DE4113263A1 - Copper@-coating of ceramic parts by electroless plating - used for metallisation of dielectric or coaxial resonators - Google Patents

Copper@-coating of ceramic parts by electroless plating - used for metallisation of dielectric or coaxial resonators

Info

Publication number
DE4113263A1
DE4113263A1 DE4113263A DE4113263A DE4113263A1 DE 4113263 A1 DE4113263 A1 DE 4113263A1 DE 4113263 A DE4113263 A DE 4113263A DE 4113263 A DE4113263 A DE 4113263A DE 4113263 A1 DE4113263 A1 DE 4113263A1
Authority
DE
Germany
Prior art keywords
molded part
copper
rinsing
minutes
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE4113263A
Other languages
German (de)
Inventor
Dieter Sattler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE4113263A priority Critical patent/DE4113263A1/en
Publication of DE4113263A1 publication Critical patent/DE4113263A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate

Abstract

A process is disclosed for coating the entire surface of shaped ceramic parts with a thin copper layer by electroless plating. Process comprises (1) cleaning the part at 60-80 deg.C with an alkaline cleaning agent, followed by rinsing; (2) etching the part to reduce the surface roughness, followed by rinsing; (3) hot-air drying; (4) treating the part at 24-26 deg.C for 13-15 minutes with a catalyst based on colloidal copper, which is used at 330-360 ml/1 (corresp. to 1.6-1.8 g/l Cu) at a pH of 3.5 +- 0.2, followed by rinsing; (5) chemical plating of the part with Cu at 18-20 deg.C for 20-25 minutes, using a copper bath with 3 +- 0.3 g/l copper, 16-18 g/l NaOH and 18 ml/1 of 37% formaldehyde soln., followed by rinsing; (6) drying and annealing the part at 140-200 deg.C for at least 30 minutes, followed by cooling under high vacuum. A variant of the process can also be used to provide an electroless gold film over an underlying nickel film on the ceramic part.

Description

Kleine Formteile aus keramischem Material, beispielsweise Zinn-Zirkon-Titanat-Keramik, wie sie beispielsweise für dielektrische Resonatoren oder in Röhrchenform für Koaxial­ resonatoren verwendet werden, müssen auf einem großen Teil ihrer Oberfläche mit Metall überzogen werden.Small molded parts made of ceramic material, for example Tin-zirconium-titanate ceramics, such as those used for dielectric resonators or tubular for coaxial resonators must be used on a large part be coated with metal on their surface.

Es ist üblich, Silberpasten manuell mittels eines Pinsels auf die Oberfläche dieser Formteile aufzutragen und anschließend die pastösen Bestandteile auszubrennen. Dabei tritt jedoch das Problem der Korrosionsanfälligkeit des Silbers auf, welches bisher noch nicht hinreichend gelöst werden konnte.It is common to apply silver pastes manually using a brush apply the surface of these molded parts and then burn out the pasty components. However, this occurs Problem of the susceptibility to corrosion of the silver, which could not yet be solved sufficiently.

Es ist ebenfalls bekannt, eine Kupferschicht chemisch abzu­ scheiden. Diese Abscheidung läßt sich sehr präzise durchfüh­ ren. Bei diesem Verfahren muß zum chemischen Abscheiden der Kupferschicht auf dem Formteil ein Katalysator verwendet wer­ den. Dazu dient üblicherweise eine Palladium enthaltende Lösung, in die das Substrat getaucht wird. Beim späteren Ein­ tauchen des Substrats in eine kupferhaltige Lösung scheidet sich das Kupfer an den Palladiumkeimen ab. Auf diese Weise entsteht eine homogene Kupferschicht. Aufgrund der Abfolge unterschiedlicher Metalle auf der Keramikoberfläche ergeben sich jedoch schlechtere elektrische Eigenschaften als bei reinem Kupfer.It is also known to chemically remove a copper layer divorce. This separation can be carried out very precisely ren. In this process, the chemical deposition of the Copper layer on the molding a catalyst who used the. A palladium-containing one is usually used for this Solution in which the substrate is dipped. Later on immersing the substrate in a copper-containing solution the copper on the palladium nuclei. In this way a homogeneous copper layer is created. Because of the sequence different metals on the ceramic surface electrical properties, however, are worse than in pure copper.

Es ist zwar ein Verfahren zum chemischen Abscheiden von Kupfer mit einem auf Kupferkolloid basierenden Katalysator bekannt, jedoch sind dort die Badparameter, wie beispielsweise Tempera­ tur und Komponentengehalte, auf das Beschichten von Seitenwän­ den von Durchkontaktierungen inßkupferkaschierten Leiter­ platten abgestimmt. It is a process for the chemical deposition of copper known with a catalyst based on copper colloid, however, there are the bath parameters, such as tempera structure and component content, on the coating of side walls the copper-clad conductor with plated-through holes plates matched.  

Die Anwendung dieses bekannten Verfahrens auf Formteile aus keramischem Material führt allerdings zu Blasenbildung oder fleckenartigen Fehlstellen in der Basiskupferschicht.The application of this known method to molded parts ceramic material, however, leads to blistering or spot-like defects in the base copper layer.

Der Erfindung liegt somit das Problem zugrunde, ein Verfahren zur ganzflächigen stromlosen Beschichtung von Formteilen aus keramischem Material mit einer dünnen Basiskupferschicht anzugeben. Auf dieser Basiskupferschicht soll in weiteren Schritten, ebenfalls durch chemische Abscheidung von Kupfer, eine Verstärkung der Metallisierung bis zu einer gewünschten Dicke und gegebenenfalls eine anschließende Veredelung erfol­ gen können.The invention is therefore based on the problem of a method for full-surface electroless coating of molded parts ceramic material with a thin base copper layer specify. On this base copper layer should be in more Steps, also by chemical deposition of copper, an increase in the metallization to a desired level Thickness and, if necessary, a subsequent finishing can.

Erfindungsgemäß wird das Problem durch ein Verfahren nach Patentanspruch 1 gelöst. Dabei wird das Formteil zunächst mit einem alkalischen Reinigungsmittel bei einer Temperatur zwischen 60°C und 80°C gereinigt. Um ein Verschleppen von Chemikalien in nachfolgende Bäder zu vermeiden, wird das Formteil anschließend gespült, vorzugsweise in einer Abfolge von drei Spritzspülungen, wobei nach jedem Spülvorgang das Formteil heißluftgetrocknet wird.According to the invention, the problem is solved by a method Claim 1 solved. The molded part is initially included an alkaline detergent at a temperature cleaned between 60 ° C and 80 ° C. To procrastinate Avoiding chemicals in subsequent baths will The molded part is then rinsed, preferably in a sequence of three spray rinses, with the after each rinse Molding is hot air dried.

Aufgrund der relativ rauhen Oberfläche des keramischen Form­ teils wird es danach in beispielsweise Tetrafluorborsäure unter Ultraschall gebeizt, um eine feinere Mikrorauhigkeit zu schaffen, wodurch eine wesentlich bessere Verankerung der aufzubringenden Basiskupferschicht bewirkt wird. Auch nach dem Beizen wird das Formteil entsprechend der oben beschriebenen Abfolge gespült.Because of the relatively rough surface of the ceramic shape partly it is then used, for example, in tetrafluoroboric acid pickled under ultrasound to achieve a finer microroughness create, which provides a much better anchorage of the Base copper layer to be applied is effected. Even after The molded part is pickled according to that described above Sequence rinsed.

Die Bekeimung der gereinigten und gebeizten Oberfläche des keramischen Formteils erfolgt mit einem Katalysator auf der Basis von kolloidal gebundenem Kupfer. Dies hat den Vorteil, daß der gesamte Schichtaufbau durchgehend - bis auf die Ver­ edelung - aus einem Metall besteht. Versuche mit Palladium­ bekeimung zeigten deutlich schlechtere elektrische Eigen­ schaften aufgrund der Abfolge unterschiedlicher Metalle an der Keramikoberfläche. Germination of the cleaned and pickled surface of the ceramic molding takes place with a catalyst on the Base of colloidally bound copper. This has the advantage that the entire layer structure continuously - except for the ver noble - consists of a metal. Try Palladium Germination showed significantly poorer electrical properties appear due to the sequence of different metals the ceramic surface.  

Nach einem weiteren Spülen des Formteils wird auf seiner Ober­ fläche in einem dünnabscheidenden, stromlosen Kupferbad eine ca. 0,5 µm dicke Kupferschicht, initiiert durch den vorher aufgebrachten Katalysator, abgeschieden. Diese Schicht ist unter definierten Bedingungen, beispielsweise für Temperatur und Komponentenkonzentrationen des Kupferbads, aufzubringen. Bei zu großen Abweichungen von diesen Bedingungen können sich Blasen bilden oder fleckenweise Fehlstellen in der Schicht auftreten. Die derart abgeschiedene Basiskupferschicht wird abschließend im Hochvakuum getempert und ebenfalls unter Vakuum abgekühlt, wodurch die Haftung dieser Schicht auf der Oberfläche der keramischen Formteile wesentlich verbessert wird.After a further rinse of the molding is on its upper surface in a thin-depositing, electroless copper bath approx. 0.5 µm thick copper layer, initiated by the previously applied catalyst, deposited. This layer is under defined conditions, for example for temperature and component concentrations of the copper bath. If the deviations from these conditions are too great, Form bubbles or spots in the layer occur. The base copper layer deposited in this way becomes finally annealed in a high vacuum and also under Vacuum cooled, causing the adhesion of this layer to the Surface of the ceramic molded parts improved significantly becomes.

Diese Basiskupferschicht kann nach einer nochmaligen Behand­ lung im Katalysatorbad durch Tauchen in ein stärker abschei­ dendes Kupferbad verstärkt werden. Auch bei diesem Kupferbad müssen bestimmte Bedingungen eingehalten werden, um eine ein­ wandfreie Schicht zu erhalten. In diesem Bad wird eine Abscheiderate von ca. 3 µm/Std. erreicht. Nach einer Stunde Beschichtungszeit nimmt die Abscheiderate stark ab; nach Bedarf erfolgt sofort eine erneute Katalysierung und Beschich­ tung in dem chemischen Kupferbad. Diese Sequenz kann bis zur gewünschten Schichtdicke wiederholt werden. Die gesamte Kupferschicht wird abschließend nochmals im Hochvakuum getem­ pert und anschließend abgekühlt.This base copper layer can be treated again in the catalyst bath by immersing it in a stronger deposit copper bath. Even with this copper bath certain conditions must be met in order to be a to obtain a wall-free layer. In this bathroom there will be one Deposition rate of approx. 3 µm / hour reached. After one hour The deposition rate decreases considerably; to If necessary, a new catalyzing and coating takes place immediately treatment in the chemical copper bath. This sequence can be up to desired layer thickness can be repeated. The whole Finally, the copper layer is tempered again in a high vacuum pert and then cooled.

Vor der Veredelung der Oberfläche wird das nunmehr metal­ lisierte Formteil in eine verdünnte Salzsäure getaucht, um eine möglichst reine Kupferoberfläche zu erhalten. Anschlie­ ßend wird das Formteil in ein Katalysatorbad, welches hoch­ aktive Nickelkeime auf der Kupferfläche abscheidet, getaucht und danach wird direkt in ein Bad zur stromlosen Nickelab­ scheidung übergegangen. Dies hat den Vorteil, auch hier das sonst übliche Fremdmetall Palladium als Katalysator zu vermei­ den. Typischerweise werden ca. 2 bis 3 µm Nickel als Diffu­ sionssperre zwischen Kupfer und Gold und als gut lötbare Schicht abgeschieden. Zum Schutz des Nickels wird direkt an­ schließend an die Vernickelung eine dünne Goldschicht von etwa 0,2 bis 0,3 µm Dicke abgeschieden. Sie dient als Korro­ sionsschutz, um die Lötbarkeit des Nickels zu erhalten. Ab­ schließend erfolgt ein Stabilisierungsausheizen bei ca. 200°C.Before the surface is refined, it becomes metal The molded part immersed in a dilute hydrochloric acid to get the purest possible copper surface. Then ßend the molded part in a catalyst bath, which is high deposits active nickel nuclei on the copper surface, immersed and then directly into a bath for electroless nickel divorce passed. This has the advantage, here too to avoid the usual foreign metal palladium as a catalyst the. Typically approx. 2 to 3 µm nickel is used as diffusion sion barrier between copper and gold and as easily solderable Layer deposited. To protect the nickel is directly on following the nickel plating a thin layer of gold from  deposited about 0.2 to 0.3 microns thick. It serves as a corro protection to maintain the solderability of the nickel. From then stabilization is baked out at approx. 200 ° C.

Der Verfahrensablauf zum Aufbringen der Basiskupferschicht und einer anschließenden Verstärkung soll nun anhand eines Beispiels mit Hilfe einer Tabelle verdeutlicht werden.The procedure for applying the base copper layer and a subsequent reinforcement should now be based on a Example with the help of a table.

Zum Reinigen wird der alkalische Reiniger "PC 325" der Fa. Lea Ronal verwendet.For cleaning, the alkaline cleaner "PC 325" from Lea Ronal used.

Der Katalysator "Catalyst M" der Fa. Lea Ronal wird dabei in einer Konzentration von 330 bis 360 (Optimum 350 entspr. 1,75 g/l Kupfer) ml/l bei einem pH-Wert von 3,5 ± 0,2 verwendet. The catalyst "Catalyst M" from Lea Ronal is used in a concentration of 330 to 360 (Optimum 350 corresponds to 1.75 g / l copper) ml / l at a pH of 3.5 ± 0.2 used.  

Das Kupferbad "Ronadep 25" der Firma Lea Ronal enthält 3 ±0,3 (Opt. 3) g/l Kupfer, 16-18 (Opt. 18) g/l Natrium­ hydroxyd und 16 bis 18 (Opt. 18) ml/l 37%ige Formaldehyd- Lösung.The "Ronadep 25" copper bath from Lea Ronal contains 3 ± 0.3 (opt. 3) g / l copper, 16-18 (opt. 18) g / l sodium hydroxide and 16 to 18 (opt. 18) ml / l 37% formaldehyde Solution.

Das Kupferbad "Ronadep 100" der Firma Lea Ronal enthält 3 ±0,3 (Opt. 3) g/l Kupfer, 10-12 (Opt. 11) g/l Natrium­ hydroxyd und 8 bis 12 (Opt. 10) ml/l 37%ige Formaldehyd- Lösung.The "Ronadep 100" copper bath from Lea Ronal contains 3 ± 0.3 (opt. 3) g / l copper, 10-12 (opt. 11) g / l sodium hydroxide and 8 to 12 (opt. 10) ml / l 37% formaldehyde Solution.

Claims (7)

1. Verfahren zur ganzflächigen, stromlosen Beschichtung von Formteilen aus keramischem Material mit einer dünnen Kupfer­ schicht mit folgenden Verfahrensschritten:
  • - Reinigen des Formteils bei einer Temperatur von 60°C bis 80°C mit einem alkalischen Reinigungsmittel, danach Spülen des Formteils,
  • - Beizen des Formteils zur Verfeinerung der Mikrorauhigkeit danach Spülen des Formteils,
  • - Trocknen des Formteils mit Heißluft,
  • - Katalysieren des Formteils bei einer Temperatur von 24°C bis 26°C während einer Dauer von 13 bis 15 Minuten mit einem auf Kupferkolloid basierenden Katalysator, der in einer Konzen­ tration von 330 bis 360 ml/l (entspr. 1,6-1,8 g/l Kupfer) bei einem pH-Wert von 3,5 ±0,2 verwendet wird, danach Spülen des Formteils,
  • - Chemisches Verkupfern des Formteils bei einer Temperatur von 18°C bis 20°C während einer Dauer von 20 bis 25 Minuten, wobei ein Kupferbad mit 3 ±0,3 g/l Kupfer, 16 bis 18 g/l Natriumhydroxid und 16 bis 18 ml/l 37%iger Formaldehydlösung verwendet wird, danach Spülen des Formteils,
  • - Trocknen und Tempern des Formteils bei einer Temperatur von 140°C bis 200°C während einer Dauer von mindestens 30 Minuten und anschließendes Abkühlen im Hochvakuum.
1. Process for the full-surface, currentless coating of molded parts made of ceramic material with a thin copper layer with the following process steps:
  • - cleaning the molded part at a temperature of 60 ° C to 80 ° C with an alkaline cleaning agent, then rinsing the molded part,
  • Pickling the molded part to refine the micro-roughness after rinsing the molded part,
  • - drying the molded part with hot air,
  • - Catalyzing the molded part at a temperature of 24 ° C to 26 ° C for a period of 13 to 15 minutes with a copper colloid-based catalyst, which is in a concentration of 330 to 360 ml / l (corresponds to 1.6-1 , 8 g / l copper) is used at a pH of 3.5 ± 0.2, after which the molded part is rinsed,
  • - Chemical copper plating of the molded part at a temperature of 18 ° C to 20 ° C for a period of 20 to 25 minutes, using a copper bath with 3 ± 0.3 g / l copper, 16 to 18 g / l sodium hydroxide and 16 to 18 ml / l 37% formaldehyde solution is used, then rinsing the molded part,
  • - Drying and tempering the molded part at a temperature of 140 ° C to 200 ° C for a period of at least 30 minutes and then cooling in a high vacuum.
2. Verfahren nach Anspruch 1, wobei das Reinigen des Formteils vorzugsweise bei 60°C bis 65°C erfolgt.2. The method according to claim 1, wherein the cleaning of the molded part preferably at 60 ° C to 65 ° C. 3. Verfahren nach einem der Ansprüche 1 oder 2, wobei das Beizen des Formteils mit Tetrafluorborsäure unter Ultraschall erfolgt.3. The method according to any one of claims 1 or 2, wherein the Pickling the molded part with tetrafluoroboric acid under ultrasound he follows. 4. Verfahren zur ganzflächigen, stromlosen Verstärkung der nach einem Verfahren gemäß einem der Ansprüche 1 bis 3 auf Formteile aus keramischem Material aufgebrachten Basiskupferschicht mit folgenden Verfahrensschritten:
  • - Katalysieren des Formteils bei einer Temperatur von 24°C bis 26°C während einer Dauer von 13 bis 15 Minuten mit einem auf Kupferkolloid basierenden Katalysator, der in einer Konzen­ tration von 330 bis 360 ml/l bei einem pH-Wert von 3,5 ±0,2 verwendet wird, danach Spülen des Formteils,
  • - Chemisches Verkupfern des Formteils bei einer Temperatur von 40°C bis 42°C während einer Dauer von 30 bis 35 Minuten, wobei ein Kupferbad mit 3 ±0,3 g/l Kupfer, 10 bis 12 g/l Natriumhydroxid und 8 bis 12 ml/l 37%iger Formaldehydlösung verwendet wird, danach Spülen des Formteils,
  • - Trocknen und Tempern des Formteils bei einer Temperatur von 140°C bis 200°C während einer Dauer von mindestens 30 Minuten und anschließendes Abkühlen im Hochvakuum.
4. A method for full-area, currentless reinforcement of the base copper layer applied to molded parts made of ceramic material by a method according to one of claims 1 to 3, with the following method steps:
  • - Catalysting the molded part at a temperature of 24 ° C to 26 ° C for a period of 13 to 15 minutes with a copper colloid-based catalyst, which is in a concentration of 330 to 360 ml / l at a pH of 3, 5 ± 0.2 is used, then rinsing the molded part,
  • - Chemical coppering of the molded part at a temperature of 40 ° C to 42 ° C for a period of 30 to 35 minutes, using a copper bath with 3 ± 0.3 g / l copper, 10 to 12 g / l sodium hydroxide and 8 to 12 ml / l 37% formaldehyde solution is used, then rinsing the molded part,
  • - Drying and tempering the molded part at a temperature of 140 ° C to 200 ° C for a period of at least 30 minutes and then cooling in a high vacuum.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Trocknen und Tempern des Formteils vorzugsweise bei einer Temperatur von 150° ±10°C erfolgt.5. The method according to any one of claims 1 to 4, wherein the Drying and tempering the molded part preferably at one Temperature of 150 ° ± 10 ° C takes place. 6. Verfahren zur chemischen Veredelung eines metallisierten Formteils aus keramischem Material mit Nickel und Gold, wobei das Formteil mittels eines Verfahrens gemäß einem der Ansprüche 1 bis 5 metallisiert wurde, mit folgenden Verfahrensschritten:
  • - Katalysieren des Formteils in einem hochaktive Nickelkeime abscheidenden Nickelbad, danach Spülen des Formteils,
  • - Chemisches Vernickeln des Formteils in einem üblichen Nickelbad, danach Spülen des Formteils,
  • - Chemisches Vergolden des Formteils in einem üblichen Goldbad, danach Spülen und Trocknen des Formteils.
6. A process for the chemical finishing of a metallized molded part made of ceramic material with nickel and gold, the molded part having been metallized by means of a process according to one of claims 1 to 5, with the following process steps:
  • Catalyzing the molded part in a highly active nickel bath which deposits nickel germs, then rinsing the molded part,
  • Chemical nickel plating of the molded part in a conventional nickel bath, then rinsing the molded part,
  • - Chemical gold plating of the molded part in a conventional gold bath, then rinsing and drying the molded part.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei das Spülen des Formteils jeweils bei Raumtemperatur und während einer Dauer von 4 bis 5 Minuten erfolgt.7. The method according to any one of claims 1 to 6, wherein the Rinsing the molded part at room temperature and during a duration of 4 to 5 minutes.
DE4113263A 1991-04-23 1991-04-23 Copper@-coating of ceramic parts by electroless plating - used for metallisation of dielectric or coaxial resonators Ceased DE4113263A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4113263A DE4113263A1 (en) 1991-04-23 1991-04-23 Copper@-coating of ceramic parts by electroless plating - used for metallisation of dielectric or coaxial resonators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4113263A DE4113263A1 (en) 1991-04-23 1991-04-23 Copper@-coating of ceramic parts by electroless plating - used for metallisation of dielectric or coaxial resonators

Publications (1)

Publication Number Publication Date
DE4113263A1 true DE4113263A1 (en) 1992-10-29

Family

ID=6430191

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4113263A Ceased DE4113263A1 (en) 1991-04-23 1991-04-23 Copper@-coating of ceramic parts by electroless plating - used for metallisation of dielectric or coaxial resonators

Country Status (1)

Country Link
DE (1) DE4113263A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118066C1 (en) * 2001-03-14 2002-10-31 Hubert Gerold Fastening device for a target device
EP1500638A1 (en) * 2003-07-21 2005-01-26 Abb Research Ltd. Laser irradiated metallised electroceramic
US7976892B2 (en) 2002-09-20 2011-07-12 Robert Bosch Gmbh Method for producing a conductive coating on an insulating substrate
CN111635261A (en) * 2020-06-30 2020-09-08 苏州蓝晶研材料科技有限公司 Ceramic conductive material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993799A (en) * 1974-10-04 1976-11-23 Surface Technology, Inc. Electroless plating process employing non-noble metal hydrous oxide catalyst
US4136216A (en) * 1975-08-26 1979-01-23 Surface Technology, Inc. Non-precious metal colloidal dispersions for electroless metal deposition
DE3421989A1 (en) * 1983-06-09 1984-12-13 Kollmorgen Technologies Corp., Dallas, Tex. METHOD FOR METALLIZING CERAMIC SURFACES
EP0150363A2 (en) * 1984-01-25 1985-08-07 Siemens Aktiengesellschaft Process for metallizing piezo-ceramic articles
DE3523956A1 (en) * 1985-07-04 1987-01-08 Licentia Gmbh METHOD FOR CHEMICALLY METALLIZING AN ELECTRICALLY POOR CONDUCTING BODY FROM AN INORGANIC MATERIAL
DE3833441A1 (en) * 1988-10-01 1990-04-05 Hoechst Ag Process for metallising aluminium oxide substrates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993799A (en) * 1974-10-04 1976-11-23 Surface Technology, Inc. Electroless plating process employing non-noble metal hydrous oxide catalyst
US4136216A (en) * 1975-08-26 1979-01-23 Surface Technology, Inc. Non-precious metal colloidal dispersions for electroless metal deposition
DE3421989A1 (en) * 1983-06-09 1984-12-13 Kollmorgen Technologies Corp., Dallas, Tex. METHOD FOR METALLIZING CERAMIC SURFACES
EP0150363A2 (en) * 1984-01-25 1985-08-07 Siemens Aktiengesellschaft Process for metallizing piezo-ceramic articles
DE3523956A1 (en) * 1985-07-04 1987-01-08 Licentia Gmbh METHOD FOR CHEMICALLY METALLIZING AN ELECTRICALLY POOR CONDUCTING BODY FROM AN INORGANIC MATERIAL
DE3833441A1 (en) * 1988-10-01 1990-04-05 Hoechst Ag Process for metallising aluminium oxide substrates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP 62-1 72 788 A (Derwent Abstr. No. 87-2 52 758/36) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118066C1 (en) * 2001-03-14 2002-10-31 Hubert Gerold Fastening device for a target device
US7976892B2 (en) 2002-09-20 2011-07-12 Robert Bosch Gmbh Method for producing a conductive coating on an insulating substrate
DE10243814B4 (en) * 2002-09-20 2018-05-30 Robert Bosch Gmbh Method for producing a conductive coating on an insulating substrate
EP1500638A1 (en) * 2003-07-21 2005-01-26 Abb Research Ltd. Laser irradiated metallised electroceramic
CN111635261A (en) * 2020-06-30 2020-09-08 苏州蓝晶研材料科技有限公司 Ceramic conductive material and preparation method thereof

Similar Documents

Publication Publication Date Title
DE3002166C2 (en)
DE69728812T2 (en) Method for increasing the solderability of a surface
EP0209748B1 (en) Process for chemically treating ceramic work pieces for subsequent metallization
DE2014285C3 (en) Process for preparing aluminum or aluminum alloy surfaces for electroless nickel plating
DE3110415C2 (en) Process for the manufacture of printed circuit boards
DE69824133T2 (en) Process for the production of multilayer printed circuit boards
DE2555257A1 (en) CATALYST SOLUTION
DE3343052C2 (en) Process for electroless gold plating of a metallized ceramic substrate
DE4113263A1 (en) Copper@-coating of ceramic parts by electroless plating - used for metallisation of dielectric or coaxial resonators
DE1521604A1 (en) Process for metallizing selected surface areas on substrates
DE2004133A1 (en) Process for the metallization of glass or ceramic carrier bodies
EP1478607B1 (en) Method for metallizing titanate-based ceramics
DE4113261C2 (en)
DE4113262C2 (en)
DE3345353A1 (en) Process and metallisation of a ceramic surface
DE2046708B2 (en) Process for the pretreatment of acrylonitrile-butadiene-styrene resins for electroless metal plating
EP0307585A2 (en) Process for the firmly adhering metallisation of an enamel
DE102005061799B4 (en) Process for the metallization of silver surfaces and its use
DE2448148C3 (en)
DE1814055A1 (en) Preliminary treatment process in particular - for dielectric carriers before currentless
DE4228442C1 (en) Electroless nickel@ coating of metallised ceramic - using treatment to activate only the metallised areas and avoid unwanted coating of ceramic areas
DE19627413C1 (en) Continuous, uniform metallisation of process materials
DE2854403C2 (en) Process for reactivation and further coating of nickel or nickel-phosphorus layers
DE1283073B (en) Process for the chemical deposition of firmly adhering alloy layers, e.g. B. nickel-phosphorus layers with stabilized electrical resistance values on electrically non-conductive substrates
DE3833441A1 (en) Process for metallising aluminium oxide substrates

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection