Azobisisobutyronitril.
Ein mit einem Initiator versehener Lack (Poly(hetero)kondensat) auf der Basis der erfindungsgemäßen Spiro-Silane kann dann für die Beschichtung von Substraten eingesetzt werden. Für diese Beschichtung können übliche Beschichtungsverfahren angewendet werden, z. B. Tauchen, Fluten, Gießen, Schleudern, Walzen, Spritzen, Aufstreichen, elektrostatisches Spritzen und Elektrotauchlackierung. Erwähnt werden soll hier noch, daß der Lack nicht notwendigerweise lösungsmittelhaltig sein muß. Insbesondere bei Verwendung von Ausgangssubstanzen (Silanen) mit zwei Alkoxy-Gruppen am Si-Atom kann auch ohne Zusatz von Lösungsmitteln gearbeitet werden.
Vor der Härtung wird der aufgetragene Lack vorzugsweise abtrocknen gelassen. Danach kann er, abhängig von der Art des Initiators thermisch oder photochemisch in an sich bekannter Weise gehärtet werden. Selbstverständlich sind auch Kombinationen von Aushärtungsmethoden möglich.
Erfolgt die Härtung des aufgetragenen Lacks durch Bestrahlen kann es sich von Vorteil erweisen, nach der Strahlungshärtung eine thermische Härtung durchzuführen, insbesondere um noch vorhandenes Lösungsmittel zu entfernen oder um noch weitere reaktive Gruppen in die Härtung miteinzubeziehen.
Obwohl in den Poly(hetero)kondensaten auf der Basis der erfindungsgemäßen Spiro-Silane bereits polymerisierbare Gruppen vorhanden sind, kann es sich in bestimmten Fällen als vorteilhaft erweisen, diesen Kondensaten vor oder bei ihrer Weiterverarbeitung (Härtung) noch weitere Verbindungen (vorzugsweise rein organischer Natur) mit ungesättigten Gruppen zuzugeben. Bevorzugte Beispiele für derartige Verbindungen sind Acrylsäure und Methacrylsäure sowie davon abgeleitete Verbindungen, insbesondere Ester von vorzugsweise einwertigen Alkoholen (z. B. C1-4-Alkanolen), (Meth)acrylnitril, Styrol und Mischungen derselben. Im Fall der Verwendung der Poly(hetero)kondensate zur Herstellung eines Beschichtungslackes können derartige Verbindungen gleichzeitig als Lösung- bzw. Verdünnungsmittel wirken.
Die Herstellung von Formkörpern bzw. Formmassen aus Poly(hetro)kondensaten auf der Basis der erfindungsgemäßen Spiro-Silane kann mit jeder auf diesem Gebiet gebräuchlichen Methode erfolgen, z. B. durch Spritzguß, Formgießen, Extrusion. Auch zur Herstellung von Kompositmaterialien (z. B. mit Glasfaserverstärkung) sind die Poly(hetero)kondensate auf der Basis der erfindungsgemäßen Spiro-Silane geeignet.
Eine weitere Anwendungsmöglichkeit finden die erfindungsgemäßen Spiro-Silane bei der Herstellung von hydrolytisch kondensierbaren Polymerisaten. Dazu werden die erfindungsgemäßen Spiro-Silane alleine oder zusammen mit anderen radikalisch und/oder ionisch polymerisierbaren Komponenten polymerisiert, wobei die endgültige Härtung dann durch hydrolytische Kondensation über die hydrolysierbaren Gruppen der erfindungsgemäßen Spiro-Silane und eventuell weiterer, hydrolysierbarer Komponenten erfolgt. In diesem Fall wird zuerst durch Polymerisation das organische Netzwerk aufgebaut und dann durch hydrolytische Kondensation das anorganische.
Die Herstellung der Polymerisate erfolgt durch kationische Polymerisation einer oder mehrerer 1,4,6-Trioxaspiro-[4,4]- nonan-haltiger Verbindungen und gegebenenfalls anderer, kationisch polymerisierbarer Verbindungen, und gegebenenfalls durch radikalische Polymerisation einer oder mehrerer radikalisch polymerisierbaren Verbindungen, durch Einwirkung von Wärme oder elektromagnetischer Strahlung, gegebenenfalls in Anwesenheit eines oder mehrerer Initiatoren und/oder eines Lösungsmittels, und ist dadurch gekennzeichnet, daß 5 bis 100 Molprozent, auf der Basis monomerer Verbindungen, der 1,4,6-Trioxaspiro-[4,4]-nonan-haltigen Verbindungen aus den erfindungsgemäßen Silanen der allgemeinen Formel (I) ausgewählt werden.
Es ist aber auch möglich, den erfindungsgemäßen Spiro- Silanen vor der Polymerisation weitere ionische und/oder radikalisch polymerisierbare Komponenten zuzusetzen. Radikalisch polymerisierbare Verbindungen, die zugesetzt werden können, sind z. B. solche mit C=C-Doppelbindungen, wie etwa Acrylate oder Methacrylate, wobei die Polymerisation über die C=C-Doppelbindungen erfolgt. Ionisch polymerisierbare Verbindungen, die zugesetzt werden können, enthalten z. B. Ringsysteme, die kationisch, ringöffnend polymerisierbar sind, wie etwa Spiroorthoester, Spiroorthocarbonate, bicyclische Spiroorthoester, Mono- oder Oligoepoxide. Es können aber auch Verbindungen zugesetzt werden, die sowohl kationisch als auch radikalisch polymerisierbar sind, wie z. B. Methacryloyl-Spiroorthoester. Diese sind radikalisch über die C=C-Doppelbindung und kationisch unter Ringöffnung polymerisierbar. Diese Systeme sind z. B. im Journal f. prakt. Chemie, Band 330, Heft 2, 1988, S. 316 bis 318, oder im Journal of Polymer Science: Part C: Polymer Letters, Vol. 26, S. 517 bis 520 (1988) beschrieben.
Ferner können den erfindungsgemäßen Spiro-Silanen vor der Polymerisation weitere hydrolysierbare und polymerisierbare Verbindungen des Siliciums zugesetzt werden, gegebenenfalls in vorkondensierter Form, die dann mit einpolymerisiert werden. Solche Silicium-Verbindungen leiten sich z. B. von Epoxid-haltigen Silanen ab, sind deshalb kationisch polymerisierbar und werden u. a. für die Herstellung der erfindungsgemäßen Spiro-Silane eingesetzt. Diese Systeme sind bereits bei der Herstellung der erfindungsgemäßen Spiro-Silane beschrieben.
Es können aber auch Silicium-Verbindungen eingesetzt werden, die sich z. B. von solchen der allgemeinen Formel (IV) ableiten und radikalisch polymerisierbar sind. Diese Systeme sind bei der Herstellung der Poly(hetero)kondensate bereits näher beschrieben worden.
Die Polymerisation erfolgt entweder thermisch oder photochemisch nach Zugabe geeigneter Initiatoren. Dabei werden im Zuge einer kationischen Polymerisation die Ringe der Spiro- Gruppen und gegebenenfalls weitere radikalisch polymerisierbare Ringe geöffnet, und gegebenenfalls erfolgt auch eine radikalische Polymerisation durch Verknüpfung von Doppelbindungen. Dabei wird das organische Netzwerk aufgebaut. Überraschenderweise wurde festgestellt, daß sich im Laufe dieser Polymerisation das Volumen der Reaktionsmasse nicht oder nur geringfügig ändert. In Abhängigkeit von der Zahl der Spiro-Gruppen wird eine nur geringfügige Volumenabnahme, keine Volumenänderung oder sogar eine Volumenzunahme erhalten, wobei mit steigender Zahl der Spiro-Gruppen die Volumenabnahme geringer wird.
Erfolgt die Polymerisation photochemisch, so werden der Reaktionsmischung kationische Photoinitiatoren zugesetzt. Geeignete Photoinitiatoren sind Verbindungen, die bei Bestrahlung Säuren freisetzen, und die bereits bei der photochemischen Härtung der Poly(hetero)kondensate ausführlich beschrieben wurden.
Erfolgt die Polymerisation thermisch, so werden der Reaktionsmasse thermische Initiatoren zugesetzt. Geeignete thermische Initiatoren sind z. B. BF₃ als BF ·H₂NC₂H₅, ZnCl₂, TiCl₄ oder SnCl₂. Auch hier können alle die thermischen Initiatoren eingesetzt werden, die für die Polymerisation von Epoxidgruppen geeignet sind.
Wurden den erfindungsgemäßen Spiro-Silanen Komponenten mit Doppelbindungen zugesetzt, so kann über diese ebenfalls eine Polymerisation ablaufen, die thermisch oder photochemisch initiierbar ist.
Als Photoinitiatoren hierfür können z. B. die im Handel erhältlichen eingesetzt werden. Beispielsweise dazu wurden bereits bei der Härtung der Poly(hetero)kondensate genannt. Als thermische Initiatoren kommen inbesondere organische Peroxide in Form von Diacylperoxiden, Peroxydicarbonaten, Alkylperestern, Dialkylperoxiden, Perketalen, Ketonperoxiden, und Alkylhydroperoxiden in Frage. Konkrete Beispiele hierfür wurden ebenfalls bereits bei der Härtung der Poly(hetero)kondensate genannt.
Der Initiator kann in üblichen Mengen zugegeben werden. So kann z. B. einer Mischung, die 30 bis 50 Gew.-% Feststoff (Polykondensat) enthält, Initiator in einer Menge von z. B. 0,5 bis 5 Gew.-%, insbesondere von 1 bis 3 Gew.-%, bezogen auf die Mischung zugesetzt, werden.
Das auf diese Weise erhaltene Polymerisat kann man nun zum Aufbau des anorganischen Netzwerkes, gegebenenfalls in Anwesenheit weiterer, hydrolytisch kondensierbarer Verbindungen des Siliciums und gegebenenfalls anderer Elemente aus der Gruppe B, Al, P, Sn, Pb, der Übergangsmetalle, der Lanthaniden und der Actiniden, und/oder von den oben genannten Verbindungen abgeleiteten Vorkondensaten, durch Einwirkung von Wasser oder Feuchtigkeit, gegebenenfalls in Anwesenheit eines Katalysators und/oder eines Lösungsmittels, hydrolytisch kondensieren.
Im Gegensatz zur hydrolytischen Kondensation der erfindungsgemäßen Spiro-Silane kann die hydrolytische Kondensation des Polymerisates auch im sauren Milieu durchgeführt werden. Die Polymerisate enthalten hydrolysierbare Gruppen X, z. B. Alkoxy-Gruppen, so daß damit ein anorganisches Netzwerk (Si-O-Si-Einheiten) aufgebaut werden kann.
Unter den gegebenenfalls eingesetzten hydrolysierbaren Verbindungen des Siliciums sind solche der allgemeinen Formel (III), gegebenenfalls in vorkondensierter Form, bevorzugt. Diese Systeme wurden bereits bei der Herstellung der Poly(hetero)kondensate ausführlich beschrieben und mit konkreten Beispielen belegt.
Unter den gegebenenfalls eingesetzten hydrolysierbaren Aluminium- Verbindungen sind diejenigen besonders bevorzugt, die die allgemeine Formel (V) aufweisen, und geeignete hydrolysierbare Titan- oder Zirkonium-Verbindungen, die gegebenenfalls eingesetzt werden können, sind solche der allgemeinen Formel (VI). Auch diese Systeme wurden bereits bei der Herstellung der Poly(hetero)kondensate ausführlich abgehandelt.
Weitere hydrolysierbare Verbindungen, die dem Polymerisat zugesetzt werden können, sind z. B. Bortrihalogenide und Borsäureester, wie z. B. BCl₃, B(OCH₃)₃ und B(OC₂H₅)₃, Zinntetrahalogenide und Zinntetraalkoxide, wie z. B. SnCl₄ und Sn(OCH₃)₄, und Vanadyl-Verbindungen, wie z. B. VOCl₃ und VO(OCH₃)₃.
Auch hier kann, wie bereits erwähnt, die hydrolytische Kondensation in auf diesem Gebiet üblicher Art und Weise erfolgen. Die hydrolytische Kondensation kann in den meisten Fällen dadurch erfolgen, daß man dem zu hydrolysierenden Polymerisat, das entweder als solche oder gelöst in einem geeigneten Lösungsmittel vorliegt, das erforderliche Wasser bei Raumtemperatur oder unter leichter Kühlung direkt zugibt, vorzugsweise unter Rühren und in Anwesenheit eines Hydrolyse- und Kondensationskatalysators.
Bei Anwesenheit der reaktiven Verbindungen von Al, Ti, oder Zr empfiehlt sich in der Regel eine stufenweise Zugabe des Wassers. Unabhängig von der Reaktivität der anwesenden Verbindungen erfolgt die Hydrolyse in der Regel bei Temperaturen zwischen -20 und 130°C, vorzugsweise zwischen 0 und 30°C bzw. dem Siedepunkt des gegebenenfalls eingesetzten Lösungsmittels. Wie bereits angedeutet, hängt die beste Art und Weise der Zugabe von Wasser vor allem von der Reaktivität der eingesetzten Ausgangsverbindungen ab. So kann man z. B. das gelöste Polymerisat langsam zu einem Überschuß an Wasser tropfen oder man gibt Wasser in einer Portion oder portionsweise dem gegebenenfalls gelösten Polymerisat zu. Es kann auch nützlich sein, das Wasser nicht als solches zuzugeben, sondern mit Hilfe von wasserhaltigen organischen oder anorganischen Systemen in das Reaktionssystem einzutragen.
Anhand von Ausführungsbeispielen wird die Erfindung näher erläutert.
Beispiel 1 Darstellung des 2-Trimethoxysilylpropylmethylether-1,4,6- trioxaspiro-[4,4]-nonan
Zur Vorlage von 129 g (1,5 mol) γ-Butyrolacton und 4,62 g Bortrifluoridetherat (BF₃ ·Et₂O) in 600 ml getrocknetem CH₂Cl₂ wird bei Raumtemperatur unter Argonatmosphäre eine Lösung von 307 g (1.3 mol) 3-Glycidyloxypropyltrimethoxysilan in 300 ml CH₂Cl₂ innerhalb einer Stunde zugetropft. Nach etwa 2stündigem Rühren bei Raumtemperatur wird am Rotationsverdampfer eingeengt und der Rückstand einer Hochvakuumdestillation unterzogen. Nach einer Vorfraktion wird das gewünschte Spiro-Silan bei einer Temperatur von ca. 125°C (2 · 10-2 mbar) als farblose, stabile Flüssigkeit erhalten.
IR: (C-H) bei 2840-2969cm-1
(C-H, Methoxy) bei 2480 cm-1)
Beispiel 2 Hydrolytische Kondensation des 2-Trimethoxysilylpropylmethylether- 1,4,6-trioxaspiro-[4,4]-nonan
Zur Hydrolyse und Kondensation der -Si(OCH₃)₃-Gruppen werden zu 6,54 g (20 mol) Spiro-Silan gemäß dem Beispiel 1 20 mg Triethylamin und 0,54 g (30 ml) H₂O zugetropft. Das Gemisch wird ca. 20 h bei Raumtemperatur gerührt. Das resultierende Spiro-Siloxan kann einerseits direkt zur kationischen Polymerisation eingesetzt werden und andererseits nach üblicher Aufarbeitung isoliert werden.
IR: (C-H, Methoxy) bei 2480 cm-1 nicht mehr vorhanden
→Hydrolyse ist erfolgt
(C=O, Ester bei 1738 cm-1 nicht entstanden
→Spiro-Gruppe nicht gespalten
Beispiel 3 Kationische Polymerisation des Spiro-Siloxan aus Beispiel 2
Das Spiro-Siloxan gemäß Beispiel 2 wird mit 2% Starter (UVI-6990 von Union Carbide) versetzt, auf KBr-Plättchen aufgetragen, im Vakuum von allen flüchtigen Bestandteilen befreit und mit UV-Licht bestrahlt (UV-Punktstrahler ("Blue Point" der Fa. Dr. K. Hönle), d. h. polymerisierend gehärtet (vollständiger Umsatz nach <1 min).
IR: (C=O, Ester) bei 1740 cm-1 (intensive Bande)
→vollständiger Umsatz und somit Polymerisation der Spiro-Gruppe
→Polyestersiloxan
Beispiel 4 Kationische Polymerisation des Spiro-Siloxans aus Beispiel 2
Das Spiro-Siloxan gemäß Beispiel 2 wird mit 2% Starter (KI-85 von Degussa) versetzt und auf Glasobjektträger aufgetragen. Zum Auftragen wird ein Filmziehrahmen mit verschiedenen Spaltbreiten (30 bzw 80 µm) verwendet. Die flüchtigen Bestandteile werden im Vakuumtrockenschrank (15 min, 40°C) abgezogen,und die Härtung erfolgt mittels UV-Strahler "UVALOC 1000" der Fa. Loctite.
Mit den Startern gemäß Beispiel 3 und 4 werden nach Belichtungszeiten von weniger als einer Minute harte, farblose Beschichtungen erhalten.
Hinweis: Da im Spiro-Silan 3 Methoxy-Gruppen enthalten sind, wird bei der hydrolytischen Kondensation eine farblose, plastische Masse erhalten, die sich in Essigester löst. Bei Einsatz eines Spiro-Silans mit 2 Alkoxy-Gruppen ist ein flüssiges Harz zu erwarten.

Claims (17)

1. Hydrolysierbare und polymerisierbare Silane der allgemeinen Formel (I), Yn Si Xm R4-(n+m) (I)in der die Reste X, Y und R gleich oder verschieden sind und folgende Bedeutung haben:
R=Alkyl, Alkenyl, Aryl, Alkylaryl oder Arylalkyl,
X=Wasserstoff, Halogen, Hydroxy, Alkoxy, Acyloxy, Alkylcarbonyl, Alkoxycarbonyl oder NR′₂,
mit R′=Wasserstoff, Alkyl oder Aryl,
Y=ein Substituent, der einen substituierten oder unsubstituierten 1,4,6-Trioxaspiro-[4,4]-nonan-Rest enthält,
n=1, 2 oder 3,
m=1, 2 oder 3, mit n+m4.
2. Silane nach Anspruch 1, dadurch gekennzeichnet, daß Y wobei die Reste Z gleich oder verschieden sind und Wasserstoff, Hydroxyl, Alkyl, Alkenyl, Aryl, Alkylaryl, Arylalkyl, Alkylcarbonyl oder Alkoxycarbonyl bedeuten.
3. Verfahren zur Herstellung der Silane nach Anspruch 1, dadurch gekennzeichnet, daß man ein Silan der allgemeinen Formel (II) Y′n Si XmR4-(n+m) (II)in der die Reste X, Y′ und R gleich oder verschieden sind, X, R, n und m die in Anspruch 1 genannte Bedeutung haben, und Y′ einen Rest darstellt, der einen substituierten Oxiran- Ring enthält,
mit einem substituierten oder unsubstituierten γ-Butyrolacton in Anwesenheit einer Lewis-Säure umsetzt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man als Silan der allgemeinen Formel (II) 3-Glycidoxypropyl­ dimethylethoxysilan, (3-Glycidoxypropyl)methyldiethoxysilan, 3-Glycidoxypropylmethyl-di-isopropenoxysilan, (3-Glycidoxy­ propyl)trimethoxysilan, 2-(3,4-Epoxycyclohexyl)ethyltrimethoxysilan oder [2-(3,4-Epoxy-4-methylcyclohexyl)propyl]-me­ thyldiethoxysilan einsetzt.
5. Verwendung der Silane gemäß Anspruch 1 zur Herstellung von Kieselsäurepolykondensaten oder von Kieselsäureheteropolykondensaten durch hydrolytische Kondensation von einer oder mehreren hydrolytisch kondensierbaren Verbindungen des Siliciums und gegebenenfalls anderer Elemente aus der Gruppe B, Al, P, Sn, Pb der Übergangsmetalle, der Lanthaniden und der Actiniden, und/oder von den oben genannten Verbindungen abgeleiteten Vorkondensaten, gegebenenfalls in Anwesenheit eines Katalysators und/oder eines Lösungsmittels, durch Einwirkung von Wasser oder von Feuchtigkeit, dadurch gekennzeichnet, daß 5 bis 100 Molprozent, auf der Basis monomerer Verbindungen, der hydrolytisch kondensierbaren Verbindungen aus Silanen der allgemeinen Formel (I) ausgewählt werden, Yn Si Xm R4-(n+m) (I)in der die Reste X, Y und R gleich oder verschieden sind und folgende Bedeutung haben:
R=Alkyl, Alkenyl, Aryl, Alkylaryl oder Arylalkyl,
X=Wasserstoff, Halogen, Hydroxy, Alkoxy, Acyloxy, Alkylcarbonyl, Alkoxycarbonyl oder NR′₂,
mit R′=Wasserstoff, Alkyl oder Aryl,
Y=ein Substituent, der einen substituierten oder unsubstituierten 1,4,6-Trioxaspiro-[4,4]-nonan-Rest enthält,
n=1, 2 oder 3,
m=1, 2 oder 3, mit n+m4.
6. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß man als weitere hydrolytisch kondensierbare Verbindungen solche Verbindungen einsetzt, gegebenenfalls in vorkondensierter Form, die radikalisch oder kationisch polymerisierbar sind.
7. Verwendung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß man als weitere hydrolytisch kondensierbare Verbindungen des Siliciums eine oder mehrere Verbindungen der allgemeinen Formel (III), gegebenenfalls in vorkondensierter Form, einsetzt, Ra(R′′Z′)bSiX4-(a+b) (III)in der die Reste R, R′′ und Z′ gleich oder verschieden sind und folgende Bedeutung haben:
R=Alkyl, Alkenyl, Aryl, Alkylaryl oder Arylalkyl,
R′′=Alkylen oder Alkenylen, wobei diese Reste durch Sauerstoff- oder Schwefelatome oder -NH-Gruppen unterbrochen sein können,
X=Wasserstoff, Halogen, Hydroxy, Alkoxy, Acyloxy, Alkylcarbonyl, Alkoxycarbonyl oder NR′₂,
mit R′=Wasserstoff, Alkyl oder Aryl,
R′=Halogen oder eine gegebenenfalls substituierte Amino-, Amid-, Aldehyd-, Alkylcarbonyl-, Carboxy-, Mercapto-, Cyano-, Alkoxy-, Alkoxycarbonyl-, Sulfonsäure-, Phosphorsäure-, Acryloxy-, Methacryloxy-, Epoxy- oder Vinyl- Gruppe,
a=0, 1, 2 oder 3,
b=0, 1, 2 oder 3, mit a+b=1, 2 oder 3.
8. Verwendung nach einem oder mehreren der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß man als weitere hydrolytisch kondensierbare Verbindungen des Siliciums, eine oder mehrere Verbindungen der allgemeinen Formel (IV), gegebenenfalls in vorkondensierter Form, einsetzt, {XnRkSi[R²(A)l]4-(n+k)}xB (IV)in der die Reste A, R, R² und X gleich oder verschieden sind und folgende Bedeutung haben:
A=O, S, PR′, POR′, oder NHC(O)O,
mit R′=Wasserstoff, Alkyl oder Aryl,
B=geradkettiger oder verzweigter organischer Rest, der sich von einer Verbindung B′ mit mindestens einer (für l=1 und A=NHC(O)O oder NHC(O)NR′) bzw. mindestens zwei C=C-Doppelbindungen und 5 bis 50 Kohlenstoff-Atomen ableitet,
mit R=Wasserstoff, Alkyl oder Aryl,
R=Alkyl, Alkenyl, Aryl, Alkylaryl oder Arylalkyl,
R²=Alkylen, Arylen oder Alkylenarylen,
X=Wasserstoff, Halogen, Hydroxy, Alkoxy, Acyloxy, Alkylcarbonyl, Alkoxycarbonyl oder NR′₂,
mit R′=Wasserstoff, Alkyl oder Aryl,
n=1, 2 oder 3,
k=0, 1 oder 2,
l=0 oder 1,
x=eine ganze Zahl, deren Maximalwert der Anzahl von Doppelbindungen in der Verbindung B′ minus 1 entspricht, bzw. gleich der Anzahl von Doppelbindungen in der Verbindung B′ ist, wenn l=1 und A für NHC(O)O oder NHC(O)NR′ steht.
9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, daß man eine Verbindung der allgemeinen Formel (IV) einsetzt, in der sich der Rest B von einer substituierten oder unsubstituierten Verbindung B′ mit zwei oder mehreren Acrylat- und/oder Methacrylat-Gruppen ableitet.
10. Verwendung nach einem oder mehreren der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß man als weitere hydrolytisch kondensierbare Komponente eine oder mehrere, im Reaktionsmedium lösliche Aluminium, Titan- oder Zirkon-Verbindungen, gegebenenfalls in vorkondensierter Form, der allgemeinen Formel AlR˙₃ oder M Xy Rzeinsetzt, in der M Titan oder Zirkon bedeutet, die Reste R˙, R und X gleich oder verschieden sind, R˙ Halogen, Hydroxy, Alkoxy oder Acyloxy darstellt, y eine ganze Zahl von 1 bis 4 ist, insbesondere 2 bis 4, z für 0, 1, 2 oder 3 steht, vorzugsweise für 0, 1 oder 2, und X und R wie im Falle der allgemeinen Formel (I) definiert sind.
11. Verwendung nach einem oder mehreren der Ansprüche 5 bis 10, dadurch gekennzeichnet, daß man dem Polykondensat einen oder mehrere Initiatoren zusetzt und das Polykondensat thermisch oder photochemisch härtet.
12. Verwendung nach einem oder mehreren der Ansprüche 5 bis 11, dadurch gekennzeichnet, daß man dem Polykondensat vor der Polymerisation eine oder mehrere radikalisch und/oder kationisch polymerisierbare Komponenten zusetzt.
13. Verwendung der Silane gemäß Anspruch 1 zur Herstellung von Polymerisaten durch kationische Polymerisation einer oder mehrerer 1,4,6-Trioxaspiro- [4,4]-nonan-haltigen Verbindungen und gegebenenfalls anderer, kationisch polymerisierbaren Verbindungen, und gegebenenfalls durch radikalische Polymerisation einer oder mehrerer radikalisch polymerisierbaren Verbindungen, durch Einwirkung von Wärme oder elektromagnetischer Strahlung, gegebenenfalls in Anwesenheit eines oder mehrerer Initiatoren und/oder eines Lösungsmittels, dadurch gekennzeichnet, daß 5 bis 100 Molprozent, auf der Basis monomerer Verbindungen, der 1,4,6-Trioxaspiro-[4,4]-nonan-haltigen Verbindungen aus Silanen der allgemeinen Formel (I) ausgewählt werden, Yn Si Xm R4-(n+m) (I)in der die Reste X, Y und R gleich oder verschieden sind und folgende Bedeutung haben:
R=Alkyl, Alkenyl, Aryl, Alkylaryl oder Arylalkyl,
X=Wasserstoff, Halogen, Hydroxy, Alkoxy, Acyloxy, Alkylcarbonyl, Alkoxycarbonyl oder NR′₂,
mit R′=Wasserstoff, Alkyl oder Aryl,
Y=Substituent, der einen substituierten oder unsubstituierten 1,4,6-Trioxaspiro-[4,4]-nonan-Rest enthält,
n=1, 2 oder 3,
m=1, 2 oder 3, mit n+m4.
14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß man als weitere kationisch polymerisierbare Verbindungen einen oder mehrere Spiroorthoester, Spiroorthocarbonate, bicyclische Spiroorthoester, Methacryloyl-Spiroorthoester, Mono- oder Oligoepoxide einsetzt.
15. Verwendung nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß man als radikalisch polymerisierbare Verbindungen eine oder meherere Verbindungen der allgemeinen Formel (IV) einsetzt, {XnRkSi[R²(A)l]4-(n+k)}xB (IV)in der die Reste A, R, R² und X gleich oder verschieden sind und A, R, R², X, k, l, n und x die in Anspruch 3 genannte Bedeutung haben.
16. Verwendung nach einem oder mehreren der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß man das Polymerisat, gegebenenfalls in Anwesenheit weiterer, hydrolytisch kondensierbarer Verbindungen des Siliciums und gegebenenfalls anderer Elemente aus der Gruppe B, Al, P, Sn, Pb, der Übergangsmetalle, der Lanthaniden und der Actiniden, und/oder von den oben genannten Verbindungen abgeleiteten Vorkondensaten, durch Einwirkung von Wasser oder Feuchtigkeit, gegebenenfalls in Anwesenheit eines Katalysators und/oder eines Lösungsmittels, hydrolytisch kondensiert.
17. Verwendung nach Anspruch 16, dadurch gekennzeichnet, daß man als weitere kondensierbare Verbindungen des Siliciums eine oder mehrere Verbindungen der allgemeinen Formel (III), gegebenenfalls in vorkondensierter Form, einsetzt, Ra(R′′Z′)bSiX4-(a+b) (III)in der die Reste R, R′′ und Z gleich oder verschieden sind, und R, R′′, Z′, a und b die in Anspruch 7 genannte Bedeutung haben.
DE4125201A 1991-07-30 1991-07-30 Expired - Lifetime DE4125201C1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE4125201A DE4125201C1 (de) 1991-07-30 1991-07-30
AT92110752T ATE141607T1 (de) 1991-07-30 1992-06-25 Hydrolysierbare und polymerisierbare silane
DK92110752.0T DK0525392T3 (da) 1991-07-30 1992-06-25 Hydrolyserbare og polymeriserbare silaner
DE59206939T DE59206939D1 (de) 1991-07-30 1992-06-25 Hydrolysierbare und polymerisierbare Silane
EP92110752A EP0525392B1 (de) 1991-07-30 1992-06-25 Hydrolysierbare und polymerisierbare Silane
US07/916,584 US5414093A (en) 1991-07-30 1992-07-20 Hydrolyzable and polymerizable silanes
JP20410792A JP3187150B2 (ja) 1991-07-30 1992-07-30 加水分解及び重合可能なシラン類

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4125201A DE4125201C1 (de) 1991-07-30 1991-07-30

Publications (1)

Publication Number Publication Date
DE4125201C1 true DE4125201C1 (de) 1992-10-01

Family

ID=6437313

Family Applications (2)

Application Number Title Priority Date Filing Date
DE4125201A Expired - Lifetime DE4125201C1 (de) 1991-07-30 1991-07-30
DE59206939T Expired - Lifetime DE59206939D1 (de) 1991-07-30 1992-06-25 Hydrolysierbare und polymerisierbare Silane

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE59206939T Expired - Lifetime DE59206939D1 (de) 1991-07-30 1992-06-25 Hydrolysierbare und polymerisierbare Silane

Country Status (6)

Country Link
US (1) US5414093A (de)
EP (1) EP0525392B1 (de)
JP (1) JP3187150B2 (de)
AT (1) ATE141607T1 (de)
DE (2) DE4125201C1 (de)
DK (1) DK0525392T3 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0643752A4 (de) * 1991-10-09 1994-06-03 Procter & Gamble Dentalharzmasse auf basis von polymeribaren polysiloxamen.
EP0668326A2 (de) * 1994-02-18 1995-08-23 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Kovalent-nucleophil selbsthärtende Systeme
DE4423811C1 (de) * 1994-07-06 1996-01-18 Fraunhofer Ges Forschung Hydrolysierbare und polymerisierbare Silane, Verfahren zu deren Herstellung und deren Verwendung
US5919885A (en) * 1994-02-18 1999-07-06 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Covalently and nucleophilically self-curing systems
DE19910895A1 (de) * 1999-03-11 2000-09-21 Fraunhofer Ges Forschung Hydrolysierbare und polymerisierbare Silane
US6124491A (en) * 1994-05-13 2000-09-26 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Polycondensates and polymerizates made from hydrolyzable and polymerizable silanes
EP1070499A1 (de) * 1999-07-21 2001-01-24 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Verfahren zur physiologisch unbedenklichen Beschichtung von Kunststoffprothesen
WO2006111352A1 (de) 2005-04-19 2006-10-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum verbrücken von hydroxy- oder carbonsäuregruppen enthaltenden, organisch polymerisierbaren silanen oder silanharzeinheiten, sowie produkte dieses verfahrens
US7932414B2 (en) 2003-10-24 2011-04-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Silane and silicic acid polycondensates with radicals containing branched-chain urethane, acid amide and/or carboxylic acid ester groups
DE102018114406A1 (de) 2018-06-15 2019-12-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Degradierbare Silane mit Thio- und Aminogruppen, daraus hergestellte Kieselsäurepolykondensate und Hybridpolymere, deren Verwendung sowie Verfahren zur Herstellung der Silane
DE102018117617A1 (de) 2018-07-20 2020-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Herstellung von Formkörpern aus einem anorganisch-organischen Hybridpolymer mit hoher Auflösung mittels 3D-Druck, Formkörper mit hohen Biegefestigkeiten und E-Moduln und deren Anwendung für dentale Zwecke

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1037281C (zh) * 1993-02-27 1998-02-04 鞍山钢铁公司 复合铸铁轧辊及其铸造方法
DE4310733A1 (de) * 1993-04-01 1994-10-06 Fraunhofer Ges Forschung Selbsthärtende Systeme
DE19536498A1 (de) * 1995-09-29 1997-04-10 Fraunhofer Ges Forschung Flammgeschützte Kompositwerkstoffe
US6472467B1 (en) 1999-10-21 2002-10-29 Dow Global Technologies Inc. Inorganic/organic compositions
EP1314193A2 (de) * 2000-08-21 2003-05-28 Dow Global Technologies Inc. Organosilikatharz-hart-maske für polymere mit niedriger dielektrischer konstante in der herstellung von mikroelektronischen schaltungen
US6911263B2 (en) * 2002-01-30 2005-06-28 Awi Licensing Company PET wear layer/sol gel top coat layer composites
DE102005018351B4 (de) * 2005-04-20 2008-05-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung widerstandsfähiger, langlebiger Komposite im Dentalbereich
BRPI0612907A2 (pt) * 2005-07-18 2010-12-07 Syngenta Participations Ag compostos microbiocidas, composição contendo os mesmos e método de controle ou prevenção de infestação em plantas
EP2537657A3 (de) 2005-08-09 2016-05-04 The University of North Carolina At Chapel Hill Verfahren und Materialien zur Herstellung mikrofluidischer Vorrichtungen
US7862886B2 (en) * 2005-08-12 2011-01-04 Fujifilm Corporation Optical film, antireflection film, processes for producing the same, and polarizing plate and display employing the same
US7744951B2 (en) * 2006-04-13 2010-06-29 Guardian Industries Corp. Coated glass substrate with infrared and ultraviolet blocking characteristics
US8945527B2 (en) 2008-04-25 2015-02-03 The University Of North Carolina At Chapel Hill Degradable compounds and methods of use thereof, particularly with particle replication in non-wetting templates
US20130203675A1 (en) 2010-09-16 2013-08-08 Joseph M. DeSimone Asymmetric biofunctional silyl monomers and particles thereof as prodrugs and delivery vehicles for pharmaceutical, chemical and biological agents

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3536716A1 (de) * 1985-10-15 1987-04-16 Fraunhofer Ges Forschung Kleb- und dichtungsmassen und deren verwendung
DE3407087C2 (de) * 1984-02-27 1994-07-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Verfahren und Lack zur Herstellung von kratzfesten Beschichtungen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410354A (en) * 1982-02-01 1983-10-18 Shell Oil Company Spiro ether herbicides
JPS6067531A (ja) * 1983-09-22 1985-04-17 Toshiba Corp 樹脂組成物
CA1310958C (en) * 1984-07-03 1992-12-01 Satoshi Urano Physical property-improving reagent
DE4011044A1 (de) * 1990-04-05 1991-10-10 Fraunhofer Ges Forschung Silane, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von polymerisaten und polykondensaten

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3407087C2 (de) * 1984-02-27 1994-07-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Verfahren und Lack zur Herstellung von kratzfesten Beschichtungen
DE3536716A1 (de) * 1985-10-15 1987-04-16 Fraunhofer Ges Forschung Kleb- und dichtungsmassen und deren verwendung

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0643752A1 (de) * 1991-10-09 1995-03-22 The Procter & Gamble Company Dentalharzmasse auf basis von polymeribaren polysiloxamen
EP0643752A4 (de) * 1991-10-09 1994-06-03 Procter & Gamble Dentalharzmasse auf basis von polymeribaren polysiloxamen.
US5919885A (en) * 1994-02-18 1999-07-06 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Covalently and nucleophilically self-curing systems
EP0668326A2 (de) * 1994-02-18 1995-08-23 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Kovalent-nucleophil selbsthärtende Systeme
EP0668326A3 (de) * 1994-02-18 1996-05-01 Fraunhofer Ges Forschung Kovalent-nucleophil selbsthärtende Systeme.
US6124491A (en) * 1994-05-13 2000-09-26 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Polycondensates and polymerizates made from hydrolyzable and polymerizable silanes
EP0694550A3 (de) * 1994-07-06 1998-04-15 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Hydrolisierbare und polymerisierbare Silane
DE4423811C1 (de) * 1994-07-06 1996-01-18 Fraunhofer Ges Forschung Hydrolysierbare und polymerisierbare Silane, Verfahren zu deren Herstellung und deren Verwendung
DE19910895A1 (de) * 1999-03-11 2000-09-21 Fraunhofer Ges Forschung Hydrolysierbare und polymerisierbare Silane
EP1070499A1 (de) * 1999-07-21 2001-01-24 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Verfahren zur physiologisch unbedenklichen Beschichtung von Kunststoffprothesen
US7932414B2 (en) 2003-10-24 2011-04-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Silane and silicic acid polycondensates with radicals containing branched-chain urethane, acid amide and/or carboxylic acid ester groups
WO2006111352A1 (de) 2005-04-19 2006-10-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum verbrücken von hydroxy- oder carbonsäuregruppen enthaltenden, organisch polymerisierbaren silanen oder silanharzeinheiten, sowie produkte dieses verfahrens
US8076441B2 (en) 2005-04-19 2011-12-13 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Process for bridging organically polymerizable silanes or silane resin systems containing hydroxy- or carboxylic acid groups as well as products obtained with said process
DE102018114406A1 (de) 2018-06-15 2019-12-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Degradierbare Silane mit Thio- und Aminogruppen, daraus hergestellte Kieselsäurepolykondensate und Hybridpolymere, deren Verwendung sowie Verfahren zur Herstellung der Silane
DE102018114406B4 (de) 2018-06-15 2021-07-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Degradierbare Silane mit Thio- und Aminogruppen, daraus hergestellte Kieselsäurepolykondensate und Hybridpolymere, deren Verwendung sowie Verfahren zur Herstellung der Silane
DE102018117617A1 (de) 2018-07-20 2020-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Herstellung von Formkörpern aus einem anorganisch-organischen Hybridpolymer mit hoher Auflösung mittels 3D-Druck, Formkörper mit hohen Biegefestigkeiten und E-Moduln und deren Anwendung für dentale Zwecke
WO2020016282A1 (de) 2018-07-20 2020-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Herstellung von formkörpern aus einem anorganisch-organischen hybridpolymer mit hoher auflösung mittels 3d-druck, formkörper mit hohen biegefestigkeiten und e-moduln und deren anwendung für dentale zwecke

Also Published As

Publication number Publication date
EP0525392A1 (de) 1993-02-03
EP0525392B1 (de) 1996-08-21
ATE141607T1 (de) 1996-09-15
JP3187150B2 (ja) 2001-07-11
DE59206939D1 (de) 1996-09-26
JPH05222199A (ja) 1993-08-31
US5414093A (en) 1995-05-09
DK0525392T3 (da) 1996-09-09

Similar Documents

Publication Publication Date Title
DE4125201C1 (de)
EP0682033B1 (de) Hydrolisierbare und polymerisierbare Silane
DE19627198C2 (de) Hydrolysierbare und polymerisierbare bzw. polyaddierbare Silane, ein Verfahren zu deren Herstellung und deren Verwendung
EP1202997B1 (de) Hydrolysierbare und polymerisierbare silane mit geringer viskosität und deren verwendung
EP0799832B1 (de) Hydrolysierbare, fluorierte Silane, Verfahren zu deren Herstellung und deren Verwendung zur Herstellung von Kieselsäurepolykondensaten und Kieselsäreheteropolykondensaten
EP1159281B1 (de) Hydrolysierbare und polymerisierbare silane
EP0450624B1 (de) Polymerisierbare Kieselsäureheteropolykondensate und deren Verwendung
EP1141094B1 (de) Vernetzbare monomere auf cyclosiloxanbasis, deren herstellung und deren verwendung in polymerisierbaren massen
DE19834990A1 (de) Acryloxypropyl- oder Methacryloxypropyl-Gruppen enthaltende Siloxan-Oligomere
DE4423811C1 (de) Hydrolysierbare und polymerisierbare Silane, Verfahren zu deren Herstellung und deren Verwendung
EP1196478A1 (de) Organisch modifizierte kieselsaeurepolykondensate, deren herstellung und deren verwendung
EP0618242B1 (de) Selbsthärtende Systeme
DE19726829A1 (de) Verwendung von nanoskaligen Metalloxid-Teilchen als Polymerisationskatalysatoren
CH634859A5 (de) Polymere alkoxysilane und ihre verwendung.
DE850234C (de) Verfahren zur Herstellung von Siloxanharzen
EP0812894B1 (de) Elektrisch isolierender Klebstoff, Verfahren zu dessen Herstellung und dessen Verwendung zur Herstellung von elektrisch isolierenden Verklebungen

Legal Events

Date Code Title Description
8100 Publication of patent without earlier publication of application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
R071 Expiry of right
R071 Expiry of right