DE4123053C2 - Method for determining at least one movement variable of a vehicle - Google Patents
Method for determining at least one movement variable of a vehicleInfo
- Publication number
- DE4123053C2 DE4123053C2 DE4123053A DE4123053A DE4123053C2 DE 4123053 C2 DE4123053 C2 DE 4123053C2 DE 4123053 A DE4123053 A DE 4123053A DE 4123053 A DE4123053 A DE 4123053A DE 4123053 C2 DE4123053 C2 DE 4123053C2
- Authority
- DE
- Germany
- Prior art keywords
- filter
- slip angle
- lateral
- akf
- filter pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 4
- 230000001133 acceleration Effects 0.000 claims description 7
- 230000003044 adaptive effect Effects 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/1755—Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
- B60T8/17552—Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve responsive to the tire sideslip angle or the vehicle body slip angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/04—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0891—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/05—Attitude
- B60G2400/052—Angular rate
- B60G2400/0523—Yaw rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/10—Acceleration; Deceleration
- B60G2400/104—Acceleration; Deceleration lateral or transversal with regard to vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/10—Acceleration; Deceleration
- B60G2400/104—Acceleration; Deceleration lateral or transversal with regard to vehicle
- B60G2400/1042—Acceleration; Deceleration lateral or transversal with regard to vehicle using at least two sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/20—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/40—Steering conditions
- B60G2400/41—Steering angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/80—Exterior conditions
- B60G2400/82—Ground surface
- B60G2400/822—Road friction coefficient determination affecting wheel traction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/18—Automatic control means
- B60G2600/187—Digital Controller Details and Signal Treatment
- B60G2600/1871—Optimal control; Kalman Filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/18—Automatic control means
- B60G2600/187—Digital Controller Details and Signal Treatment
- B60G2600/1877—Adaptive Control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/21—Traction, slip, skid or slide control
- B60G2800/212—Transversal; Side-slip during cornering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/70—Estimating or calculating vehicle parameters or state variables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/70—Estimating or calculating vehicle parameters or state variables
- B60G2800/702—Improving accuracy of a sensor signal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/30—ESP control system
- B60T2270/313—ESP control system with less than three sensors (yaw rate, steering angle, lateral acceleration)
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Vehicle Body Suspensions (AREA)
Description
Die Giergeschwindigkeit ω und/oder die Quergeschwindigkeit vy im Fahrzeug sowie die Schräglaufwinkel α und die Querkräfte Fy sind schwer bzw. nur mit teueren Sensoren meßbar. In der älteren Patentanmeldung gemäß der 40 30 653 ist die Ermittlung kleiner Schräglaufwinkel mit Hilfe eines teueren Gier sensors bekannt.The yaw rate ω and / or the transverse speed v y in the vehicle as well as the slip angle α and the transverse forces F y are difficult or only measurable with expensive sensors. In the older patent application according to 40 30 653, the determination of small slip angles using an expensive yaw sensor is known.
Solche Größen spielen aber bei der Fahrwerksregelung eine wichtige Rolle.Such sizes play an important role in chassis control.
Bei der Erfindung werden mit preiswerten Sensoren die Querbeschleunigungen des Fahrzeugs vor und hinter dem Schwerpunkt sowie die Lenkwinkel der bei den Achsen gemessen, wobei der Hinterachslenkwinkel auch 0 sein kann (keine Hinterachslenkung). Es ergeben sich bei Anwendung des erfindungsgemäßen Verfahrens zuerst einmal die Quergeschwindigkeit und die Giergeschwindig keit. Hieraus lassen sich dann in einfacher Weise die Schräglaufwinkel α, die Reifenkräfte Fy und die Schwimmwinkel β ableiten.In the invention, the lateral accelerations of the vehicle in front of and behind the center of gravity and the steering angle of the axles are measured using inexpensive sensors, the rear axle steering angle also being 0 (no rear axle steering). When using the method according to the invention, first of all the transverse speed and the yaw rate arise. From this, the slip angle α, the tire forces F y and the slip angle β can then be derived in a simple manner.
Wie in Fig. 1 dargestellt, wird die Reifendynamik bei bisherigen Betrach
tungen durch eine lineare Gleichung mit konstantem Parameter Cα angenähert:
As shown in Fig. 1, the tire dynamics in previous considerations is approximated by a linear equation with constant parameter C α :
fy = Cα . α (1)f y = C α . α (1)
Dieser Ansatz gilt nur für sehr kleine Schräglaufwinkel. Mit wachsendem Schräglaufwinkel stimmen die tatsächliche und die durch (1) modellierte Seitenkraft nicht mehr überein.This approach only applies to very small slip angles. With increasing slip angle, the actual and the lateral force modeled by ( 1 ) no longer match.
Es war daher die Aufgabe der Erfindung, zuerst einmal einen Ansatz für die Seitenkraft Fy zu liefern, der den ganzen Schräglaufbereich abdeckt. Mit Hilfe dieses Ansatzes wird dann ein technisch realisierbares Verfahren gefunden, das online aus den Meßgrößen δv, δh, ayv, ayh durch eine Kombi nation von adaptiven äquivalenten Kalman-Filtern zuerst die Giergeschwin digkeit ω und die Quergeschwindigkeit vy und schließlich die Schräglauf winkel α und die Seitenkräfte Fy bestimmt.It was therefore the object of the invention to first of all provide an approach for the lateral force F y which covers the entire skew region. With the help of this approach, a technically feasible method is then found, which, from the measured variables δ v , δ h , a yv , a yh, by a combination of adaptive equivalent Kalman filters, first the yaw rate ω and the lateral speed v y and finally the slip angle α and the lateral forces F y determined.
Der erste Teil dieser Aufgabe wird durch den in Fig. 2 skizzierten Ansatz
gelöst, der besagt, daß die Reifendynamik durch einen linearen Ansatz
The first part of this task is solved by the approach sketched in Fig. 2, which states that the tire dynamics by a linear approach
Fy(α) = ky(α) . α + hy(α) (2)
F y (α) = k y (α). α + h y (α) (2)
mit veränderlichen Parametern ky(α) und hy(α) beschrieben werden kann.can be described with variable parameters k y (α) and h y (α).
Ein Vergleich zu dem Ansatz in (1) zeigt, daß
A comparison with the approach in ( 1 ) shows that
- - der Schräglaufbereich vollständig beschreibbar ist und- The skew area is completely writable and
- - das Reifenverhalten durch unterschiedliche Parameter ky(α) und hy(α) in Abhängigkeit von α realitätsnäher beschrieben wird.- The tire behavior is described more realistically by different parameters k y (α) and h y (α) depending on α.
Die Schwierigkeit liegt darin, diese Parameter mit einfachen Mitteln zu bestimmen. Dies gelingt durch die in Fig. 3 gezeigte Anordnung. Liegen die Werte von α, ky(α) und hy(α) vor, dann läßt sich Fy einfach aus (2) bere chnen. Die Anordnung der Fig. 3 ist technisch realisierbar, es wird eine Schätzung von ky, hy und α wie folgt vorgenommen. The difficulty lies in determining these parameters with simple means. This is achieved through the arrangement shown in FIG. 3. If the values of α, k y (α) and h y (α) are available, then F y can easily be calculated from ( 2 ). The arrangement of FIG. 3 is technically feasible; k y , h y and α are estimated as follows.
Eingangsgrößen des Schätzers sind die gemessene Querbeschleunigung ayv vor dem Schwerpunkt, die gemessene Querbeschleunigung ayh hinter dem Schwer punkt, der Lenkwinkel vorne δv und der Lenkwinkel hinten δh, die später benötigt werden.The input variables of the estimator are the measured lateral acceleration a yv in front of the center of gravity, the measured lateral acceleration a yh behind the center of gravity, the steering angle at the front δ v and the steering angle at the rear δ h , which will be required later.
Die Querbeschleunigungen werden einmal als Summe (Fig. 3, oberer Strang) und ein anderes Mal als Differenz (Fig. 3, unterer Strang) zusammengefaßt (Blöcke 1 und 2) und so weiterverarbeitet. So gliedert sich die Gesamt struktur des Schätzers in zwei Subsysteme, wobei die Subsysteme identische Strukturen beinhaltet und sich nur durch die Eingangsgrößen unterscheiden. Im weiteren soll daher nur noch ein Subsystem betrachtet werden.The lateral accelerations are combined once as a sum ( FIG. 3, upper strand) and another time as a difference ( FIG. 3, lower strand) (blocks 1 and 2 ) and so on. The overall structure of the estimator is divided into two subsystems, with the subsystems containing identical structures and differing only in the input variables. Therefore, only one subsystem will be considered below.
Das Subsystem besteht aus zwei adaptiven äquivalenten Kalman-Filtern 3 und
4, wobei das Filter 3 die Seitenkraft nach Gleichung (1) annähert und das
zweite erweiterte Filter 4 (E-) die Seitenkraft mit Hilfe der Gleichung (2)
beschreibt. Jeder Filter liefert einen "Schätzwert der Eingangsgröße".
Durch die Differenzbildung beider Schätzwerte (Differenzbildner 5) werden
eine Funktion g(hyv, hyh) im oberen Subsystem und eine Funktion h(hyv,
hyh) im unteren Subsystem von hyv und hyh gewonnen. Damit liegt ein lös
bares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten vor
(Block 6). Zudem liefert die Schätzung mit dem Filter 4 die Parameter
kyv(α) und kyh(α) aus den Beziehungen
The subsystem consists of two adaptive equivalent Kalman filters 3 and 4 , the filter 3 approximating the lateral force according to equation (1) and the second extended filter 4 (E-) describing the lateral force using equation (2). Each filter provides an "estimate of the input variable". By forming the difference between the two estimated values (difference generator 5 ), a function g (h yv , h yh ) in the upper subsystem and a function h (h yv , h yh ) in the lower subsystem of h yv and h yh are obtained. This results in a solvable system of equations with two equations and two unknowns (block 6 ). In addition, the estimate with the filter 4 provides the parameters k yv (α) and k yh (α) from the relationships
Mit der Erfindung können also die Parameter kyv, kyh, hyv und hyh explizit
bestimmt werden. Aus dem Parametervektor des Filters 4 können die Zustands
größen Quergeschwindigkeit vy und Giergeschwindigkeit ω rekonstruiert wer
den (Ableitung siehe später). Aus diesen beiden Bewegungsgrößen läßt sich
gemäß der folgenden Beziehung
With the invention, the parameters k yv , k yh , h yv and h yh can be determined explicitly. The state variables transverse speed v y and yaw rate ω can be reconstructed from the parameter vector of the filter 4 (for a derivation see later). From these two motion quantities can be made according to the following relationship
der Schräglaufwinkel α berechenen, so daß nun alle Größen zur Berechnung der Querkräfte nach Gleichung (2) zur Verfügung stehen.calculate the slip angle α, so that now all sizes for calculation the lateral forces according to equation (2) are available.
Im Filter 3 wird von der Basisgleichung für AkF ausgegangen:
The basic equation for AkF is assumed in filter 3 :
wobei
in which
y(k) = ay(k) = ayv(k) ± ayh(k)
y (k) = ay (k) = a yv (k) ± a yh (k)
u1(k) = δv(k)
u 1 (k) = δ v (k)
u2(k) = δh(k)
u 2 (k) = δ h (k)
sind.are.
Der Parametervektor
The parameter vector
p = [py1 py2|pu11 pu12 Pu13|Pu21 Pu22 pu23]T
p = [p y1 p y2 | p u11 p u12 P u13 | P u21 P u22 p u23 ] T
kann aus dem Datenvektor m(k - 1)
can from the data vector m (k - 1)
m(k - 1) = [y(k - 2) y(k - 3) u1(k - 1) u1(k - 2) u1(k - 3) u2(k - 1) u2(k - 2) u2(k - 3)]T
m (k - 1) = [y (k - 2) y (k - 3) u 1 (k - 1) u 1 (k - 2) u 1 (k - 3) u 2 (k - 1) u 2 (k - 2) u 2 (k - 3)] T
und einem Fehler
and an error
mit Hilfe eines Schätzalgorithmus rekursiv berechnet werden:
can be calculated recursively using an estimation algorithm:
wobei r(k) bei "stochastischer Approximation" z. B. wie folgt gewählt wird:
where r (k) with "stochastic approximation" z. B. is selected as follows:
Der Zustandsrektor
The state rector
x = [ω vy]T
x = [ω v y ] T
kann dann wie folgt gewonnen werden:
can then be obtained as follows:
wobei die Matrizen M . (k - 1) aus dem Datenvektor m T(k - 1) und der Paramter
vektor .(k) aus dem Schätzvektor (k) abgelesen werden können:
where the matrices M. (k - 1) can be read from the data vector m T (k - 1) and the parameter vector. (k) from the estimate vector (k):
In Filter 4 wird von der Basisgleichung für E-AkF ausgegangen:
Filter 4 assumes the basic equation for E-AkF:
wobei
in which
y(k) = ay(k) = ayv(k) ± ayh(k),
y (k) = a y (k) = a yv (k) ± a yh (k),
u1(k) = δv(k),
u 1 (k) = δ v (k),
u2(k) = δh(k) und
u 2 (k) = δ h (k) and
u3(k) = γ(k)
u 3 (k) = γ (k)
(γ(k) ist eine frei wählbare Funktion) sind. (γ (k) is a freely selectable function).
Der Parametervektor
The parameter vector
p = [py1 py2|pu11 pu12 pu13|pu21 pu22 pu23|pu31 pu32 pu33]T kann
p = [p y1 p y2 | p u11 p u12 p u13 | p u21 p u22 p u23 | p u31 p u32 p u33 ] T can
aus dem Datenvektor m(k - 1)
from the data vector m (k - 1)
m(k - 1) = [y(k - 2) y(k - 3)|u1(k - 1) u1(k - 2) u1(k - 3)|
m (k - 1) = [y (k - 2) y (k - 3) | u 1 (k - 1) u 1 (k - 2) u 1 (k - 3) |
u2(k - 1) u2(k - 2) u2(k - 3)|u3(k - 1) u3(k - 2) u3(k - 3)]
u 2 (k - 1) u 2 (k - 2) u 2 (k - 3) | u 3 (k - 1) u 3 (k - 2) u 3 (k - 3)]
und dem Fehler
and the mistake
mit Hilfe eines Schätzalgorithmus rekursiv berechnet werden:
can be calculated recursively using an estimation algorithm:
wobei z. B. r(k) bei "stochastischer Approximation" wie folgt gewählt wird:
where z. B. r (k) for "stochastic approximation" is selected as follows:
Der Zustandsrektor
The state rector
x = [ω vy]T
x = [ω v y ] T
kann dann wie folgt gewonnen werden
can then be obtained as follows
wobei die Matrizen M . (k - 1) aus dem Datenvektor m T(k - 1) und der Parameter
vektor .(k) aus dem Schätzvaktor (k) abgelesen werden können:
where the matrices M. (k - 1) can be read from the data vector m T (k - 1) and the parameter vector. (k) from the estimation factor (k):
Daraus können neben ω und vy die anderen Bewegungsgrößen abgeleitet werden
In addition to ω and v y, the other motion quantities can be derived from this
Claims (1)
Fy = Cα . α
annähert, wobei α der Schräglaufwinkel und Cα eine Konstante ist, daß das andere erweiterte Filter (E-AkF) jedes Filterpaars so ausgestaltet ist, daß es die Seitenkräfte Fy der Reifen nach Maßgabe der Beziehung Fy = ky(α) . α + hy(α) annähert, wobei ky(α) und hy(α) von α abhängig veränderlich sind, daß aus den von den Filtern jedes Filterpaars abgegebenen Schätzwerten der Eingangs größen die Differenz gebildet wird, wodurch zwei Funktionen g(hyv; hyh) bzw. h(hyv; hyh) gewonnen werden, daß aus dem damit vorliegenden Gleichungssy stem mit zwei Unbekannten hyv und hyh diese bestimmt werden und zudem wenigs tens eine Größe der folgenden Größen kyv, kyh und ω, vy als Schätzwert aus dem zuletzt genannten Filter (E-AkF) entnommen werden und daß gegebenen falls aus diesen Werten schließlich die anderen Bewegungsgrößen (wie z. B. der Schwimmwinkel β, die Schräglaufwinkeln αv, αh und die Seitenkräfte Fyv, Fyh) rekonstruiert werden.Method for determining at least one movement variable (such as the transverse speed v y , the yaw rate ω, the slip angle β, the slip angle α v , α h and the lateral forces F yv , F yh ) of a motor vehicle, characterized in that the measured variables lateral acceleration a yv before and the lateral acceleration a yh behind the center of gravity are determined so that these lateral accelerations in the form of a sum (a yv + a yh ) parallel to two first adaptive equivalent Kalman filters (1st filter pair) and in the form of a difference ( a yv - a yh ) two additional adaptive equivalents, the same structure Kalman filters (2nd filter pair) are fed in that a filter of each filter pair (AkF) is designed so that it has the lateral forces F y of the tires according to the relationship
F y = C α . α
approximates, where α is the slip angle and C α is a constant that the other extended filter (E-AkF) of each filter pair is designed to have the lateral forces F y of the tires according to the relationship F y = k y (α). α + h y (α) approximates, whereby k y (α) and h y (α) are variable depending on α, so that the difference is formed from the estimated values of the input variables given by the filters of each filter pair, whereby two functions g ( h yv ; h yh ) or h (h yv ; h yh ) can be obtained from the equation system with two unknowns h yv and h yh and also at least one size of the following sizes k yv , k yh and ω, v y are taken as an estimate from the last-mentioned filter (E-AkF) and that, if appropriate, the other movement variables (such as the slip angle β, the slip angle α v , α h and the Lateral forces F yv , F yh ) can be reconstructed.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4123053A DE4123053C2 (en) | 1991-07-12 | 1991-07-12 | Method for determining at least one movement variable of a vehicle |
GB9214655A GB2257551B (en) | 1991-07-12 | 1992-07-10 | Determination of a parameter of motion of a vehicle |
JP4227748A JPH05208608A (en) | 1991-07-12 | 1992-07-13 | Method of deciding at least one motion variable of automobile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4123053A DE4123053C2 (en) | 1991-07-12 | 1991-07-12 | Method for determining at least one movement variable of a vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
DE4123053A1 DE4123053A1 (en) | 1993-01-14 |
DE4123053C2 true DE4123053C2 (en) | 2000-05-25 |
Family
ID=6435964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE4123053A Expired - Fee Related DE4123053C2 (en) | 1991-07-12 | 1991-07-12 | Method for determining at least one movement variable of a vehicle |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH05208608A (en) |
DE (1) | DE4123053C2 (en) |
GB (1) | GB2257551B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4067191A1 (en) * | 2021-03-29 | 2022-10-05 | Siemens Industry Software NV | Method and system for determining operating performance parameters of a device |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4200061C2 (en) * | 1992-01-03 | 2001-09-13 | Bosch Gmbh Robert | Procedure for determining the vehicle transverse speed and / or the slip angle |
US5548536A (en) * | 1992-05-16 | 1996-08-20 | Daimler-Benz Ag | Method for determining quantities which characterize the driving behavior |
DE4216301C2 (en) * | 1992-05-16 | 1997-05-22 | Daimler Benz Ag | Method for determining the behavior of characterizing variables |
DE4419979C2 (en) * | 1994-06-08 | 1997-09-04 | Bayerische Motoren Werke Ag | Method for determining the slip angle and / or the transverse slip of a wheel in motor vehicles |
JP3116738B2 (en) * | 1994-07-28 | 2000-12-11 | トヨタ自動車株式会社 | Vehicle behavior control device |
JPH0986377A (en) * | 1995-09-26 | 1997-03-31 | Aisin Seiki Co Ltd | Fluid pressure control device |
US5857160A (en) * | 1996-05-23 | 1999-01-05 | General Motors Corporation | Sensor-responsive control method and apparatus |
US5895433A (en) * | 1996-05-23 | 1999-04-20 | General Motors Corporation | Vehicle chassis system control method and apparatus |
US5667286A (en) * | 1996-05-29 | 1997-09-16 | General Motors Corporation | Brake control system |
US5720533A (en) * | 1996-10-15 | 1998-02-24 | General Motors Corporation | Brake control system |
US5941919A (en) * | 1996-10-16 | 1999-08-24 | General Motors Corporation | Chassis control system |
US5686662A (en) * | 1996-10-16 | 1997-11-11 | General Motors Corporation | Brake control system |
US5746486A (en) * | 1996-10-16 | 1998-05-05 | General Motors Corporation | Brake control system |
US5948030A (en) * | 1997-07-25 | 1999-09-07 | General Motors Corporation | Steering angle determaination method and apparatus |
SE511258C2 (en) * | 1998-01-27 | 1999-09-06 | Abb Daimler Benz Transp | Device for estimating lateral acceleration of a rail vehicle |
DE19958492A1 (en) * | 1999-12-04 | 2001-06-07 | Bosch Gmbh Robert | Method to determine unstable vehicle state; involves determine difference between measured transverse acceleration and transverse acceleration calculated from steering wheel angle and vehicle speed |
SE523023C2 (en) | 2000-04-12 | 2004-03-23 | Nira Dynamics Ab | Method and apparatus for determining by recursive filtration a physical parameter of a wheeled vehicle |
KR100715697B1 (en) * | 2002-01-11 | 2007-05-09 | 주식회사 만도 | Method for detecting travelling direction of the vehicle |
KR100771003B1 (en) * | 2003-11-25 | 2007-10-30 | 주식회사 만도 | The method for sensing forward/backward direction of vehicle by yaw-rate model |
DE102007036402A1 (en) * | 2007-07-27 | 2009-02-19 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Method for operating an electric machine, control unit and vehicle |
DE102007059136B4 (en) * | 2007-12-08 | 2014-01-09 | Ford Global Technologies, Llc | Method and device for condition estimation of vehicles |
CN108545081B (en) * | 2018-03-20 | 2020-04-28 | 北京理工大学 | Centroid slip angle estimation method and system based on robust unscented Kalman filtering |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3905811A1 (en) * | 1988-02-24 | 1989-09-07 | Nissan Motor | CONTROL DEVICE FOR FOUR-WHEEL STEERING |
DE3922528C1 (en) * | 1989-07-08 | 1990-07-19 | Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De | Detecting limit of ground adhesion of vehicle tyres - measuring steering arm torque comparing measured valve with reference and comparing difference to threshold value |
EP0415423A1 (en) * | 1989-08-31 | 1991-03-06 | Nissan Motor Co., Ltd. | Suspension control system with variable steering characteristics |
DE3939292A1 (en) * | 1989-11-28 | 1991-05-29 | Teves Gmbh Alfred | COMPOSITE CONTROL SYSTEM FOR MOTOR VEHICLES |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4030653A1 (en) * | 1990-09-28 | 1992-04-02 | Bosch Gmbh Robert | METHOD FOR DETERMINING THE SLOPING ANGLE AND / OR THE SIDE GUIDING FORCE OF A BRAKED VEHICLE |
JP2895198B2 (en) * | 1990-09-29 | 1999-05-24 | カヤバ工業株式会社 | Rear wheel steering angle control method |
-
1991
- 1991-07-12 DE DE4123053A patent/DE4123053C2/en not_active Expired - Fee Related
-
1992
- 1992-07-10 GB GB9214655A patent/GB2257551B/en not_active Expired - Fee Related
- 1992-07-13 JP JP4227748A patent/JPH05208608A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3905811A1 (en) * | 1988-02-24 | 1989-09-07 | Nissan Motor | CONTROL DEVICE FOR FOUR-WHEEL STEERING |
DE3922528C1 (en) * | 1989-07-08 | 1990-07-19 | Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De | Detecting limit of ground adhesion of vehicle tyres - measuring steering arm torque comparing measured valve with reference and comparing difference to threshold value |
EP0415423A1 (en) * | 1989-08-31 | 1991-03-06 | Nissan Motor Co., Ltd. | Suspension control system with variable steering characteristics |
DE3939292A1 (en) * | 1989-11-28 | 1991-05-29 | Teves Gmbh Alfred | COMPOSITE CONTROL SYSTEM FOR MOTOR VEHICLES |
Non-Patent Citations (1)
Title |
---|
JP 2-40504 A., In: Patents Abstracts of Japan, P-1040, April 23, 1990, Vol.14, No.199 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4067191A1 (en) * | 2021-03-29 | 2022-10-05 | Siemens Industry Software NV | Method and system for determining operating performance parameters of a device |
WO2022207212A1 (en) * | 2021-03-29 | 2022-10-06 | Siemens Industry Software Nv | Method and system for determining operating performance parameters of a device |
Also Published As
Publication number | Publication date |
---|---|
DE4123053A1 (en) | 1993-01-14 |
JPH05208608A (en) | 1993-08-20 |
GB2257551B (en) | 1995-04-05 |
GB2257551A (en) | 1993-01-13 |
GB9214655D0 (en) | 1992-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4123053C2 (en) | Method for determining at least one movement variable of a vehicle | |
EP0523397B1 (en) | Method for production of the yaw rate or the transversal speed | |
DE102011055339B4 (en) | METHOD FOR DETERMINING A TOOTHPIECE FOR A STEERING DEVICE AND STEERING DEVICE | |
DE10141425B4 (en) | Method for driving state-dependent steering assistance | |
DE60318674T2 (en) | Method and device for vehicle stabilization | |
DE19935805C2 (en) | Device for assessing the condition of a road surface and device for detecting the driving condition of a vehicle | |
DE4325413A1 (en) | Method for determining the behavior of characteristic quantities | |
DE3545715A1 (en) | DEVICE FOR CONTROLLING THE DRIVE IN MOTOR VEHICLES | |
EP4028294B1 (en) | Device and method for estimating a coefficient of friction of a road | |
WO2010034580A1 (en) | Method and device for determining a center of gravity of a motor vehicle | |
WO2005056358A1 (en) | Determination of dynamic axle loads and/or wheel loads of a wheel vehicle | |
DE112019007814T5 (en) | Steering hold determination device, steering control device and steering device | |
DE19649137A1 (en) | Regulating dynamic behaviour of motor vehicle e.g. around bend | |
DE112019007822T5 (en) | Steering hold determination device, steering control device and steering device | |
DE102004006387A1 (en) | System and method for controlling a vehicle with a yaw stability control | |
DE19958492A1 (en) | Method to determine unstable vehicle state; involves determine difference between measured transverse acceleration and transverse acceleration calculated from steering wheel angle and vehicle speed | |
DE10360728A1 (en) | Method and device for determining a vehicle condition | |
DE102007053815B4 (en) | Device for operating an active steering of a motor vehicle and method for operating an active steering a front axle of a motor vehicle | |
EP0502249B1 (en) | Method for detecting vehicle rotation rates and device for performing the method | |
DE4338587A1 (en) | Estimating gripping properties of road surface w.r.t. vehicle wheels - deriving slip limit value from wheel angle signal and slip signal from wheel speeds, using predefined relationship to derive grip value | |
EP0769701A1 (en) | Device for detecting inclination of a vehicle | |
EP3810464A1 (en) | Method for determining a corrected wheel radius on the basis of the measured yaw rate | |
DE10248432A1 (en) | Road inclination determination method in which the instantaneous inclination is determined from the difference between measurements of motor vehicle acceleration relative to the road and absolute vehicle acceleration | |
DE102007019698B4 (en) | Method and device for the electrically controlled assisting a driving movement of a vehicle and vehicle | |
DE19544691A1 (en) | System for determining the slip resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
8110 | Request for examination paragraph 44 | ||
8125 | Change of the main classification |
Ipc: B60G 21/10 |
|
D2 | Grant after examination | ||
8364 | No opposition during term of opposition | ||
8320 | Willingness to grant licences declared (paragraph 23) | ||
8339 | Ceased/non-payment of the annual fee |