DE4108503A1 - Solar energy converter simultaneously gaining electrical and thermal power - uses successive heat sinks distributed to suit energy band levels - Google Patents

Solar energy converter simultaneously gaining electrical and thermal power - uses successive heat sinks distributed to suit energy band levels

Info

Publication number
DE4108503A1
DE4108503A1 DE4108503A DE4108503A DE4108503A1 DE 4108503 A1 DE4108503 A1 DE 4108503A1 DE 4108503 A DE4108503 A DE 4108503A DE 4108503 A DE4108503 A DE 4108503A DE 4108503 A1 DE4108503 A1 DE 4108503A1
Authority
DE
Germany
Prior art keywords
solar
arrangement according
solar cells
tandem
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE4108503A
Other languages
German (de)
Other versions
DE4108503C2 (en
Inventor
Adolf Prof Dr Goetzberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE4108503A priority Critical patent/DE4108503C2/en
Priority to ITRM920164A priority patent/IT1263210B/en
Publication of DE4108503A1 publication Critical patent/DE4108503A1/en
Application granted granted Critical
Publication of DE4108503C2 publication Critical patent/DE4108503C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0549Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising spectrum splitting means, e.g. dichroic mirrors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A solar energy conversion system has mirrors (2,3) that select different solar energy spectra. Low band energy is selected by a first stage (4) with successive stages handling medium and high band energy levels (5,6). Each stage has a heat sink (7,8,9) so that the temp. of a fluid reduces (T1,T2,T3). An alternative version has a tandem solar cell arrangement in which stages are stacked with input from a common cell. A further version has different band energy stages arranged in sequence on a pipe.

Description

Die Erfindung betrifft eine Solarenergieumwandlungseinrichtung gemäß dem Oberbegriff des Anspruchs 1, wie sie in Lit. /1/ beschrieben ist.The invention relates to a solar energy conversion device according to the preamble of claim 1, as described in Ref. / 1 /.

Stand der TechnikState of the art

Die Umwandlung von Sonnenenergie in elektrische Energie kann auf zwei Wegen er­ folgen.There are two ways to convert solar energy into electrical energy consequences.

  • a) Solarzellen:
    Diese Festkörperbauelemente wandeln Strahlungsenergie direkt in Strom um.
    a) Solar cells:
    These solid state components convert radiation energy directly into electricity.
  • b) Wärmekraftmaschinen in Verbindung mit konzentrierenden Kollektoren.b) heat engines in connection with concentrating collectors.

Mit beiden Techniken erreicht man maximal z. Zt. Umwandlungswirkungsgrade von etwa 20%.With both techniques a maximum of z. Currently conversion efficiency of about 20%.

Solarzellen sind in ihrem Wirkungsgrad durch die Bandenergie (Bandabstand, En­ ergielücke) des Halbleiters begrenzt. Mit einem einzelnen Halbleiter liegt die an das Sonnenspektrum angepaßte optimale Energie bei etwa 1,4 eV. Höhere Wir­ kungsgrade sind durch die Technik der Tandemzellen zu erwarten. Hierzu werden mehrere Solarzellen aus verschiedenen Halbleitermaterialien aufeinander gesta­ pelt dergestalt, daß das Material mit der höchsten Bandenergie an der direkt dem Sonnenlicht zugewandten Seite angeordnet ist und dann sinkende Werte der Bandenergie folgen mit der niedrigsten Bandenergie zuunterst. Bis heute wurde mit einer Serie von zwei Solarzellen und konzentriertem Sonnenlicht maximal 37% Umwandlungswirkungsgrad erzielt. Der Rest der Energie fällt als Wärme an. Bei diesen Zellen ist es erforderlich, für eine gute Wärmeabfuhr zu sorgen, da der Wirkungsgrad der Solarzellen temperaturabhängig ist.The efficiency of solar cells is determined by the band energy (band gap, En energy gap) of the semiconductor limited. With a single semiconductor that is optimal energy adapted to the solar spectrum at around 1.4 eV. Higher we Degree of efficiency can be expected from the technology of the tandem cells. To do this several solar cells made of different semiconductor materials stacked on top of each other pelt in such a way that the material with the highest band energy directly at the the side facing the sunlight and then falling values of the Band energy follows with the lowest band energy at the bottom. To date  with a series of two solar cells and concentrated sunlight maximum 37% Conversion efficiency achieved. The rest of the energy is generated as heat. At These cells require good heat dissipation, since the Efficiency of the solar cells is temperature-dependent.

Es sind auch Überlegungen bekanntgeworden, Solarzellen in Konzentratorsystemen bei gleichzeitiger Nutzung der abgeführten Wärme in einer Wärmekraftmaschine zu verwenden. Der Stand der Technik ist in Lit. /1/ beschrieben.Considerations have also become known, solar cells in concentrator systems with simultaneous use of the dissipated heat in a heat engine use. The prior art is described in Ref. / 1 /.

Das untersuchte System beruht auf einer Solarzelle, die auf einer Wärmesenke montiert ist. Die Wärme wird einer Carnotmaschine zugeführt, die ihrerseits elektrische Energie erzeugt. Somit addieren sich die beiden Wirkungsgrade zu einem relativ hohen Gesamtwirkungsgrad. Dieser ist durch das gegenläufige Tem­ peraturverhalten der beiden Komponenten begrenzt: Der Solarzellenwirkungsgrad sinkt mit steigender Temperatur, während gleichzeitig der Carnot-Wirkungsgrad ansteigt.The system examined is based on a solar cell, which is based on a heat sink is mounted. The heat is fed to a Carnot machine, which in turn generates electrical energy. The two efficiencies thus add up a relatively high overall efficiency. This is due to the opposite tem temperature behavior of the two components limited: The solar cell efficiency decreases with increasing temperature, while at the same time the Carnot efficiency increases.

Für die Optimierung ist es wichtig, daß die Temperaturabhängigkeit des Solar­ zellenwirkungsgrades stark von der Bandenergie abhängig ist: Mit steigender Bandenergie sinkt die Temperaturabhängigkeit des Wirkungsgrades. Andererseits wird mit steigender Bandenergie ein immer geringerer Teil des Sonnenspektrums absorbiert, was den Wirkungsgrad reduziert. In Ref. 1 wurde unter Berück­ sichtigung dieser Zusammenhänge ein maximaler Wirkungsgrad von 40% bei 700 K und einer Bandenergie von 1,6 eV sowie einer Lichtkonzentration von 1000 be­ stimmt. Der Wirkungsgrad kann noch erhöht werden, indem man eine Tandemzelle anstelle einer aus einem einzigen Halbleiter bestehenden Zelle verwendet. Dabei erweist sich, daß Halbleiter mit niedrigen Bandenergien nicht in Frage kommen, da sie bei hohen Temperaturen sehr niedrige Wirkungsgrade aufweisen.For optimization it is important that the temperature dependence of the solar cell efficiency is strongly dependent on the strip energy: With increasing Belt energy decreases the temperature dependence of the efficiency. On the other hand becomes an ever smaller part of the solar spectrum with increasing band energy absorbs, which reduces efficiency. In Ref. 1, under Berück considering these relationships, a maximum efficiency of 40% at 700 K. and a band energy of 1.6 eV and a light concentration of 1000 be Right. The efficiency can be increased even more by using a tandem cell instead of a single semiconductor cell. Here proves that semiconductors with low band energies are out of the question, because they have very low efficiencies at high temperatures.

Aufgabe der Erfindung ist es daher, den Wirkungsgrad der bekannten Solarenergieumwandlungseinrichtung zu erhöhen. Dies geschieht erfindungsgemäß durch die Solarenergieumwandlungseinrichtung nach Anspruchs 1. The object of the invention is therefore to improve the efficiency of the known Increase solar energy conversion device. This is done according to the invention by the solar energy conversion device according to claim 1.  

Der Grundgedanke der hier beschriebenen Erfindung ist es, die Kopplung zwischen Arbeitstemperatur der Wärmekraftmaschine und Betriebstemperatur der Solarzellen aufzuheben. Der Weg, der dazu eingeschlagen wird, ist folgender: Die Wärmekraftmaschine arbeitet zwischen einer hohen Temperatur TH und einer unteren Temperatur T0, wobei der Carnot-Wirkungsgrad ηcarn gegeben ist durchThe basic idea of the invention described here is to remove the coupling between the working temperature of the heat engine and the operating temperature of the solar cells. The way to do this is as follows: The heat engine operates between a high temperature T H and a lower temperature T 0 , the Carnot efficiency η carn being given by

dementsprechend muß ein Wärmeübertragungsmedium, meist eine Flüssigkeit, durch Sonnenenergie von T0 auf TH erhitzt werden. Gemäß der Erfindung wird die Erwärmung in verschiedenen Stufen vorgenommen, wobei die verschiedenen Temperaturstufen mit verschiedenen Solarzellenanordnungen ver­ knüpft sind, dergestalt, daß die niedrigeren Temperaturstufen mit Solarzellen von niedriger Bandenergie thermisch gekoppelt sind. Entsprechend liegt die So­ larzelle mit der höchsten Bandenergie auf der höchsten Temperatur. Somit fällt die gesamte Wärmeenergie bei der höchsten Temperatur TH an, während die Solar­ zellen bei abgestuften Temperaturen, die optimal den Bandabständen angepaßt sind, arbeiten.accordingly, a heat transfer medium, usually a liquid, must be heated from T 0 to T H by solar energy. According to the invention, the heating is carried out in different stages, the different temperature stages being linked to different solar cell arrangements in such a way that the lower temperature stages are thermally coupled to solar cells of low band energy. Accordingly, the solar cell with the highest band energy is at the highest temperature. Thus, the total thermal energy at the highest temperature T H , while the solar cells work at graded temperatures that are optimally adapted to the bandgap.

Für die praktische Ausführung dieses Konzeptes werden nun drei verschiedene Versionen angegeben. In allen Fällen handelt es sich um Anordnungen mit hoher Lichtkonzentration.For the practical implementation of this concept there are now three different ones Versions specified. In all cases, the orders are high Light concentration.

Anordnung A (Abb. 1)Arrangement A ( Fig. 1)

Das Solarspektrum wird nach Lit. /2/ in verschiedene Teile aufgespalten. Hierzu dienen spektral selektive Spiegel 2 und 3. Der langwellige Teil des Spektrums wird ausgesondert und auf eine darauf angepaßte Solarzelle niedriger Bandenergie 4 gelenkt. Der mittlere Teil des Spektrums wird durch Spiegel 3 auf Solarzelle 5 mit mittlerem Bandabstand gelenkt und das durchgehende kurzwellige Licht trifft auf Solarzelle 6 mit hohem Bandabstand. Diese Anordnung für Solar­ zellen ist bereits in /2/ beschrieben. Die zusätzlich thermische Energiegewin­ nung erfolgt über Wärmesenken 1, 8, 9, auf die Solarzellen mit gutem Wärmekontakt montiert sind. Die Wärmeübertragungsflüssigkeit, die die Wärmesenken sukzessive durchfließt, tritt mit T0 in Wärmesenke 7 ein, wird dort auf T1 erwärmt, sodann in Wärmesenke 8 auf T2 und tritt mit Temperatur T3 aus 9 aus. T3 = TH ist die Arbeitstemperatur der Wärmekraftmaschine, die das Arbeitsmedium auf T0 abkühlt. Bei dieser Anordnung ist darauf zu achten, daß die Wärmemengen, die in den ein­ zelnen Stufen abgegeben werden, den erforderlichen Temperaturdifferenzen bei kontinuierlichem Durchfluß des Mediums im Kreislauf 10 entsprechen. Abb. 1 er­ gibt nur eine beispielhafte Ausführung der Erfindung. Wichtig ist allein die Kombination der Solarzelle von niedriger Bandenergie mit der niedrigen Ar­ beitstemperatur etc. Die Anspaltung des Spektrums kann z. B. auch mit einem ho­ lographischen Element nach Lit./3/ anstelle eines spektral selektiven Spiegels erfolgen.The solar spectrum is split into different parts according to Ref. / 2 /. Spectrally selective mirrors 2 and 3 are used for this . The long-wave part of the spectrum is separated out and directed onto a solar cell of low band energy 4 which is adapted to it. The middle part of the spectrum is directed by mirror 3 onto solar cell 5 with a medium band gap and the continuous short-wave light strikes solar cell 6 with a high band gap. This arrangement for solar cells is already described in / 2 /. The additional thermal energy generation takes place via heat sinks 1 , 8 , 9 , on which solar cells with good thermal contact are mounted. The heat transfer liquid, which flows through the heat sinks successively, enters the heat sink 7 with T 0 , is heated there to T 1 , then in heat sink 8 to T 2 and exits at temperature T 3 from FIG . 9 . T 3 = T H is the working temperature of the heat engine that cools the working medium to T 0 . In this arrangement, care must be taken that the amounts of heat that are emitted in the individual stages correspond to the required temperature differences with a continuous flow of the medium in the circuit 10 . Fig. 1 he gives only an exemplary embodiment of the invention. The only important thing is the combination of the solar cell from low band energy with the low working temperature etc. The splitting of the spectrum can, for. B. also with a ho lographic element according to Ref./3/ instead of a spectrally selective mirror.

Anordnung B (Abb. 2)Arrangement B ( Fig. 2)

Diese Anordnung entspricht einer konventionellen Tandem-Solarzellenanordnung. Verschiedene Solarzellen 2, 3, 4 mit Eg2 <Eg3 <Eg4 (mit Eg2 = Bandabstand der Zelle 2 etc.) werden durch konzentriertes Sonnenlicht 1 bestrahlt. Solarzelle 4 filtert den kurzwelligen Teil des Lichts aus, die folgenden Solarzellen absor­ bieren jeweils den nachfolgenden, längerwelligen Teil. Im Gegensatz zu be­ kannten Tandemanordnungen, bei denen die Zellen direkt oder mit optischen Kopp­ lern miteinander verknüpft werden, sind hier optisch transparente Wärmeabfuhr­ elemente mit Durchflußkanälen 8 zwischen den Solarzellen angeordnet. Verbin­ dungsleitungen 9 und 10 verbinden die transparenten Wärmeabfuhrelemente. Um op­ tische Verluste zu minimieren, müssen die Zwischenelemente in ihrem Brechungs­ index gut an die Solarzellen angepaßt sein. Auch die in den Kanälen fließende Flüssigkeit muß transparent und im Brechungsindex an das Material der Elemente angepaßt sein. Anhand der Abb. 2 ist leicht zu erkennen, daß auch in dieser An­ ordnung die einzelnen Solarzellen auf verschiedenen Temperaturniveaus arbeiten und die gesamte frei werdende Wärme bei T3 abgenommen werden kann. This arrangement corresponds to a conventional tandem solar cell arrangement. Different solar cells 2 , 3 , 4 with Eg 2 <Eg 3 <Eg 4 (with Eg 2 = band gap of cell 2 etc.) are irradiated by concentrated sunlight 1 . Solar cell 4 filters out the short-wave part of the light, the following solar cells each absorb the following, longer-wave part. In contrast to be known tandem arrangements, in which the cells are linked directly or with optical couplers, optically transparent heat dissipation elements with flow channels 8 are arranged between the solar cells. Connection lines 9 and 10 connect the transparent heat dissipation elements. In order to minimize optical losses, the intermediate elements in their refractive index must be well adapted to the solar cells. The liquid flowing in the channels must also be transparent and match the refractive index to the material of the elements. Based on Fig. 2 it is easy to see that even in this arrangement, the individual solar cells work at different temperature levels and the total heat released at T 3 can be removed.

Anordnung C (Abb. 3)Arrangement C ( Fig. 3)

Diese Anordnung eignet sich besonders für linear konzentrierende Systeme, bei denen das Licht mit Hilfe eines Zylinderparabolspiegels auf einen Absorber, der als langes Rohr abgebildet ist, konzentriert wird. Das Wärmeträgermedium er­ wärmt sich bei Durchfluß durch den Absorber von T0 auf T4. Die einzelnen Ab­ schnitte des Absorberrohrs werden nun mit Tandemsolarzellenanordnungen 2, 3, 4 belegt. Abschnitt 2 besteht aus Solarzellen, deren Bandenergien von hohen bis zu niedrigen Werten reichen, wobei die Bedingung ist, daß die unterste Solar­ zelle mit dem niedrigsten Bandabstand bei T1 noch einen guten Wirkungsgrad ha­ ben soll. In den folgenden Stufen wird mit steigender Temperatur laufend weni­ ger Energie photovoltaisch umgewandelt. Die Tandemzelle 3 endet unten mit einem höheren Bandabstand als 2. 4 stellt in diesem Beispiel eine Zelle aus nur einem Material mit hohem Bandabstand dar. Falls sehr hohe Austrittstemperaturen ange­ strebt werden, kann ein Abschnitt 5 nur als thermischer Absorber ausgebildet sein.This arrangement is particularly suitable for linearly concentrating systems in which the light is concentrated on an absorber, which is shown as a long tube, with the aid of a parabolic cylinder mirror. The heat transfer medium heats up when it flows through the absorber from T 0 to T 4 . From the individual sections of the absorber tube are now covered with tandem solar cell arrays 2 , 3 , 4 . Section 2 consists of solar cells whose band energies range from high to low values, the condition being that the lowest solar cell with the lowest band gap at T 1 should still have good efficiency. In the following stages, as the temperature rises, less and less energy is converted photovoltaically. The tandem cell 3 ends at the bottom with a higher band gap than 2 . In this example, 4 represents a cell made of only one material with a high band gap. If very high outlet temperatures are desired, a section 5 can only be designed as a thermal absorber.

Beispielhafte AusführungExemplary execution

Für die Solarzellen eignet sich besonders das System Alx Ga1 -x As, bei dem der Bandabstand in weiten Grenzen durch den Parameter x variiert werden kann. Eine dreistufige Tandemzelle, die schon realisiert wurde, besteht aus InAs (Eg = 1.0 eV) GaAs (Eg = 1,42 eV) und AlGaAs (Eg = 1,93 eV). Weitere mögliche Halbleiter sind Si (1.12 eV) und GaP (2.25 eV).The system Al x Ga 1 -x As is particularly suitable for the solar cells, in which the band gap can be varied within wide limits using the parameter x. A three-stage tandem cell, which has already been implemented, consists of InAs (Eg = 1.0 eV) GaAs (Eg = 1.42 eV) and AlGaAs (Eg = 1.93 eV). Other possible semiconductors are Si (1.12 eV) and GaP (2.25 eV).

Die Arbeitstemperaturen können mit Hilfe eines Computerprogramms optimiert werden. Eine beispielhafte Serie istThe working temperatures can be optimized with the help of a computer program will. An exemplary series is

T1 = 400 K; T2 = 470 K; T4 = 550 K.T 1 = 400 K; T 2 = 470 K; T 4 = 550 K.

Für diesen Fall ergibt sich bei optimalen Solarzellenparametern und einem realistischen Wirkungsgrad der Wärmekraftmaschine von 1/2 des Carnot- Wirkungsgrades ein Gesamtumwandlungswirkungsgrad von mehr als 50%. In this case, with optimal solar cell parameters and one realistic efficiency of the heat engine of 1/2 of the Carnot Efficiency a total conversion efficiency of more than 50%.  

Literaturliterature

(1) A. Goetzberger und W. Wettling, 7. Int. Sonnenforum 1990, S. 1335
(2) R. t. Moon et al., Conf. Record, 13th IEEE Photovoltaic Specialists Conf. 1978, p. 822
(3) W. H. Bloss et al. Proc. 3rd EG Photovoltaic Energy Gonf. 1980, p. 401.
(1) A. Goetzberger and W. Wettling, 7th Int. Sonnenforum 1990, p. 1335
(2) R. t. Moon et al., Conf. Record, 13th IEEE Photovoltaic Specialists Conf. 1978, p. 822
(3) WH Bloss et al. Proc. 3rd EG Photovoltaic Energy Gonf. 1980, p. 401.

Claims (7)

1. Solarenergieumwandlungseinrichtung zur gleichzeitigen Gewinnung von elektrischer und thermischer Energie, bestehend aus einer Vorrichtung zur optischen Konzentration des Sonnenlichts, Solarzellen und Wärmesenken für diese Solarzellen, dadurch gekennzeichnet, daß die Erwärmung eines die Wärmesenken durchfließenden Wärmeträgermediums in Stufen geschieht und daß die Verteilung der Solarzellen auf die Temperaturstufen so erfolgt, daß steigende Temperaturen mit Tandemsolarzellen bestehend aus mindestens einer Solarzelle so gekoppelt sind, daß die Bandenergien im gleichen Sinne wie die Temperaturen ansteigen.1. Solar energy conversion device for the simultaneous generation of electrical and thermal energy, consisting of a device for the optical concentration of sunlight, solar cells and heat sinks for these solar cells, characterized in that the heating of a heat transfer medium flowing through the heat sinks occurs in stages and that the distribution of the solar cells on the temperature levels are such that rising temperatures are coupled with tandem solar cells consisting of at least one solar cell so that the band energies rise in the same sense as the temperatures. 2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß das konzentrierte Sonnenlicht durch spektral selektive Spiegel auf einzelne Solarzellen mit verschiedenen, an die spektralen Ausschnitte angepaßten Bandabständen gelenkt wird.2. Arrangement according to claim 1, characterized in that the concentrated Sunlight through spectrally selective mirrors on individual solar cells different band gaps adapted to the spectral sections is directed. 3. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Aufteilung des Sonnenspektrums durch ein holographisches Element erfolgt. 3. Arrangement according to claim 1, characterized in that the division of the Sun spectrum is done by a holographic element.   4. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß zwischen die Einzelzellen eines Tandemstapels optisch transparente Elemente mit Durchflußkanälen für ein Wärmeträgermedium eingefügt sind.4. Arrangement according to claim 1, characterized in that between the Single cells of a tandem stack with optically transparent elements Flow channels are inserted for a heat transfer medium. 5. Anordnung nach Anspruch 1 und 5, dadurch gekennzeichnet, daß das die Kanäle durchfließende Medium transparent ist und daß es im Brechungsindex den transparenten Elementen nahe ist.5. Arrangement according to claim 1 and 5, characterized in that the Medium flowing through channels is transparent and that it is in the refractive index is close to the transparent elements. 6. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß ein linear von einem Wärmeträgermedium durchflossenes Absorberrohr mit verschiedenen Tandemzellen belegt ist, dergestalt, daß die Zahl der Einzelzellen pro Tandemzelle mit steigender Temperatur abnimmt.6. Arrangement according to claim 1, characterized in that a linear of absorber tube with various heat flow medium Tandem cells is occupied in such a way that the number of individual cells per Tandem cell decreases with increasing temperature. 7. Anordnung nach Anspruch 1 und 6, dadurch gekennzeichnet, daß die höchste Temperaturstufe als reiner thermischer Absorber ausgebildet ist.7. Arrangement according to claim 1 and 6, characterized in that the highest Temperature level is designed as a pure thermal absorber.
DE4108503A 1991-03-15 1991-03-15 Solar energy conversion device for the simultaneous generation of electrical and thermal energy Expired - Fee Related DE4108503C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4108503A DE4108503C2 (en) 1991-03-15 1991-03-15 Solar energy conversion device for the simultaneous generation of electrical and thermal energy
ITRM920164A IT1263210B (en) 1991-03-15 1992-03-11 SOLAR ENERGY TRANSFORMATION PLANT.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4108503A DE4108503C2 (en) 1991-03-15 1991-03-15 Solar energy conversion device for the simultaneous generation of electrical and thermal energy

Publications (2)

Publication Number Publication Date
DE4108503A1 true DE4108503A1 (en) 1992-09-17
DE4108503C2 DE4108503C2 (en) 1994-07-14

Family

ID=6427407

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4108503A Expired - Fee Related DE4108503C2 (en) 1991-03-15 1991-03-15 Solar energy conversion device for the simultaneous generation of electrical and thermal energy

Country Status (2)

Country Link
DE (1) DE4108503C2 (en)
IT (1) IT1263210B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747325A1 (en) * 1997-10-27 1999-04-29 Sebastian Schrenk Solar cell module with integrated cooling
DE19902650A1 (en) * 1999-01-24 2000-07-27 Mueller Gerald Patrick Process for the recovery of solar energy comprises using a thin layer solar cell and removing thermal energy using an air heat exchanger or a water heat exchanger below the cell
DE102004021028A1 (en) * 2004-01-10 2005-08-04 Julian Donner Solar generator has transparent solar cells with rear tube or hose heat exchange system having a flowing heat transfer medium
DE102004005050A1 (en) * 2004-01-30 2005-08-25 Detlef Schulz Method for energy conversion of solar radiation into electricity and heat with color-selective interference filter mirrors and a device of a concentrator solar collector with color-selective mirrors for the application of the method
DE102006059417A1 (en) * 2006-12-15 2008-06-26 Solartec Ag Photovoltaic device with holographic structure for deflecting incident solar radiation, as well as manufacturing method thereof
WO2008091291A2 (en) * 2006-07-28 2008-07-31 University Of Delaware High efficiency solar cell with a silicon scavanger cell
DE102007023583A1 (en) * 2007-05-21 2008-11-27 Solartec Ag Photovoltaic device with optical elements for deflecting incident solar radiation in a given spectral range on laterally mounted solar cells on the optical elements
DE102007052338A1 (en) * 2007-11-02 2009-05-07 Rev Renewable Energy Ventures, Inc. Photovoltaic installation has multiple level mirrors for concentration of sunlight on concentrator module with photovoltaic element, where mirrors are aligned together in form of Fresnel mirror field in parallel manner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19634405C2 (en) * 1996-08-26 2003-02-20 Hne Elektronik Gmbh & Co Satel solar module
DE19837189C1 (en) * 1998-08-17 1999-09-09 Hne Elektronik Gmbh & Co Satel Solar energy conversion device for providing heat and electrical energy
DE102009060786A1 (en) 2009-12-21 2011-06-22 Rikker Holzbau GmbH, 71563 Mounting system for photovoltaic modules with integrated thermal solar system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268709A (en) * 1978-07-03 1981-05-19 Owens-Illinois, Inc. Generation of electrical energy from sunlight, and apparatus
DE3005914A1 (en) * 1980-02-16 1981-09-10 Werner H. Prof. Dr.-Ing. 7065 Winterbach Bloss SOLAR CELL ARRANGEMENT
US4395582A (en) * 1979-03-28 1983-07-26 Gibbs & Hill, Inc. Combined solar conversion
DE2855553C2 (en) * 1978-12-22 1989-01-05 Sieghard Dipl.-Phys. Dr. 8000 Muenchen De Gall

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268709A (en) * 1978-07-03 1981-05-19 Owens-Illinois, Inc. Generation of electrical energy from sunlight, and apparatus
DE2855553C2 (en) * 1978-12-22 1989-01-05 Sieghard Dipl.-Phys. Dr. 8000 Muenchen De Gall
US4395582A (en) * 1979-03-28 1983-07-26 Gibbs & Hill, Inc. Combined solar conversion
DE3005914A1 (en) * 1980-02-16 1981-09-10 Werner H. Prof. Dr.-Ing. 7065 Winterbach Bloss SOLAR CELL ARRANGEMENT

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. Goetsberger und W. Wettling, "Kom- binierter Wirkungsgrad von PV - Konzentrator- zelle und Wärmekraftmaschine", in: 7. Int. Sonnenforum 1990, S. 1335 *
MOON, R.C. et al.: Conf. Record, 13. IEEE Photovoltaie Specialists Conf. 1978, S. 822 *
US-Z: Solar Energy, Bd. 35, 1985, S. 247-258 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747325A1 (en) * 1997-10-27 1999-04-29 Sebastian Schrenk Solar cell module with integrated cooling
DE19902650A1 (en) * 1999-01-24 2000-07-27 Mueller Gerald Patrick Process for the recovery of solar energy comprises using a thin layer solar cell and removing thermal energy using an air heat exchanger or a water heat exchanger below the cell
DE102004021028A1 (en) * 2004-01-10 2005-08-04 Julian Donner Solar generator has transparent solar cells with rear tube or hose heat exchange system having a flowing heat transfer medium
DE102004005050A1 (en) * 2004-01-30 2005-08-25 Detlef Schulz Method for energy conversion of solar radiation into electricity and heat with color-selective interference filter mirrors and a device of a concentrator solar collector with color-selective mirrors for the application of the method
WO2008091291A2 (en) * 2006-07-28 2008-07-31 University Of Delaware High efficiency solar cell with a silicon scavanger cell
WO2008091291A3 (en) * 2006-07-28 2009-03-12 Univ Delaware High efficiency solar cell with a silicon scavanger cell
DE102006059417A1 (en) * 2006-12-15 2008-06-26 Solartec Ag Photovoltaic device with holographic structure for deflecting incident solar radiation, as well as manufacturing method thereof
DE102007023583A1 (en) * 2007-05-21 2008-11-27 Solartec Ag Photovoltaic device with optical elements for deflecting incident solar radiation in a given spectral range on laterally mounted solar cells on the optical elements
DE102007052338A1 (en) * 2007-11-02 2009-05-07 Rev Renewable Energy Ventures, Inc. Photovoltaic installation has multiple level mirrors for concentration of sunlight on concentrator module with photovoltaic element, where mirrors are aligned together in form of Fresnel mirror field in parallel manner

Also Published As

Publication number Publication date
IT1263210B (en) 1996-08-05
DE4108503C2 (en) 1994-07-14
ITRM920164A1 (en) 1993-09-11
ITRM920164A0 (en) 1992-03-11

Similar Documents

Publication Publication Date Title
DE2855553C2 (en)
DE2537099A1 (en) SOLAR CELL UNIT
DE4108503C2 (en) Solar energy conversion device for the simultaneous generation of electrical and thermal energy
DE2723508A1 (en) PHOTOCELL ARRANGEMENT
DE102007052338A1 (en) Photovoltaic installation has multiple level mirrors for concentration of sunlight on concentrator module with photovoltaic element, where mirrors are aligned together in form of Fresnel mirror field in parallel manner
EP1835547B1 (en) Photovoltaic module
DE2629641A1 (en) DEVICE FOR THE CONVERSION OF LIGHT ENERGY INTO HEAT ENERGY BY LIGHT CONCENTRATION WITH THE HELP OF FLUORESCENT LAYERS
EP2139046A1 (en) Photovoltaic module
DE202014011603U1 (en) solar cell array
DE1021097B (en) Barrier layer photo element for converting solar radiation into electrical energy
DE2620115A1 (en) Solar cell converting light into electric power - has light concentrator with fluorescent centres in transparent layer with specified refractive index
DE102010022080A1 (en) Photovoltaic system for generating electrical energy and photovoltaic device for generating electrical energy
DE4339547A1 (en) Photovoltaic electricity generation by solar cells
DE102008010012A1 (en) Photovoltaic device with at least one at least one light converter layer having optical element
DE112017001985T5 (en) PHOTOVOLTAIC SYSTEM WITH UNIFORM COOLED PHOTOVOLTAIC CELLS
DE3109284A1 (en) Solar power station with photovoltaic cells
EP2162684A2 (en) Photovoltaic device with holographic structure for deflecting incident solar radiation, and method for producing it
DE102007023583A1 (en) Photovoltaic device with optical elements for deflecting incident solar radiation in a given spectral range on laterally mounted solar cells on the optical elements
WO2010127661A2 (en) Solar system for generating electric and thermal energy
DE3140974A1 (en) Photoelectric solar module
WO2008145111A2 (en) Photovoltaic device comprising ultra-thin optical elements, and corresponding method of production
DE102010019782A1 (en) Arrangement for energy generation from solar radiation, has solar cell irradiated with sunlight, which converts sunlight directly into electric current, which is directly supplied to consumer or buffered in accumulator
DE2854609A1 (en) SOLAR POWER PLANT WITH PHOTOVOLTAIC CELLS
DE202007001865U1 (en) Solar cell for semiconductor industry, has solar chip assembly arranged in housing below collecting unit for absorbing light bundled by unit and for converting light into electric energy, and radiator discharging heat produced by assembly
AT508646B1 (en) DEVICE FOR CONVERTING SUNBURNING ENERGY

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee