DE3841541A1 - Verfahren zur herstellung einer mehrschichtigen lackierung, wasserverduennbarer lack, verfahren zur herstellung von vernetzten polymermikroteilchen und vernetzte polymermikroteilchen - Google Patents

Verfahren zur herstellung einer mehrschichtigen lackierung, wasserverduennbarer lack, verfahren zur herstellung von vernetzten polymermikroteilchen und vernetzte polymermikroteilchen

Info

Publication number
DE3841541A1
DE3841541A1 DE3841541A DE3841541A DE3841541A1 DE 3841541 A1 DE3841541 A1 DE 3841541A1 DE 3841541 A DE3841541 A DE 3841541A DE 3841541 A DE3841541 A DE 3841541A DE 3841541 A1 DE3841541 A1 DE 3841541A1
Authority
DE
Germany
Prior art keywords
weight
ethylenically unsaturated
component
mixture
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE3841541A
Other languages
English (en)
Inventor
Stefan Dr Wieditz
Juergen Dr Niemann
Arnold Dr Dobbelstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Farben und Fasern AG
Original Assignee
BASF Lacke und Farben AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Lacke und Farben AG filed Critical BASF Lacke und Farben AG
Priority to DE3841541A priority Critical patent/DE3841541A1/de
Priority to PCT/EP1989/001435 priority patent/WO1990006187A1/de
Priority to ZA899022A priority patent/ZA899022B/xx
Priority to AU46441/89A priority patent/AU4644189A/en
Priority to CA002004987A priority patent/CA2004987A1/en
Publication of DE3841541A1 publication Critical patent/DE3841541A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/53Base coat plus clear coat type
    • B05D7/532Base coat plus clear coat type the two layers being cured or baked together, i.e. wet on wet
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer mehrschichtigen Lackierung auf einer Substratoberfläche, bei dem
  • (1) ein pigmentierter wäßriger Basislack, der durch Emulsionspolymerisation von
    • (A) ethylenisch ungesättigten Monomeren, die eine ethylenisch ungesättigte Gruppe im Molekül enthalten oder einem Gemisch aus solchen Monomeren und
    • (B) einem ethylenisch ungesättigten Monomer, das zwei ethylenisch ungesättigte Gruppen im Molekül enthält
  • erhältliche vernetzte Polymermikroteilchen enthält, auf die Substratoberfläche aufgebracht wird
  • (2) aus der in Stufe (1) aufgebrachten Zusammensetzung ein Polymerfilm gebildet wird
  • (3) auf der so erhaltenen Basisschicht ein transparenter Decklack aufgebracht wird und anschließend
  • (4) die Basisschicht zusammen mit der Deckschicht eingebrannt wird.
Die Erfindung betrifft auch einen wasserverdünnbaren Lack, der durch Emulsionspolymerisation von
  • (A) ethylenisch ungesättigten Monomeren, die eine ethylenisch ungesättigte Gruppe im Molekül enthalten oder einem Gemisch aus solchen Monomeren und
  • (B) einem ethylenisch ungesättigten Monomer, das zwei ethylenisch ungesättigte Gruppen im Molekül enthält
erhältliche vernetzte Polymermikroteilchen enthält. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von vernetzten Polymermikroteilchen sowie nach diesem Verfahren hergestellte vernetzte Polymermikroteilchen.
Das oben beschriebene Verfahren zur Herstellung mehrschichtiger Lackierungen ist aus der EP-B 38 127 bekannt und wird insbesondere zur Herstellung von Metalleffektlackierungen auf Automobilkarosserien eingesetzt.
Wenn in dem in Rede stehenden Verfahren wäßrige Basislacke eingesetzt werden, die durch Emulsionspolymerisation von ethylenisch ungesättigten Monomeren erhältliche vernetzte Polymermikroteilchen enthalten (vgl. EP-B 38 127, Spalte 4, Zeilen 51 bis 60, Spalte 20, Zeile 40 bis Spalte 25, Zeile 50), dann werden Lackierungen erhalten, die hinsichtlich Glanz und Haftungseigenschaften verbesserungsbedürftig sind.
Die der vorliegenden Erfindung zugrundeliegende Aufgabenstellung besteht in der Bereitstellung von pigmentierten wäßrigen Basislacken, die durch Emulsionspolymerisation von
  • (A) ethylenisch ungesättigten Monomeren, die eine ethylenisch ungesättigte Gruppe im Molekül enthalten oder einem Gemisch aus solchen Monomeren und
  • (B) einem ethylenisch ungesättigten Monomer, das zwei ethylenisch ungesättigten Gruppen im Molekül enthält
erhältliche vernetzte Polymermikroteilchen enthalten und mit denen mehrschichtige Lackierungen mit verbessertem Glanz und verbesserten Haftungseigenschaften erhalten werden.
Diese Aufgabe wird überraschenderweise durch die Bereitstellung von Basislacken gelöst, die vernetzte Polymermikroteilchen enthalten, die erhältlich sind, indem als Komponente (B) 0,5 bis 2,4, vorzugsweise 1,0 bis 2,0, besonders bevorzugt 1,5 Gew.-% Allylmethacrylat oder 1,5 bis 8,0, vorzugsweise 2,0 bis 5,0, besonders bevorzugt 4,0 Gew.-% Ethy­ lenglykoldi(meth)acrylat oder 1,5 bis 8,0, vorzugsweise 2,0 bis 5,0, besonders bevorzugt 4,0 Gew.-% Butandiol(meth)acrylat oder 1,5 bis 10,0, vorzugsweise 3,0 bis 7,0, besonders bevorzugt 5,0 Gew.-% Hexandioldi(meth)acrylat oder 0,5 bis 6,0, vorzugsweise 1,0 bis 4,0, besonders bevorzugt 2,0 Gew.-% Divinylbenzol eingesetzt werden, wobei sich die Gew.-%-Angaben auf die gesamte Menge an eingesetzter Komponente (A) und eingesetzter Komponente (B) (Menge an eingesetzter Komponente (A) + Menge an eingesetzter Komponente (B) = 100 Gew.-%) beziehen.
Die erfindungsgemäß eingesetzten vernetzten Polymermikroteilchen sind durch Emulsionspolymerisation der Komponenten (A) und (B) in einem wäßrigen Medium in den bekannten Apparaturen, beispielsweise in einem Rührkessel mit Heiz- und Kühlvorrichtung, herstellbar. Die Zugabe der Monomeren kann in der Weise erfolgen, daß eine Lösung aus dem gesamten Wasser, dem Emulgator und einem Teil des Initiators vorgelegt wird und das Monomer bzw. Monomerengemisch und getrennt davon, aber parallel dazu der Rest des Initiators bei der Polymerisationstemperatur langsam zugegeben wird. Es ist jedoch auch möglich, einen Teil des Wassers und des Emulgators vorzulegen und aus dem Rest des Wassers und des Emulgators und aus dem Monomer bzw. Monomerengemisch eine Voremulsion herzustellen, die bei der Polymerisationstemperatur langsam zugegeben wird, wobei der Initiator wiederum getrennt zugegeben wird.
Das Emulsionspolymerisationsverfahren ist ein schon lange Zeit bekanntes Verfahren (vgl. z. B. Chemie, Physik und Technologie der Kunststoffe in Einzeldarstellungen, Dispersionen synthetischer Hochpolymerer, Teil I von F. Hölscher, Springer Verlag, Berlin, Heidelberg, New York, 1969).
Wenn die zur Herstellung der erfindungsgemäß einzusetzenden vernetzten Polymermikroteilchen durchzuführende Emulsionspolymerisation mit einem Redox Initiatorsystem, bestehend aus H₂O₂ und einem nicht-ionischen, wasserlöslichen Reduktionsmittel (wie in der EP-A 1 07 300 beschrieben) initiiert wird, dann werden Basislacke erhalten, mit denen Mehrschichtlackierungen mit hoher Belastbarkeit im Schwitzwasserkonstantklima hergestellt werden können.
Als Beispiele für einsetzbare nicht-ionische, wasserlösliche Reduktionsmittel werden genannt: Ascorbinsäure, Schwefelverbindungen, wie Thioharnstoff und Mercaptine, Amine, wie Hydroxylamin, Triethylamin und Ethanolamin, reduzierende Säuren, wie Glykolsäure, Weinsäure und Diphenylglykolsäure und Benzylalkohol. Bevorzugt wird Ascorbinsäure eingesetzt.
Die in Rede stehende Emulsionspolymerisation kann auch durch übliche Initiatoren, wie z. B. Perverbindungen, wie Ammoniumpersulfat, Kaliumpersulfat, Ammonium- oder Alkalimetallperoxydiphosphat und organische Peroxide, wie z. B. Benzoylperoxid, organische Perester, wie Perisopivalat, zum Teil in Kombination mit Reduktionsmitteln, wie Natriumdisulfit, Hydrazin, Hydroxylamin und katalytische Mengen Beschleuniger, wie Eisen-, Kobalt-, Cer- und Vanadylsalze initiiert werden.
Als Emulgator kann ein anionischer Emulgator allein oder im Gemisch eingesetzt werden.
Beispiele für anionische Emulgatoren sind die Alkalisalze von Schwefelsäurehalbestern von Alkylphenolen oder Alkoholen, ferner die Schwefelsäurehalbester von oxethylierten Alkylphenolen oder oxethylierten Alkoholen, vorzugsweise die Alkalisalze des Schwefelsäurehalbesters eines mit 4-5 Mol Ethylenoxid pro Mol umgesetzten Nonylphenols, Alkyl- oder Arylsulfonats, Natriumaurylsulfat, Natriumlaurylethoxylatsulfat und sekundäre Natriumalkansulfonate, deren Kohlenstoffkette 8-20 Kohlenstoffatome enthält. Die Menge des anionischen Emulgators beträgt 0,1-5,0 Gew.-%, bezogen auf die Monomeren, vorzugsweise 0,5-3,0 Gew.-%. Ferner kann zur Erhöhung der Stabilität der wäßrigen Dispersionen zusätzlich ein nichtionischer Emulgator vom Typ eines ethoxylierten Alkylphenols oder Fettalkohols, z. B. ein Additionsprodukt von 1 Mol Nonylphenol und 4-30 Mol Ethylenoxid in Mischung mit dem anionischen Emulgator eingesetzt werden.
Es ist bevorzugt, die Menge an eingesetztem ionischen Emulgator so gering wie möglich zu halten.
Die Emulsionspolymerisation wird im allgemeinen bei Temperaturen von 20 bis 100°C, vorzugsweise 40 bis 90°C durchgeführt.
Als Komponente (A) wird vorzugsweise ein Gemisch aus
  • (a1) 60 bis 99, vorzugsweise 70 bis 90 Gew.-% eines aliphatischen oder cycloaliphatischen Esters der Acrylsäure oder Methaacrylsäure oder eines Gemisches aus solchen Estern
  • (a2) 0 bis 5, vorzugsweise 2 bis 4 Gew.-% eines mindestens eine Carboxylgruppe im Molekül tragenden, mit (a1), (a3) und (a4) copolymerisierbaren, ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren
  • (a3) 1 bis 40, vorzugsweise 2 bis 15 Gew.-% eines mindestens eine Hydroxylgruppe im Molekül tragenden, mit (a1), (a2) und (a4) copolymerisierbaren, ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren und
  • (a4) 0 bis 30, vorzugsweise 5 bis 20 Gew.-% eines weiteren, mit (a1), (a2) und (a3) copolymerisierbaren, ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren,
eingesetzt, wobei die Summe der Gewichtsanteile von (a1), (a2), (a3) und (a4) stets 100 Gew.-% ergibt.
Als Komponente (a1) können z. B. eingesetzt werden: Cyclo­ hexylacrylate, Cyclohexylmethacrylat, Alkylacrylate und Alkylmethacrylate mit bis zu 20 Kohlenstoffatomen im Alkylrest, wie z. B. Methyl-, Ethyl-, Propyl-, Butyl-, Hexyl-, Ethylhexyl-, Stearyl- und Laurylacrylat und -methacrylat oder Gemische aus diesen Monomeren.
Als Komponente (a2) werden vorzugsweise Acrylsäure und/oder Methacrylsäure eingesetzt. Es können aber auch andere ethylenisch ungesättigte Säuren mit bis zu 6 Kohlenstoffatomen im Molekül eingesetzt werden. Als Beispiele für solche Säuren werden Ethacrylsäure, Crotonsäure, Maleinsäure, Fumarsäure und Itaconsäure genannt.
Als Komponente (a3) können z. B. eingesetzt werden: Hydroxyalkylester der Acrylsäure, Methacrylsäure oder einer anderen α,β-ethylenisch ungesättigten Carbonsäure. Diese Ester können sich von einem Alkylenglykol ableiten, das mit der Säure verestert ist, oder sie können durch Umsetzung der Säure mit einem Alkylenoxid erhalten werden. Als Komponente (a3) werden vorzugsweise Hydroxyalkylester der Acrylsäure und Methacrylsäure, in denen die Hydroxyalkylgruppe bis zu 4 Kohlenstoffatome enthält, oder Mischungen aus diesen Hydroxyalkylestern eingesetzt. Als Beispiele für derartige Hydroxyalkylester werden 2-Hydroxyethylacrylat, 2-Hydroxypropylacrylat, 2-Hydroxypropylmethacrylat, 3-Hydroxypropylacrylat, 2-Hydroxypropylacrylat, 3-Hydroxypropylmethacrylat, 2-Hydroxyethylmethacrylat, 3-Hydroxybutylacrylat oder 4-Hydroxybutyl­ (meth)acrylat genannt. Entsprechende Ester von anderen ungesättigten Säuren, wie z. B. Ethacrylsäure, Crotonsäure und ähnliche Säuren mit bis zu etwa 6 Kohlenstoffatomen pro Molekül können auch eingesetzt werden.
Als Komponente (a4) können z. B. eingesetzt werden: vinylaromatische Kohlenwasserstoffe, wie Styrol, α-Alkylstyrol und Vinyltoluol, Acryl- und Methacrylamid und Acryl- und Methacrylnitril oder Gemische aus diesen Monomeren.
Es ist erfindungswesentlich, daß als Komponente (B) 0,5 bis 2,4, vorzugsweise 1,0 bis 2,0, besonders bevorzugt 1,5 Gew.-% Allylmethacrylat oder 1,5 bis 8,0, vorzugsweise 2,0 5,0, besonders bevorzugt 4,0 Gew.-% Ethylenglykoldi(meth)acrylat oder 1,5 bis 8,0, vorzugsweise 2,0 bis 5,0, besonders bevorzugt 4,0 Gew.-% Butandioldi(meth)acrylat oder 1,5 bis 10,0, vorzugsweise 3,0 bis 7,0, besonders bevorzugt 5,0 Gew.-% Hexandioldi(meth)acrylat oder 0,5 bis 6,0, vorzugsweise 1,0 bis 4,0, besonders bevorzugt 2,0 Gew.-% Divinylbenzol eingesetzt werden, wobei sich die Gew.-%-Angaben auf die gesamte Menge an eingesetzter Komponente (A) und eingesetzter Komponente (B) (Menge an eingesetzter Komponente (A) + Menge an eingesetzter Komponente (B) = 100 Gew.-%) beziehen.
Die erfindungsgemäß eingesetzten vernetzten Polymermikroteilchen müssen einen Durchmesser von 0,01 bis 10 µm aufweisen.
Basislacke, die neben den oben beschriebenen vernetzten Polymermikroteilchen noch ein wasserverdünnbares Polyurethanharz enthalten, liefern Mehrschichtlackierungen mit besonders gutem Effekt und sind bevorzugt. Die bevorzugten Basislacke enthalten als Polyurethanharze vorzugsweise wasserverdünnbare, Harnstoffgruppen enthaltende Polyurethanharze mit einem zahlenmittleren Molekulargewicht von 1000 bis 60 000, vorzugsweise 1500 bis 50 000 (Bestimmung: gelpermeationschromatographisch mit Polystyrol als Standard) und einer Säurezahl von 5 bis 70, vorzugsweise 10 bis 30. Derartige Polyurethanharze können durch Umsetzung von isocyanatgruppenhaltigen Präpolymeren mit organischen Polyaminen und/oder Hydrazin hergestellt werden.
Die Herstellung des isocyanatgruppenhaltigen Präpolymeren kann durch Reaktion von Polyalkoholen mit einer Hydroxylzahl von 10 bis 1800, bevorzugt 50 bis 500, mit überschüssigen Polyisocyanaten bei Temperaturen bis zu 150°C, bevorzugt 50 bis 130°C, in organischen Lösemitteln, die nicht mit Isocyanaten reagieren können, erfolgen. Das Äquivalenzverhältnis von NCO zu OH-Gruppen liegt zwischen 1,5 und 1,0 zu 1,0, bevorzugt zwischen 1,4 und 1,2 zu 1. Die zur Herstellung des Präpolymeren eingesetzten Polyole können niedrigmolekular und/oder hochmolekular sein und sie können reaktionsträge anionische Gruppen enthalten.
Um die Härte des Polyurethans zu erhöhen, kann man niedrigmolekulare Polyole einsetzen. Sie haben ein Molekulargewicht von 60 bis zu etwa 400 und können aliphatische, alicyclische oder aromatische Gruppen enthalten. Es werden dabei Mengen bis zu 30 Gew.-% der gesamten Polyol-Bestandteile, bevorzugt etwa 2 bis 30 Gew.-% eingesetzt. Vorteilhaft sind die niedermolekularen Polyole mit bis zu etwa 20 Kohlenstoffatomen je Molekül, wie Ethylenglykol, Diethylenglykol, Triethylenglykol, 1,2-Propandiol, 1,3-Propandiol, 1,4-Butanidol, 1,2-Butylenglykol, 1,6-Hexandiol, Trimethylolpropan, Rizinusöl oder hydriertes Rizinusöl, Di-trimethylolpropanether, Pentaerythrit, 1,2-Cyclohexandiol, 1,4-Cyclohexandimethanol, Bisphenol A, Bisphenol F, Neopentylglykol, Hydroxypivalin­ säure-neopentylglykolester, hydroxyethyliertes oder hydroxy­ propyliertes Bisphenol A, hydriertes Bisphenol A und deren Mischungen.
Um ein NCO-Präpolymeres hoher Flexibilität zu erhalten, sollte ein hoher Anteil eines überwiegend linearen Polyols mit einer bevorzugten Hydroxylzahl von 30 bis 140 zugesetzt werden. Bis zu 97 Gew.-% des gesamten Polyols können aus gesättigten und ungesättigten Polyestern und/oder Polyethern mit einer Molmasse von 400 bis 5000 bestehen. Als hochmolekulare Polyole sind geeignet aliphatische Polyetherdiole der allgemeinen Formel H-(-O-(-CHR-) n -) m -OH in der R = Wasserstoff oder ein niedriger, gegebenenfalls mit verschiedenen Substituenten versehener Alkylrest ist, wobei n =2 bis 6, bevorzugt 3 bis 4 und m = 2 bis 100, bevorzugt 5 bis 50 ist. Beispiele sind lineare oder verzweigte Polyetherdiole, wie Poly-(oxyethylen)glykole, Poly(oxypropylen)glykole und/oder Poly(oxybutylen)glykole. Die ausgewählten Polyetherdiole sollen keine übermäßigen Mengen an Ethergruppen einbringen, weil sonst die gebildeten Polymere in Wasser anquellen. Die bevorzugten Polyetherdiole sind Poly(oxypropylen)glykole im Molmassenbereich von 400 bis 3000. Polyesterdiole werden durch Veresterung von organischen Dicarbonsäuren oder ihren Anhydriden mit organischen Diolen hergestellt oder leiten sich von einer Hydroxycarbonsäure oder einem Lacton ab. Um verzweigte Polyesterpolyole herzustellen, können in geringem Umfang Polyole oder Polycarbonsäuren mit einer höheren Wertigkeit eingesetzt werden. Die Dicarbonsäuren und Diole können lineare oder verzweigte aliphatische, cycloaliphatische oder aromatische Dicarbonsäuren oder Diole sein.
Die zur Herstellung der Polyester verwendeten Diole bestehen beispielsweise aus Alkylenglykolen, wie Ethylenglykol, Propylenglykol, Butylenglykol, Butandiol-1,4, Hexandiol-1,6, Neopentylglykol und andere Diole, wie Dimethylcyclohexan. Die Säurekomponente des Polyesters besteht in erster Linie aus niedermolekularen Dicarbonsäuren oder ihren Anhydriden mit 2 bis 30, bevorzugt 4 bis 18 Kohlenstoffatomen im Molekül. Geeignete Säure sind beispielsweise o-Phthalsäure, Iso-phthalsäure, Terephthalsäure, Tetrahydrophthalsäure, Cyclohexandicarbonsäure, Bernsteinsäure, Adipinsäure, Azelainsäure, Sebazinsäure, Maleinsäure, Fumarsäure, Glutarsäure, Hexachlorheptandicarbonsäure, Tetrachlorphthalsäure und/oder dimerisierte Fettsäuren. Anstelle dieser Säuren können auch ihre Anhydride, soweit diese existieren, verwendet werden. Bei der Bildung von Polyesterpolyolen können auch kleinere Mengen an Carbonsäuren mit 3 oder mehr Carboxylgruppen, beispielsweise Trimellithsäureanhydrid oder das Addukt von Maleinsäureanhydrid an ungesättigten Fettsäuren anwesend sein.
Erfindungsgemäß werden auch Polyesterdiole eingesetzt, die durch Umsetzung eines Lactons mit einem Diol erhalten werden. Sie zeichnen sich durch die Gegenwart einer endständigen Hydroxylgruppe und wiederkehrende Polyesterteile der Formel -(CO-(CHR) n -CH₂-O-) aus. Hierbei ist n bevorzugt 4 bis 6 und der Substituent R Wasserstoff, ein Alkyl-, Cycloalkyl- oder Alkoxy-Rest. Kein Substituent enthält mehr als 12 Kohlenstoffatome. Die gesamte Anzahl der Kohlenstoffatome im Substituenten übersteigt nicht 12 pro Lactonring. Beispiele hierfür sind Hydroxycapronsäure, Hydroxybuttersäure, Hydroxydecansäure und/oder Hydroxystearinsäure. Das als allgemeine Formel dargestellt werden
in der n und R die bereits angegebene Bedeutung haben. Für die Herstellung der Polyesterdiole wird das unsubstituierte ε-Caprolacton, bei dem n den Wert 4 hat und alle R-Substituenten Wasserstoff sind, bevorzugt. Die Umsetzung mit Lacton wird durch niedermolekulare Polyole, wie Ethylenglykol, 1,3-Propandiol, 1,4-Butandiol, Dimethylolcyclohexan gestartet. Es können jedoch auch andere Reaktionskomponenten, wie Ethylendiamin, Alkyldialkolamine oder auch Harnstoff mit Caprolacton umgesetzt werden.
Als höhermolekulare Diole eignen sich auch Polylactamdiole, die durch Reaktion von beispielsweise ε-Caprolactim mit niedermolekularen Diolen hergestellt werden.
Als typische multifunktionelle Isocyanate werden verwendet aliphatische, cycloaliphatische und/oder aromatische Polyisocyanate mit mindestens zwei Isocyanatgruppen pro Molekül. Bevorzugt werden die Isomeren oder Isomerengemische von organischen Diisocyanaten. Als aromatische Diisocyanate eignen sich Phenylendiisocyanate, Toluylendiisocyanate, Xylylendiisocyanat, Biphenylendiisocyanat, Naphthylendiisocyanat und Di­ phenylenmethandiisocyanat. Aufgrund ihrer guten Beständigkeit gegenüber ultraviolettem Licht ergeben (cyclo)aliphatische Diisocyanate Produkte mit geringer Vergilbungsneigung. Beispiele hierfür sind Isopho­ rondiisocyanat, Cyclopentylendiisocyanat sowie die Hydrie­ rungsprodukte der aromatischen Diisocyanate, wie Cyclohexy­ lendiisocyanate, Methylcyclohexylendiisocyanat und Dicyclo­ hexylmethandiisocyanat. Als Beispiele für aliphatische Di­ isocyanate werden Trimethylendiisocyanat, Tetramethylendi­ isocyanat, Pentamethylendiisocyanat, Hexamethylendiisocya­ nat, Propylendiisocyanat, Ethylethylendiisocyanat, Dimethy­ lethylendiisocyanat, Methyltrimethylendiisocyanat und Tri­ methylhexandiisocyanat. Besonders bevorzugt werden als Di­ isocyanate Isophorondiisocyanat und Dicyclohexyl-methandi­ isocyanat. Die zur Bildung des Präpolymeren gebrauchte Poly­ isocyanat-Komponente kann auch einen Anteil höherwertiger Polyisocyanate enthalten, vorausgesetzt dadurch wird keine Gelbildung verursacht. Als Triisocyanate haben sich Produkte bewährt, die durch Trimerisation oder Oligomerisation von Diisocyanaten oder durch Reaktion von Diisocyanaten mit polyfunktionellen OH- oder NH-Gruppen enthaltenden Verbindungen entstehen. Hierzu gehören beispielsweise das Biuret von Hexamethylendiisocyanat und Wasser, das Isophorondiisocyanat an Trimethylolpropan.
Die mittlere Funktionalität kann gegebenenfalls durch Zusatz von Monoisocyanaten gesenkt werden. Beispiele für solche kettenabbrechenden Monoisocyanate sind Phenylisocyanat, Cy­ clohexylisocyanat und Stearylisocyanat.
Polyurethane sind im allgemeinen nicht mit Wasser verträglich, wenn nicht bei ihrer Synthese spezielle Bestandteile eingebaut und/oder besondere Herstellungsschritte vorgenommen werden. So wird eine so große Säurezahl eingebaut, daß das neutralisierte Produkt stabil in Wasser zu dispergieren ist. Hierzu dienen Verbindungen, die zwei mit Isocyanatgruppen reagierende H-aktive Gruppen und mindestens eine zur Anionenbildung befähigte Gruppe enthalten. Geeignete, mit Isocyanatgruppen reagierende Gruppen, sind insbesondere Hydroxylgruppen sowie primäre und/oder sekundäre Aminogruppen. Gruppen, die zur Anionenbildung befähigt sind, sind Carboxyl-, Sulfonsäure und/oder Phosphonsäuregruppen. Bevorzugt werden Carbonsäure- oder Carboxylatgruppen verwendet. Sie sollen so reaktionsträge sein, daß die Isocyanatgruppen des Diisocyanats vorzugsweise mit den anderen gegenüber Isocyanatgruppen reaktiven Gruppen des Moleküls reagieren. Es werden dazu Alkangruppen mit zwei Substituenten am α-ständigen Kohlenstoffatom eingesetzt. Der Substituent kann eine Hydroxylgruppe, eine Alkylgruppe oder eine Alkylolgruppe sein. Diese Polyole haben wenigstens eine, im allgemeinen 1 bis 3 Carboxylgruppen mit Molekül. Sie haben zwei bis etwa 25, vorzugsweise 3 bis 10 Kohlenstoffatome. Beispiele für solche Verbindungen sind Dihydroxypropionsäure, Dihydroxybernsteinsäure und Dihydroxybenzoesäure. Eine besonders bevorzugte Gruppe von Dihydroxyalkansäuren sind die α,α-Dimethylolalkansäuren, die durch die Strukturformel RC(OH₂OH)₂COOH gekennzeichnet sind, worin R = Wasserstoff oder eine Alkylgruppe mit bis zu etwa 20 Kohlenstoffatomen bedeutet. Beispiele für solche Verbindungen sind 2,2-Di­ methylolessigsäure, 2,2-Dimethylolpropionsäure, 2,2-Di­ methylolbuttersäure und 2,2-Dimethylolpentansäure. Die bevorzugte Dihydroxyalkansäure ist 2,2-Dimethylolpropionsäure. Aminogruppenhaltige Verbindungen sind beispielsweise α,δ-Di­ aminovaleriansäure, 3,4-Diaminobenzoesäure, 2,4-Diaminotoluolsulfonsäure und 2,4-Diamino-diphenylethersulfonsäure. Das Carboxylgruppen enthaltende Polyol kann 3 bis 100 Gew.-%, vorzugsweise 5 bis 50 Gew.-% des gesamten Po­ lyolbestandteiles im NCO-Präpolymeren ausmachen. Die durch die Carboxylgruppen-Neutralisation in Salzform verfügbare Menge an ionisierbaren Carboxylgruppen beträgt im allgemeinen wenigstens 0,4 Gew.-%, vorzugsweise wenigstens 0,7 Gew.-%, bezogen auf den Feststoff. Die obere Grenze beträgt etwa 6 Gew.-%. Die Menge an Dihydroxyalkansäuren im unneutralisierten Präpolymeren ergibt eine Säurezahl von wenigstens 5, vorzugsweise wenigstens 10. Die obere Grenze der Säurezahl liegt bei 70, vorzugsweise bei 40, bezogen auf den Feststoff.
Diese Dihydroxyalkansäure wird vor der Umsetzung mit Iso­ cyanaten vorteilhafteren mindestens anteilweise mit einem tertiären Amin neutralisiert, um eine Reaktion mit den Iso­ cyanaten zu vermeiden.
Die erfindungsgemäß verwendeten NCO-Präpolymere können durch gleichzeitige Umsetzung des Polyols oder Polyolgemisches mit einem Diisocyanat-Überschuß hergestellt werden. Andererseits kann die Umsetzung auch in vorgeschriebener Reihenfolge stufenweise vorgenommen werden.
Beispiele sind in den DE 26 24 442 und DE 32 10 051 beschrieben. Die Reaktionstemperatur beträgt bis zu 150°C, wobei eine Temperatur im Bereich von 50 bis 130°C bevorzugt wird. Die Umsetzung wird fortgesetzt, bis praktisch alle Hydroxylgruppen umgesetzt sind.
Das NCO-Präpolymer enthält wenigstens etwa 0,5 Gew.-% Iso­ cyanatgruppen, vorzugsweise wenigstens 1 Gew.-% NCO, bezogen auf Feststoff. Die obere Grenze liegt bei etwa 15 Gew.-%, vorzugsweise 10 Gew.-%, besonders bevorzugt bei 5 Gew.-%. Die Umsetzung kann gegebenenfalls in Gegenwart eines Katalysators, wie Organozinnverbindungen und/oder tertiären Aminen durchgeführt werden. Um die Reaktionsteilnehmer in flüssigem Zustand zu halten und eine bessere Temperaturkontrolle während der Reaktion zu ermöglichen, ist der Zusatz von organischen Lösemitteln, die keinen aktiven Wasserstoff nach Ze­ rewitinoff enthalten, möglich. Verwendbare Lösemittel sind beispielsweise Dimethylformamid, Ester, Ether, wie Diethy­ lenglykol-dimethylether, Ketoester, Ketone, wie Methylethylketon und Aceton, mit Methoxygruppen substituierte Ketone, wie Methoxy-hexanon, Glykoletherester, chlorierte Kohlen­ wasserstoffe, aliphatische und alicyclische Kohlenwasser­ stoffpyrrolidone, wie N-Methylpyrrolidon, hydrierte Furane, aromatische Kohlenwasserstoffe und deren Gemische. Die Menge an Lösemittel kann in weiten Grenzen variieren und sollte zur Bildung einer Präpolymer-Lösung mit geeigneter Viskosität ausreichen. Meistens genügen 0,01 bis 15 Gew.-% Lösemittel, vorzugsweise 0,02 bis 8 Gew.-% Lösemittel, bezogen auf den Festkörper. Sieden die gegebenenfalls nicht wasserlöslichen Lösemittel niedriger als das Wasser, so können sie nach der Herstellung der harnstoffgruppenhaltigen Poly­ urethan-Dispersion durch Vakuumdestillation oder Dünn­ schichtverdampfung schonend abdestilliert werden. Höhersiedende Lösemittel sollten wasserlöslich sein und verbleiben in der wäßrigen Polyurethan-Dispersion, um das Zusammenfließen der Polymer-Teilchen während der Filmbildung zu erleichtern. Besonders bevorzugt sind als Lösemittel N-Methyl-pyrrolidon, gegebenenfalls im Gemisch mit Ketonen, wie Methylethylketon.
Die anionischen Gruppen des NCO-Präpolymeren werden mit einem tertiären Amin mindestens teilweise neutralisiert. Die dadurch geschaffene Zunahme der Dispergierbarkeit in Wasser reicht für eine unendliche Verdünnbarkeit aus. Sie reicht auch aus, um das neutralisierte harnstoffgruppenhaltige Polyurethan beständig zu dispergieren. Geeignete tertiäre Amine sind beispielsweise Trimethylamin, Triethylamin, N-Methylmorpholin. Das NCO-Präpolymer wird nach der Neutralisation mit Wasser verdünnt und ergibt dann eine feinteilige Dispersion. Kurz danach werden die noch vorhandenen Isocyanatgruppen mit Di- und/oder Polyaminen mit primären und/oder sekundären Aminogruppen als Kettenverlängerer umgesetzt. Diese Reaktion führt zu einer weiteren Verknüpfung und Erhöhung des Molekulargewichts. Die Konkurrenzreaktion zwischen Amin und Wasser mit dem Isocyanat muß, um optimale Eigenschaften zu erhalten, gut abgestimmt (Zeit, Temperatur, Konzentration) und für eine reproduzierbare Produktion gut überwacht werden. Als Kettenverlängerer werden wasserlösliche Verbindungen bevorzugt, weil sie die Dispergierbarkeit des polymeren Endproduktes in Was­ ser erhöhen. Bevorzugt werden Hydrazin und organischen Diamine, weil sie in der Regel die höchste Molmasse aufbauen, ohne das Harz zu gelieren. Voraussetzung hierfür ist jedoch, daß das Verhältnis der Aminogruppen zu den Isocyanatgruppen zweckentsprechend gewählt wird. Die Menge des Kettenverlängerers wird von seiner Funktionalität, vom NCO-Gehalt des Präpolymeren und von der Dauer der Reaktion bestimmt. Das Verhältnis der aktiven Wasserstoffatome im Kettenverlängerer zu den NCO-Gruppen im Präpolymeren sollte in der Regel geringer als 2 : 1 und vorzugsweise im Bereich von 1,0 : 1 bis 1,75 : 1 liegen. Die Anwesenheit von überschüssigem aktiven Wasserstoff, insbesondere in Form von primären Aminogruppen, kann zu Polymeren mit unerwünscht niedriger Molmasse führen.
Polyamine sind im wesentlichen Alkylen-Polyamine mit 1 bis 40 Kohlenstoffatomen, vorzugsweise 2 bis 15 Kohlenstoffatomen. Sie können Substituenten tragen, die keine mit Isocyanat-Gruppen reaktionsfähige Wasserstoffatome haben. Beispiele sind Polyamine mit linearer oder verzweigter aliphatischer, cycloaliphatischer oder aromatischer Struktur und wenigstens zwei primären Aminogruppen. Als Diamine sind zu nennen Ethylendiamin, Propylendiamin, 1,4-Butylendiamin, Piperazin, 1,4-Cyclohexyldimethylamin, Hexamethylendi­ amin-1,6, Trimethylhexamethylendiamin, Methandiamin, Iso­ phorondiamin, 4,4′-Diaminodicyclohexylmethan und Aminoethyl­ ethanolamin. Bevorzugte Diamine sind Alkyl- oder Cycloalkyl­ diamine, wie Propylendiamin und 1-Amino-3-amino­ methyl-3,5,5-trimethylcyclohexan.
Die Kettenverlängerung kann wenigstens teilweise mit einem Polyamin erfolgen, das mindestens drei Amingruppen mit einem reaktionsfähigen Wasserstoff aufweist. Dieser Polyamin-Typ kann in einer solchen Menge eingesetzt werden, daß nach der Verlängerung des Polymers nicht umgesetzte Aminstickstoffatome mit 1 oder 2 reaktionsfähigen Wasserstoffatomen vor­ liegen. Solche brauchbaren Polyamine sind Diethylentriamin, Triethylentetraamin, Dipropylentriamin und Dibutylentriamin. Bevorzugte Polyamine sind die Alkyl- oder Cycloalkyltriamine, wie Diethylentriamin. Um ein Gelieren bei der Ketten­ verlängerung zu verhindern, können auch kleine Anteile von Monoaminen, wie Ethylhexylamin zugesetzt werden.
Die erfindungsgemäß einzusetzenden wasserverdünnbaren Poly­ urethanharze und deren Herstellung werden auch in der EP-A 89 497 und US-PS 47 19 132 beschrieben.
Die bevorzugten Basislacke enthalten ein Gemisch aus 90 bis 40 Gew.-% der oben beschriebenen vernetzten Polymermikroteilchen und 10 bis 60 Gew.-% des oben beschriebenen wasser­ verdünnbaren, harnstoffgruppenhaltigen Polyurethanharzes, wobei sich die Mengenanteile jeweils auf den Festkörperan­ teil beziehen und ihre Summe stets 100 Gew.-% beträgt.
Die erfindungsgemäßen wäßrigen Basislacke enthalten vorteilhafterweise noch weitere wasserverdünnbare Kunstharze, wie z. B. Aminoplastharze, Polyester und Polyether, die im allgemeinen als Anreibeharze für die Pigmente dienen.
Die erfindungsgemäßen wäßrigen Basislacke enthalten vorzugsweise 5 bis 20, besonders bevorzugt 10 bis 16 Gew.-%, bezogen auf den Gesamtfeststoffgehalt der Basislacke eines wasserverdünnbaren Aminoplastharzes, vorzugsweise Melaminharzes und 5 bis 20, vorzugsweise 8 bis 15 Gew.-%, eines wasserverdünnbaren Polyethers (z. B. Polypropylenglykol mit einem zah­ lenmittleren Molekulargewicht von 400 bis 900).
Als Pigmente können die erfindungsgemäßen Basislacke farb­ gebende Pigmente auf anorganischer Basis, wie z. B. Titandioxid, Eisenoxid, Ruß usw., farbgebende Pigmente auf orga­ nischer Basis sowie übliche Metallpigmente (z. B. handelsübliche Aluminiumbronzen, Edelstahlbronzen . . .) und nicht-metallische Effektpigmente (z. B. Perlglanz bzw. Inter­ ferenzpigmente) enthalten. Die erfindungsgemäßen Basislacke enthalten vorzugsweise Metallpigmente und/oder Effektpigmente. Die Pigmentierungshöhe liegt in üblichen Bereichen.
Weiterhin können den erfindungsgemäßen Basislacken übliche rheologische anorganische oder organische Additive zugesetzt werden. So wirken als Verdicker beispielsweise wasserlösliche Celluloseether, wie Hydroxyethylcellulose, Methylcellulose oder Carboxymethylcellulose sowie synthetische Polymere mit ionischen und/oder assoziativ wirkenden Gruppen, wie Polyvinylalkohol, Poly(meth)acrylamid, Poly(meth)acrylsäure, Polyvinylpyrrolidon, Styrol-Maleinsäureanhydrid oder Ethylen-Maleinsäureanhydrid-Copolymere und ihre Derivate oder auch hydrophob modifizierte ethoxylierte Urethane oder Polyacrylate. Besonders bevorzugt werden carboxylgruppenhaltige Polyacrylat-Copolymere mit einer Säurezahl von 60 bis 780, bevorzugt 200 bis 500.
Die erfindungsgemäßen Basislacke weisen im allgemeinen einen Festkörpergehalt von etwa 15 bis 20 Gew.-% auf, der Festkörpergehalt variiert mit dem Verwendungszweck der Basislacke. Für Metalliclacke liegt er beispielsweise bevorzugt bei 17 bis 25 Gew.-%. Für unifarbige Lacke liegt er höher, beispielsweise bei 30 bis 45 Gew.-%. Die erfindungsgemäßen Basislacke können zusätzlich übliche organische Lösemittel enthalten. Deren Anteil wird möglichst gering gehalten. Er liegt beispielsweise unter 15 Gew.-%. Die erfindungsgemäßen Basislacke werden im allgemeinen auf einen pH-Wert zwischen 6,5 und 9,0 eingestellt. Der pH-Wert kann mit üblichen Aminen, wie z. B. Ammoniak, Triethylamin, Dimethylaminoethanol und N-Methylmorpholin eingestellt werden.
Mit der Bereitstellung der erfindungsgemäßen Basislacke wird die eingangs erläuterte Aufgabenstellung gelöst. Mit den erfindungsgemäßen Basislacken können auch ohne Überlackierung mit einem transparenten Decklack qualitativ hochwertige Lackierungen hergestellt werden.
Die erfindungsgemäßen wasserverdünnbaren Lacke können auf beliebige Substrate, wie z. B. Metall, Holz, Kunststoff oder Papier aufgebracht werden. Dabei können im wesentlichen alle bekannten Applikationsmethoden, wie z. B. Spritzen, Rakeln, Tauchen usw. zur Anwendung kommen.
In den folgenden Beispielen wird die Erfindung näher erläutert.
A. Herstellung von vernetzten Polymermikroteilchen
In einem zylindrischen Glasdoppelwandgefäß mit Rührer, Rück­ flußkühler und Zulaufgefäßen werden 57,01 Gew.-Teile deinoisiertes Wasser und 0,08 Gew.-Teile einer 30%igen wäßrigen Lösung eines Emulgators (Ammoniumsalz des Penta (ethylen­ oxid)nonylphenylethersulfats, Fenopon® EP 110 der GAF Corp.) vorgelegt und auf 70°C erwärmt. Anschließend werden 10,94 Gew.-Teile Methylmethacrylat, 2,74 Gew.-Teile Styrol, 0,82 Gew.-Teile Methacrylsäure, 0,39 Gew.-Teile der oben an­ gegebenen Emulgatorlösung, die in Tabelle 1 angegebene Menge an Komponente (B) und die in Tabelle 1 angegebene Menge an n-Butylacrylat gut durchmischt. 10 Gew.-% der so erhaltenen Mischung werden zur Vorlage gegeben. In den verbleibenden 90 Gew.-% der Mischung werden 1,37 Gew.-Teile Hydroxypropyl­ methacrylat gegeben. Die Vorlage wird auf 70°C aufgeheizt und mit 0,77 Gew.-Teilen einer 1,07%igen wäßrigen H₂O₂-Lösung und mit 0,75 Gew.-Teilen einer 1,23%igen wäßrigen Ascrobinsäurelösung versetzt. Es setzt eine exo­ therme Reaktion ein. Nach 20 Minuten wird die Hydroxypropyl­ methacrylat enthaltende Monomermischung zusammen mit 6,90 Gew.-Teilen einer 1,07%igen wäßrigen H₂O₂-Lösung und 6,74 Gew.-Teilen einer 1,23%igen wäßrigen Ascorbinsäurelösung in einer solchen Geschwindigkeit zugegeben, daß die Zugabe nach 4 Stunden beendet ist. Während der Zugabe wird die Reaktionstemperatur auf 70°C gehalten. Nach Abschluß der Zugabe wird das Reaktionsgemisch noch 1 Stunde bei 70°C gehalten. Nach Abkühlen wird eventuell entstandenes Koagulat durch Filtration abgetrennt.
Tabelle 1
B. Herstellung von wasserverdünnbaren Polyurethanharzen Polyurethanharzdispersion 1
570 g eines handelsüblichen aus Caprolactan und Ethylenglykol hergestellten Polyester mit einer Hydroxylzahl von 196 werden bei 100°C 1 Stunde im Vakuum entwässert. Bei 80°C werden 524 g 4,4′-Dicyclohexylmethandiisocyanat zugegeben und bei 90°C so lange gerührt, bis der Isocyanatgehalt 7,52 Gew.-%, bezogen auf die Gesamteinwaage, beträgt. Nach Abkühlen auf 60°C wird eine Lösung von 67 g Dimethylolpropionsäure und 50 g Triethylamin in 400 g N-Methylpyrrolidon zugegeben und 1 Stunde bei 90°C gerührt. Die erhaltene Masse wird unter intensivem Rühren in 1840 g kaltes deionisiertes Wasser gegeben. Zu der erhaltenen Dispersion werden unter intensivem Rühren innerhalb von 20 Minuten 86 g einer 15%igen Hydrazinlösung zugegeben. Die resultierende, sehr feinteilige Dispersion hat einen Festkörpergehalt von 35% und eine Auslaufzeit von 27 Sekunden im DIN-Becher 4.
Polyurethanharzdispersion 2
830 g eines Polyesters aus Neopentylglykol, Hexandiol-1,6 und Adipinsäure mit einer Hydroxylzahl von 135 und einer Säurezahl unter 3 werden bei 100°C 1 Stunde im Vakuum entwässert. Bei 80°C werden 524 g 4,4-Dicyclohexylmethandiisocyanat zugegeben und bei 90°C gerührt, bis der Gehalt an freien Isocyanatgruppen 6,18 Gew.-%, bezogen auf die Gesamteinwaage, beträgt. Nach Abkühlung auf 60°C wird eine Lösung von 67 g Dimethylolpropionsäure und 50 g Triethylamin in 400 g N-Methylpyrrolidon zugegeben und 1 Stunde bei 90°C gerührt.
Die erhaltene Masse wird unter intensivem Rühren in 2400 g kaltes deionisiertes Wasser gegeben. Man erhält eine fein­ teilige Dispersion. Zu dieser Dispersion werden unter intensivem Rühren innerhalb von 20 Minuten 80 g einer 30%igen wäßrigen Lösung von Ethylendiamin zugegeben. Die resultierende, sehr feinteilige Dispersion hat einen Festkörpergehalt von 35% und eine Auslaufzeit von 23 Sekunden im DIN-Becher 4.
C. Herstellung von Basislacken
17,0 g Butylglykol, 3,5 g eines handelsüblichen Melamin-Form­ aldehydharzes (Cymel® 301), 2,9 g Polypropylenglykol (mittleres Molekulargewicht = 400) und 7,0 g einer Aluminiumbronze gemäß DE-OS 36 36 183 (Aluminiumgehalt: 60 Gew.-%) werden mit einem Schnellrührer 15 Minuten bei 300-500 U/min gerührt. Es wird eine Mischung 1 erhalten.
41 g einer gemäß A. hergestellten Polymermikroteilchendispersion werden mit 11,0 g einer Polyurethandispersion gemäß B. gemischt. Die Mischung wird mit einer 5%igen wäßrigen Di­ methylethanolaminlösung auf einen pH-Wert von 7,7 eingestellt und mit 17,6 g einer 3,5%igen Lösung eines handelsüblichen Polyacrylsäureverdickers (Viscalex® HV 30 der Allied Colloids, pH-Wert: 8,0) versetzt. Es wird die Mischung 2 erhalten.
Zur Herstellung der Basislacke werden die Mischungen 1 und 2 30 Minuten bei 800-1000 U/min gemischt und danach mit einer 5%igen wäßrigen Dimethylethanolaminlösung auf einen pH-Wert von 7,7 eingestellt. Anschließend wird die Viskosität durch Zugabe von deionisiertem Wasser auf eine Auslaufzeit von 25 sec im DIN-4-Becher eingestellt.
Die Basislacke werden nach gut bekannten Methoden auf mit einer handelsüblichen Elektrotauchlackierung und einem handelsüblichen Füller beschichtete phosphatierte Stahlbleche (Bonder 132) gespritzt, nach einer Ablüftzeit von 10 Minuten mit einem handelsüblichen Klarlack überlackiert und 20 Minuten bei 140°C eingebrannt. Ein Teil der lackierten Bleche wird nochmals mit den Basislacken beschichtet und mit einem handelsüblichen Klarlack überlackiert. Die so erhaltenen Lackierungen werden 40 Minuten bei 80°C eingebrannt.
An den erhaltenen Lackierungen wurden Glanzmessungen und Gitterschnittprüfungen durchgeführt. Die Ergebnisse sind in Tabelle 2 zusammengefaßt.
Tabelle 2

Claims (13)

1. Verfahren zur Herstellung einer mehrschichtigen Lackierung auf einer Substratoberfläche, bei dem
  • (1) ein pigmentierter wäßriger Basislack, der durch Emulsionspolymerisation von
    • (A) ethylenisch ungesättigten Monomeren, die eine ethylenisch ungesättigte Gruppe pro Molekül enthalten oder einem Gemisch aus solchen Monomeren und
    • (B) einem ethylenisch ungesättigten Monomer, das zwei ethylenisch ungesättigte Gruppen im Molekül enthält
  • erhältliche vernetzte Polymermikroteilchen enthält, auf die Substratoberfläche aufgebracht wird
  • (2) aus der in Stufe (1) aufgebrachten Zusammensetzung ein Polymerfilm gebildet wird
  • (3) auf der so erhaltenen Basisschicht ein transparenter Decklack aufgebracht wird und anschließend
  • (4) die Basisschicht zusammen mit der Deckschicht eingebrannt wird,
dadurch gekennzeichnet, daß die im Basislack enthaltenen vernetzten Polymermikroteilchen erhältlich sind, indem als Komponente (B) 0,5 bis 2,4, vorzugsweise 1,0 bis 2,0, besonders bevorzugt 1,5 Gew.-% Allylmethacrylat oder 1,5 bis 8,0, vorzugsweise 2,0 bis 5,0, besonders bevorzugt 4,0 Gew.-% Ethylenglykoldi(meth)acrylat oder 1,5 bis 8,0, vorzugsweise 2,0 bis 5,0, besonders bevorzugt 4,0 Gew.-% Butandioldi(meth)acrylat oder 1,5 bis 10,0, vorzugsweise 3,0 bis 7,0, besonders bevorzugt 5,0 Gew.-% Hexandioldi­ (meth)acrylat oder 0,5 bis 6,0, vorzugsweise 1,0 bis 4,0, besonders bevorzugt 2,0 Gew.-% Divinylbenzol eingesetzt werden, wobei sich die Gew.-%-Angaben auf die gesamte Menge an eingesetzter Komponente (A) und eingesetzter Komponente (B) (Menge an eingesetzter Komponente (A) + Menge an eingesetzter Komponente (B) = 100 Gew.-%) beziehen.
2. Wasserverdünnbarer Lack, der durch Emulsionspolymerisation von
  • (A) ethylenisch ungesättigten Monomeren, die eine ethylenisch ungesättigte Gruppe im Molekül enthalten, oder einem Gemisch aus solchen Monomeren und
  • (B) einem ethylenisch ungesättigten Monomeren, das zwei ethylenisch ungesättigte Gruppen im Molekül enthält
erhältliche vernetzte Polymermikroteilchen enthält, dadurch gekennzeichnet, daß die vernetzten Polymermikroteilchen erhältlich sind, indem als Komponente (B) 0,5 bis 2,4, vorzugsweise 1,0 bis 2,0, besonders bevorzugt 1,5 Gew.-% Allylmethacrylat oder 1,5 bis 8,0, vorzugsweise 2,0 bis 5,0, besonders bevorzugt 4,0 Gew.-% Ethylen­ glykoldi(meth)acrylat oder 1,5 bis 8,0, vorzugsweise 2,0 bis 5,0, besonders bevorzugt 4,0 Gew.-% Butandioldi­ (meth)acrylat oder 1,5 bis 10,0, vorzugsweise 3,0 bis 7,0, besonders bevorzugt 5,0 Gew.-% Hexandioldi(meth)­ acrylat oder 0,5 bis 6,0, vorzugsweise 1,0 bis 4,0, besonders bevorzugt 2,0 Gew.-% Divinylbenzol eingesetzt werden, wobei sich die Gew.-%-Angaben auf die gesamte Menge an eingesetzter Komponente (A) und eingesetzter Komponente (B) (Menge an eingesetzter Komponente (A) + Menge an eingesetzter Komponente (B) = 100 Gew.-%) beziehen.
3. Verfahren oder Lack nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Emulsionspolymerisation von (A) und (B) durch ein Redox-Initiatorsystem, bestehend aus H₂O₂ und einem nicht ionischen wasserlöslichen Reduktionsmittel initiiert wird.
4. Verfahren oder Lack nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Komponente (A) ein Gemisch aus
  • (a1) 60 bis 99, vorzugsweise 70 bis 90 Gew.-% eines aliphatischen oder cycloaliphatischen Esters der Acrylsäure oder Methacrylsäure oder eines Gemisches aus solchen Estern
  • (a2) 0 bis 5, vorzugsweise 2 bis 4 Gew.-% eines mindestens eine Carboxylgruppe im Molekül tragenden, mit (a1), (a3) und (a4) copolymerisierbaren, ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren
  • (a3) 1 bis 40, vorzugsweise 2 bis 15 Gew.-% eines mindestens eine Hydroxylgruppe im Molekül tragenden, mit (a1), (a2) und (a4) copolymerisierbaren, ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren und
  • (a4) 0 bis 30, vorzugsweise 5 bis 20 Gew.-% eines weiteren, mit (a1), (a2) und (a3) copolymerisierbaren, ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren,
eingesetzt wird, wobei die Summe der Gewichtsanteile von (a1), (a2), (a3) und (a4) stets 100 Gew.-% ergibt.
5. Verfahren oder Lack nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Basislack bzw. Lack neben den vernetzten Polymermikroteilchen noch eine wäßrige Dispersion eines wasserdünnbaren Polyurethanharzes enthält.
6. Verfahren zur Herstellung von vernetzten Polymermikroteilchen, bei dem
  • (A) ethylenisch ungesättigte Monomere, die eine ethylenisch ungesättigte Gruppe pro Molekül enthalten, zusammen mit
  • (B) einem ethylenisch ungesättigten Monomer, das zwei ethylenisch ungesättigte Gruppen im Molekül enthält,
einer Emulsionspolymerisation unterworfen werden, dadurch gekennzeichnet, daß als Komponente (B) 0,5 bis 2,4, vorzugsweise 1,0 bis 2,0, besonders bevorzugt 1,5 Gew.-% Allylmethacrylat oder 1,5 bis 8,0, vorzugsweise 2,0 bis 5,0, besonders bevorzugt 4,0 Gew.-% Ethylenglykoldi­ (meth)acrylat oder 1,5 bis 8,0, vorzugsweise 2,0 bis 5,0, besonders bevorzugt 4,0 Gew.-% Butandioldi(meth)acrylat oder 1,5 bis 10,0, vorzugsweise 3,0 bis 7,0, besonders bevorzugt 5,0 Gew.-% Hexandiolid(meth)acrylat oder 0,5 bis 6,0, vorzugsweise 1,0 bis 4,0, besonders bevorzugt 2,0 Gew.-% Divinylbenzol eingesetzt werden, wobei sich die Gew.-%-Angaben auf die gesamte Menge an eingesetzter Komponente (A) und eingesetzter Komponente (B) (Menge an eingesetzter Komponente (A) + Menge an eingesetzter Komponente (B) = 100 Gew.-%) beziehen.
7. Vernetzte Polymermikroteilchen, dadurch gekennzeichnet, daß sie nach dem Verfahren gemäß Anspruch 6 erhältlich sind.
8. Verfahren oder Polymermikroteilchen nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß als Komponente (A) ein Gemisch aus
  • (a1) 60 bis 99, vorzugsweise 70 bis 90 Gew.-% eines aliphatischen oder cycloaliphatischen Esters der Acrylsäure oder Methacrylsäure oder eines Gemisches aus solchen Estern
  • (a2) 0 bis 5, vorzugsweise 2 bis 4 Gew.-% eines mindestens eine Carboxylgruppe im Molekül tragenden, mit (a1), (a3) und (a4) copolymerisierbaren, ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren
  • (a3) 1 bis 40, vorzugsweise 2 bis 15 Gew.-% eines mindestens eine Hydroxylgruppe im Molekül tragenden, mit (a1), (a2) und (a4) copolymerisierbaren, ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren und
  • (a4) 0 bis 30, vorzugsweise 5 bis 20 Gew.-% eines weiteren, mit (a1), (a2) und (a3) copolymerisierbaren, ethylenisch ungesättigten Monomeren oder eines Gemisches aus solchen Monomeren,
eingesetzt wird, wobei die Summe der Gewichtsanteile von (a1), (a2), (a3) und (a4) stets 100 Gew.-% ergibt.
DE3841541A 1988-12-09 1988-12-09 Verfahren zur herstellung einer mehrschichtigen lackierung, wasserverduennbarer lack, verfahren zur herstellung von vernetzten polymermikroteilchen und vernetzte polymermikroteilchen Withdrawn DE3841541A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE3841541A DE3841541A1 (de) 1988-12-09 1988-12-09 Verfahren zur herstellung einer mehrschichtigen lackierung, wasserverduennbarer lack, verfahren zur herstellung von vernetzten polymermikroteilchen und vernetzte polymermikroteilchen
PCT/EP1989/001435 WO1990006187A1 (de) 1988-12-09 1989-11-27 Verfahren zur herstellung einer mehrschichtigen lackierung, wasserverdünnbarer lack, verfahren zur herstellung von vernetzten polymermikroteilchen und vernetzte polymermikroteilchen
ZA899022A ZA899022B (en) 1988-12-09 1989-11-27 Preparation of a multicoat coating,water-thinnable paint,preparation of crosslinked polymeric microparticles and crosslinked polymeric microparticles
AU46441/89A AU4644189A (en) 1988-12-09 1989-11-27 Process for the production of a multi-layer paint coating, water-dilutable paint, process for the production of cross-linked polymer microparticles and cross-linked microparticles
CA002004987A CA2004987A1 (en) 1988-12-09 1989-12-08 Preparation of a multicoat coating, water-thinnable paint, preparation of crosslinked polymeric microparticles and crosslinked polymeric microparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3841541A DE3841541A1 (de) 1988-12-09 1988-12-09 Verfahren zur herstellung einer mehrschichtigen lackierung, wasserverduennbarer lack, verfahren zur herstellung von vernetzten polymermikroteilchen und vernetzte polymermikroteilchen

Publications (1)

Publication Number Publication Date
DE3841541A1 true DE3841541A1 (de) 1990-06-13

Family

ID=6368826

Family Applications (1)

Application Number Title Priority Date Filing Date
DE3841541A Withdrawn DE3841541A1 (de) 1988-12-09 1988-12-09 Verfahren zur herstellung einer mehrschichtigen lackierung, wasserverduennbarer lack, verfahren zur herstellung von vernetzten polymermikroteilchen und vernetzte polymermikroteilchen

Country Status (5)

Country Link
AU (1) AU4644189A (de)
CA (1) CA2004987A1 (de)
DE (1) DE3841541A1 (de)
WO (1) WO1990006187A1 (de)
ZA (1) ZA899022B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4338265C1 (de) * 1993-11-10 1994-12-08 Herberts Gmbh Verfahren zur Beschichtung im Coil Coating Verfahren unter Verwendung von Überzugsmitteln auf der Basis organischer Lösemittel
US6448326B1 (en) 1991-03-03 2002-09-10 Basf Coatings Ag Mixer system for the preparation of water-thinnable coating compositions
DE4110520C5 (de) * 1991-03-30 2005-10-20 Basf Coatings Ag Mischsystem zur Herstellung wasserverdünnbarer Überzugsmittel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO922508L (no) * 1991-06-28 1992-12-29 Morton Coatings Inc Hurtigtoerkende vannbasert vegmerkingsmaling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2073609B (en) * 1980-04-14 1984-05-02 Ici Ltd Coating process
ATE39331T1 (de) * 1982-03-18 1989-01-15 Basf Corp Verfahren zum aufbringen eines mehrschichtigen ueberzuges auf eine unterlage und auf diese weise beschichtete unterlage.
GB8613408D0 (en) * 1986-06-03 1986-07-09 Crown Decorative Prod Ltd Thickeners

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448326B1 (en) 1991-03-03 2002-09-10 Basf Coatings Ag Mixer system for the preparation of water-thinnable coating compositions
DE4110520C5 (de) * 1991-03-30 2005-10-20 Basf Coatings Ag Mischsystem zur Herstellung wasserverdünnbarer Überzugsmittel
DE4338265C1 (de) * 1993-11-10 1994-12-08 Herberts Gmbh Verfahren zur Beschichtung im Coil Coating Verfahren unter Verwendung von Überzugsmitteln auf der Basis organischer Lösemittel

Also Published As

Publication number Publication date
CA2004987A1 (en) 1990-06-09
WO1990006187A1 (de) 1990-06-14
ZA899022B (en) 1990-08-29
AU4644189A (en) 1990-06-26

Similar Documents

Publication Publication Date Title
EP0507819B2 (de) Verwendung eines Verfahrens zur Herstellung eines mehrschichtigen Überzuges
EP0521040B1 (de) Verfahren zur herstellung einer mehrschichtigen reparaturlackierung
EP0521928B1 (de) Verfahren zur herstellung einer mehrschichtigen lackierung und wässriger lack
DE19722862C1 (de) Wäßriger Lack und dessen Verwendung zur Herstellung einer zweischichtigen Lackierung
EP0730613B1 (de) Verfahren zur herstellung einer zweischichtigen lackierung und wässrige lacke
EP0256540B1 (de) Wässriges Überzugsmittel, Verfahren zu seiner Herstellung und dessen Verwendung
EP0447428B1 (de) Verfahren zur herstellung eines mehrschichtigen überzuges, wasserverdünnbare beschichtungszusammensetzungen, wasserverdünnbare emulsionspolymere und verfahren zur herstellung von wasserverdünnbaren emulsionspolymeren
EP0593454B1 (de) Verfahren zur herstellung einer mehrschichtigen lackierung und für dieses verfahren geeignete wässrige basislacke
EP0787159B1 (de) Polyurethanmodifiziertes polyacrylat
EP0581211B1 (de) Wässriges Überzugsmittel, Verfahren zu dessen Herstellung und dessen Verwendung bei Verfahren zur Mehrschichtlackierung
EP0521919B1 (de) Verfahren zur herstellung einer mehrschichtigen lackierung und für dieses verfahren geeignete wässrige basislacke
EP0297576A1 (de) Verfahren zur Herstellung eines Mehrschichtüberzuges und hierfür geeignetes wässriges Überzugsmittel
EP0960174B1 (de) Universell einsetzbare pigmentpasten und ihre verwendung zur herstellung von wässrigen lacken
EP0653470B2 (de) Physikalisch trocknende Überzugsmittel auf wässriger Basis und deren Verwendung
DE4115042A1 (de) Physikalisch trocknendes ueberzugsmittel auf waessriger basis und dessen verwendung
EP0662992B1 (de) Mischsystem zur herstellung wasserverdünnbarer überzugsmittel
DE3841541A1 (de) Verfahren zur herstellung einer mehrschichtigen lackierung, wasserverduennbarer lack, verfahren zur herstellung von vernetzten polymermikroteilchen und vernetzte polymermikroteilchen
EP0720637B1 (de) Verfahren zur herstellung von decklackschichten und wässrige lacke
EP0670867A1 (de) Verfahren zum grundieren oder einschichtigen lackieren von kunststoffen mit einem wässrigen beschichtungsmittel
DE4322006A1 (de) Verfahren zur Herstellung von Korrosionsschutzgrundierungs- und/oder Füllerschichten

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee