DE3811388C1 - Method for the ion beam treatment and coating of powders - Google Patents

Method for the ion beam treatment and coating of powders

Info

Publication number
DE3811388C1
DE3811388C1 DE19883811388 DE3811388A DE3811388C1 DE 3811388 C1 DE3811388 C1 DE 3811388C1 DE 19883811388 DE19883811388 DE 19883811388 DE 3811388 A DE3811388 A DE 3811388A DE 3811388 C1 DE3811388 C1 DE 3811388C1
Authority
DE
Germany
Prior art keywords
powder
powders
coating
vacuum
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE19883811388
Other languages
German (de)
Inventor
Hartmut 7300 Esslingen De Frey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lsg Loet- und Schweissgeraete 7307 Aichwald De GmbH
Original Assignee
Lsg Loet- und Schweissgeraete 7307 Aichwald De GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lsg Loet- und Schweissgeraete 7307 Aichwald De GmbH filed Critical Lsg Loet- und Schweissgeraete 7307 Aichwald De GmbH
Priority to DE19883811388 priority Critical patent/DE3811388C1/en
Application granted granted Critical
Publication of DE3811388C1 publication Critical patent/DE3811388C1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The invention relates to a method for ion beam treatment and coating of diverse powders (grain size < 1 mu m), in which the powder circulates continuously in a vacuum chamber and is bombarded in free fall by means of ions for the purpose of implantation, cleaning, coating or amorphisation, or is sputtered or vapour deposited by means of a vacuum coating method, and is subsequently filled in vacuum into a container for the purpose of further processing. The conveying device consists of a vibratory hopper conveyor and two vibrating chutes for producing powder curtains and accumulating powder or filling powder.

Description

Die Erfindung betrifft ein Verfahren zur kontinuierlichen Ionenstrahl­ behandlung und Beschichtung von feinkörnigen Pulvern (Korngröße <1 µm), aus denen durch Sintern oder Heißpressen Formkörper hergestellt werden.The invention relates to a method for continuous ion beam treatment and coating of fine-grained powders (grain size <1 µm), from which shaped articles are produced by sintering or hot pressing getting produced.

Bei den bisher bekannten Verfahren zur Ionenstrahlbehandlung von feinkörnigen Pulvern mittels Hochstromionenquellen wird das Pulver auf einer Substratunterlage fein verteilt und dann von Ionen beschossen. Ein solcher Prozeß weist die folgenden Nachteile auf:In the previously known methods for ion beam treatment of The powder becomes fine-grained powders using high-current ion sources finely distributed on a substrate and then of ions shot at. Such a process has the following disadvantages:

  • - Das Pulver lädt sich elektrostatisch auf;- The powder charges itself electrostatically;
  • - das Pulver muß, damit es statistisch allseitig behandelt werden kann, gewendet werden;- The powder has to be treated statistically on all sides can be turned;
  • - das Pulver kann im Vakuum nur unter Schwierigkeiten abgepackt werden;- The powder can be packed in a vacuum only with difficulty will;
  • - die behandelbaren Materialmengen sind sehr gering.- The amount of material that can be treated is very small.

Ein Umwälzvorgang im Vakuum zur Erzeugung eines dünnen Pulvervorhangs zur Ionenstrahlbehandlung mit einer großflächigen Ionenquelle mit beliebig einstellbarer Ionenextraktionsspannung einschließlich des Abpackens des behandelten Pulvers im Vakuum ist nicht bekannt.A vacuum circulating process to create a thin powder curtain for ion beam treatment with a large ion source arbitrarily adjustable ion extraction voltage including the It is not known to pack the treated powder in vacuo.

Eine kontinuierliche Beschichtungsmethode von feinkörnigen Pulvern mittels Vakuumverdampfung von Aluminium und Tantal wurde im GB 20 55 500 A beschrieben. Der kleinste mittlere Durch­ messer der Pulverpartikelchen betrug lt. dieser allerdings 13 µm.A continuous coating method of fine-grain powders by means of vacuum evaporation of aluminum and tantalum GB 20 55 500 A described. The smallest mean through According to this, the powder particle size was 13 µm.

Der Pulverumlauf wird ferner in der aufgeführten Patentschrift durch die Ausnutzung der Zentrifugalkraft erreicht, Fig. 5. Dies führt bei Pulvern, die eine nicht ganz gleichmäßige Pulverpartikelgröße haben, zu einer Entmischung. Die in der aufgeführten Patentschrift beschriebene Vorrichtung, Fig. 5, läßt sich auch nur zur Beschichtung von Pulvern verwenden; eine Behandlung mit Ionenstrahlen, Laserstrahlen usw. ist nicht möglich, da der Pulvervorhang im Inneren der Vorrichtung zylinderförmig-hohl gebildet wird.The powder circulation is also in the listed patent exploitation of centrifugal force is achieved, Fig. 5. This leads to Powders that have a not quite uniform powder particle size, to segregation. The in the listed patent The device described, FIG. 5, can also only be used for coating use of powders; treatment with ion beams, laser beams etc. is not possible because the powder curtain inside the device cylindrical-hollow is formed.

Im Gegensatz dazu wird bei der vorliegenden Erfindung der freifallende Pulvervorhang mittels eines vibrierenden Wendelförderers und einer vibrierenden Doppelschüttrinne erzeugt. Durch diese Anordnung wird das Pulver zum einen kontinuierlich ohne Drehbewegungen im Vakuum gefördert, zum anderen zu einem Vorhang von der oberen Schüttelrinne verteilt, der dann in die untere Schüttelrinne rieselt und auf dem Weg nach unten in der gewünschten Weise behandelt. Die untere Schüttelrinne leitet das Pulver wieder dem Wendelförderer zu. Nach einer gewünschten Anzahl von Umläufen kann die untere Schüttel­ rinne gekippt und das behandelte Pulver in einen bereitstehenden Behälter gefüllt werden, der sich im Vakuum verschließen läßt. Somit kann das behandelte Pulver ohne Luftkontakt weiterverarbeitet werden (vgl. Figur).In contrast, in the present invention, the free-fall Powder curtain using a vibrating bowl feeder and a  vibrating double chute. This arrangement will the powder on the one hand continuously without rotating movements in a vacuum promoted, on the other hand to a curtain from the upper shaking channel distributed, which then trickles into the lower shaking channel and on the Way down treated in the way you want. The lower one Shaking trough feeds the powder back to the spiral conveyor. After a desired number of rounds, the lower shaker can channel tipped and the treated powder into a ready Containers can be filled, which can be closed in a vacuum. The treated powder can thus be processed without air contact be (see figure).

Mit dem Verfahren lassen sich Pulver oberflächlich durch Ionenbeschuß reinigen, es lassen sich z. B. Oxidschichten von Borid-Pulvern entfernen, die bekanntermaßen das Sinterverhalten negativ beeinflussen. Neben der oberflächlichen Reinigung bietet die Aktivierung von Pulvern durch Erzeugung einer oberflächennahen amorphen Schicht (die entsteht, wenn Ionen hoher Energie auf die Pulveroberfläche auftreffen) eine Möglichkeit, die Eigenschaften gesinterter Formkörper zu verändern. Beim Sintern von amorphem Bor ist z. B. schon seit langem eine Temperaturerniedrigung gegenüber kristallinem Bor bekannt (Brodhag, C. und F. Thevenot: Tbilisi 1984, Bairamshivili, I.A. et. al: Sov. Powd. Metall. Met. Cer., 23, 194, 1984).With the method powder can be superficially by ion bombardment clean, z. B. remove oxide layers from boride powders, which are known to negatively influence the sintering behavior. In addition to the superficial cleaning offers the activation of powders by creating a near-surface amorphous layer (which is created when high energy ions hit the powder surface) a Possibility to change the properties of sintered moldings. When sintering amorphous boron z. B. has long been one Lowering of temperature compared to crystalline boron is known (Brodhag, C. and F. Thevenot: Tbilisi 1984, Bairamshivili, I.A. et. al: Sov. Powd. Metal. Met. Cer., 23, 194, 1984).

Die Beschichtung von Pulvern ist eine weitere Methode, die Eigen­ schaften von Sinterkörpern zu verbessern. So stehen z. B. bei der Herstellung von boridischen Hartstoffen mit zäher metallischer Matrix immer wieder chemische Reaktionen bzw. schlechte Benetzungsverhält­ nisse im Wege. Eine Reinigung des Pulvers mit einem Ionenstrahl mit nachfolgender Beschichtung könnte nicht nur erwünschte instabile bzw. metastabile Materialkombinationen erzeugen, sondern auch schlechtbe­ netzende Metalle, die sonst üblicherweise über einen Tränkprozeß aufgetragen werden müßten, in definierter Schichtdicke auftragen. Anwendungen könnten z. B. Cu auf B4C oder Ni auf TiB2 sein.The coating of powders is another method to improve the properties of sintered bodies. So are z. B. in the production of boride hard materials with tough metallic matrix chemical reactions or poor wetting ratios in the way. Cleaning the powder with an ion beam with subsequent coating could not only produce desired unstable or metastable material combinations, but also poorly wetting metals, which would otherwise normally have to be applied via an impregnation process, in a defined layer thickness. Applications could e.g. B. Cu on B 4 C or Ni on TiB 2 .

Eine weitere Anwendung der Erfindung ist die Herstellung definierter Mischkristalle. Die zur Erhöhung der Oxidationsbeständigkeit erfor­ derliche Mischkristallbildung z. B. von B4C mit Si (Telle, R.: Aufbau und Sinterverhalten mehrphasiger Keramiken im Hartstoffsystem B4C-Si, Dissertation, Stuttgart 1985), die bislang nur unkontrolliert über die Gasphase bzw. durch ein Sintern mit Si-Überschuß möglich ist, kann in exakt stöchiometrischer Weise durch Beschuß mit Si-Ionen bereits beim Pulver vollzogen werden. Ein umständliches Abtrennen von überschüssigem Si durch HF-Laugung etc. würde entfallen. Dadurch ist ein aktivierter Sinterprozeß für solche Pulver zu erwarten. Ein weiteres Beispiel ist die oberflächliche Mischkristall­ bildung von TiB2 mit W oder Zr, die erwiesenermaßen zu Erhöhungen der Rißfestigkeit aufgrund von oberflächlichen Druckspannungen (Rißab­ lenkung) führt. Bislang ist die Herstellung solcher Mischkristall­ systeme nur durch Reaktionssintern mit WC, TaC oder ZrC möglich, was teilweise aufgrund des Aufbereitungsprozesses zu unerwünschten ternären Phasen führt.Another application of the invention is the production of defined mixed crystals. The necessary to increase the oxidation resistance mixed crystal formation z. B. of B 4 C with Si (Telle, R .: structure and sintering behavior of multi-phase ceramics in the hard material system B 4 C-Si, dissertation, Stuttgart 1985), which so far only possible in an uncontrolled manner via the gas phase or by sintering with excess Si can be carried out in an exactly stoichiometric manner by bombardment with Si ions already in the powder. A cumbersome removal of excess Si by HF leaching etc. would be eliminated. As a result, an activated sintering process can be expected for such powders. Another example is the superficial mixed crystal formation of TiB 2 with W or Zr, which has been proven to lead to increases in crack resistance due to superficial compressive stresses (crack deflection). So far, the production of such mixed crystal systems has only been possible by reaction sintering with WC, TaC or ZrC, which partly leads to undesirable ternary phases due to the preparation process.

Die Erfindung bietet auch die Möglichkeit der reaktiven Beschichtung mittels PVD-Methoden oder durch Ionenstrahlbehandlung mit anderen keramischen Phasen. Beispiele dafür sind:The invention also offers the possibility of reactive coating using PVD methods or ion beam treatment with others ceramic phases. Examples include:

  • - Beschichtung von Hartstoffpulvern mit keramischen Sinterhilfsmitteln (B4C auf SiC, SiC auf B4C, SiB x auf B4C, TiB2 auf B4C, WC auf TiB2, TiC auf SiC, BN auf SiC), die auch als Kornfeinungsmittel wirken können.- Coating of hard material powders with ceramic sintering aids (B 4 C on SiC, SiC on B 4 C, SiB x on B 4 C, TiB 2 on B 4 C, WC on TiB 2 , TiC on SiC, BN on SiC), which also can act as a grain refiner.
  • - Auftragung keramischer Schichten auf großflächigen Substraten zum Diffusionsschweißen (z. B. TiB2 auf B4C als Grenzschicht zu WC-Hart­ metall als Stützmaterial).- Application of ceramic layers on large-area substrates for diffusion welding (e.g. TiB 2 on B 4 C as a boundary layer to WC hard metal as a support material).
  • - Oberflächenvergütung von Schleifkörnungen: z. B. B4C oder TiB2 auf SiC oder WC. - Surface treatment of abrasive grains: e.g. B. B 4 C or TiB 2 on SiC or WC.
  • Bezugszeichenliste 1 Wendelförderer
    2 Schüttelrinne
    3 Ionenquelle bzw. Beschichtungseinrichtung
    4 Bewegliche Schüttelrinne
    5 Vakuumdichter Transportbehälter
    6 Vakuumrezipient
    1 spiral conveyor
    2 shaking channels
    3 ion source or coating device
    4 Movable shaking trough
    5 vacuum-tight transport container
    6 vacuum recipient

Claims (4)

1. Verfahren zur Ionenstrahlbehandlung und Beschichtung von freifallenden Pulvern aus isolierenden, halbleitenden und metallischen Materialien im Vakuum, dadurch gekennzeichnet,
daß ein dünner Pulvervorhang mittels eines Wendelförderers und einer Schüttelrinne erzeugt und direkt der Emission einer Verdampfer-, Kathodenzerstäubungs- oder großflächigen Ionenquelle mit beliebig eingestellter Ionenextraktionsspannung ausgesetzt wird;
daß die Pulver kontinuierlich im geschlossenen Kreislauf umgewälzt werden;
daß die behandelten Pulver im Vakuum durch Drehen einer zweiten Schüttelrinne ohne Kontakt mit der Umgebungsluft in einen Behälter abgefüllt werden.
1. Process for ion beam treatment and coating of free-falling powders made of insulating, semiconducting and metallic materials in a vacuum, characterized in that
that a thin powder curtain is produced by means of a spiral conveyor and a shaking channel and is directly exposed to the emission of an evaporator, sputtering or large-area ion source with an arbitrarily set ion extraction voltage;
that the powders are circulated continuously in a closed circuit;
that the treated powders are filled into a container in vacuo by rotating a second shaking channel without contact with the ambient air.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei der Ionenbehandlung die Ionen zur Verhinderung von Aufladungs­ effekten der Pulver mittels einer Elektronenquelle neutralisiert werden.2. The method according to claim 1, characterized in that that in ion treatment, the ions to prevent charging effects of the powder neutralized by means of an electron source will. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zur Neutralisierung von Aufladungseffekten der Pulver die zweite Schüttelrinne auf negatives Potential gelegt wird.3. The method according to claim 1, characterized in that to neutralize the charging effects of the powder, the second Shaking trough is set to negative potential. 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Pulvervorhang zur Desorption adsorbierter Verunreinigungen auf der Pulveroberfläche mittels Strahlung von Lasern, UV-Lampen oder Infrarotquellen behandelt wird.4. The method according to claim 1, characterized in that the powder curtain for desorption of adsorbed contaminants on the powder surface using radiation from lasers, UV lamps or infrared sources is treated.
DE19883811388 1988-04-05 1988-04-05 Method for the ion beam treatment and coating of powders Expired DE3811388C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19883811388 DE3811388C1 (en) 1988-04-05 1988-04-05 Method for the ion beam treatment and coating of powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19883811388 DE3811388C1 (en) 1988-04-05 1988-04-05 Method for the ion beam treatment and coating of powders

Publications (1)

Publication Number Publication Date
DE3811388C1 true DE3811388C1 (en) 1988-12-29

Family

ID=6351401

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19883811388 Expired DE3811388C1 (en) 1988-04-05 1988-04-05 Method for the ion beam treatment and coating of powders

Country Status (1)

Country Link
DE (1) DE3811388C1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340703A1 (en) * 2003-09-04 2005-03-31 Schott Ag Device for vacuum coating substrates used in the production of optoelectronic components comprises a falling and ejecting path for the substrates, and a unit for vacuum coating the substrates during falling and ejecting along the path
GB2471102A (en) * 2009-06-17 2010-12-22 Mantis Deposition Ltd Apparatus for producing cored nanoparticles
CN106929808A (en) * 2015-12-29 2017-07-07 上海朗亿功能材料有限公司 A kind of superfine powder magnetic-controlled sputtering coating equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT303487B (en) * 1969-03-13 1972-11-27 Ballotini Europ Deutschland Gm Process for applying coatings of metal or metal oxides to substrate particles
DE2516747A1 (en) * 1975-04-16 1976-10-28 Battelle Institut E V PROCESS FOR MANUFACTURING DUCTILES AND INCREDIBLY STABLE SUPRALCONDUCTIVE MATERIALS
DE2919869A1 (en) * 1978-05-25 1979-11-29 Int Standard Electric Corp DEVICE FOR COATING POWDERED MATERIAL WITH A METAL LAYER
GB2056500A (en) * 1979-08-09 1981-03-18 Standard Telephones Cables Ltd Coating powder with valve- metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT303487B (en) * 1969-03-13 1972-11-27 Ballotini Europ Deutschland Gm Process for applying coatings of metal or metal oxides to substrate particles
DE2516747A1 (en) * 1975-04-16 1976-10-28 Battelle Institut E V PROCESS FOR MANUFACTURING DUCTILES AND INCREDIBLY STABLE SUPRALCONDUCTIVE MATERIALS
DE2919869A1 (en) * 1978-05-25 1979-11-29 Int Standard Electric Corp DEVICE FOR COATING POWDERED MATERIAL WITH A METAL LAYER
GB2056500A (en) * 1979-08-09 1981-03-18 Standard Telephones Cables Ltd Coating powder with valve- metal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340703A1 (en) * 2003-09-04 2005-03-31 Schott Ag Device for vacuum coating substrates used in the production of optoelectronic components comprises a falling and ejecting path for the substrates, and a unit for vacuum coating the substrates during falling and ejecting along the path
DE10340703B4 (en) * 2003-09-04 2005-12-01 Schott Ag Apparatus and method for seamless coating of substrates and coated substrate
GB2471102A (en) * 2009-06-17 2010-12-22 Mantis Deposition Ltd Apparatus for producing cored nanoparticles
CN106929808A (en) * 2015-12-29 2017-07-07 上海朗亿功能材料有限公司 A kind of superfine powder magnetic-controlled sputtering coating equipment
CN106929808B (en) * 2015-12-29 2019-05-07 上海朗亿功能材料有限公司 A kind of superfine powder magnetic-controlled sputtering coating equipment

Similar Documents

Publication Publication Date Title
EP0004177B2 (en) A method of metal coating of diamond or cubic boron nitride particles and an abrasive tool containing the particles thus coated
US4368083A (en) Process for doping semiconductors
Tsaur et al. Ion‐beam‐induced silicide formation
DE60130001T2 (en) POROUS GRADUATES WITH REDUCED PARTICLE LOSS AND METHOD FOR THE PRODUCTION THEREOF
Takano et al. Nitrogenation of various transition metals by N+ 2-ion implantation
DE2252343C3 (en) Process for the production of artificial diamonds
EP0574119A2 (en) Ti-W sputtering target and method of manufacturing the same
DE1521262B2 (en) METHOD OF APPLYING A METAL LAYER TO DIAMOND
Tsaur et al. Ion-beam-induced intermixing of surface layers
Pranevičius Structure and properties of deposits grown by ion-beam-activated vacuum deposition techniques
EP0288001B1 (en) Process for producing superconducting thin film and device therefor
DE3716852C1 (en) Sputtering target for the production of optically transparent layers and method for producing these targets
DE3811388C1 (en) Method for the ion beam treatment and coating of powders
JPS6063372A (en) Manufacture of thin boron nitride film of high hardness
DE102012209293B3 (en) Coating a substrate, comprises arranging substrate to be coated over cutting surface of target, atomizing coating material by sputtering under e.g. inert gas, and modifying distribution of target components by high energy pulsed magnetron
Majni et al. Compounds in the Pd‐Si and Pt‐Si system obtained by electron bombardment and post‐thermal annealing
Habib et al. Physical parameters affecting deposition rates of binary alloys in a magnetron sputtering system
Brown et al. Synthesis of unattainable ion implantation profiles—‘Pseudo-implantation’
IE42143B1 (en) Superhard martensite and method of making the same
Smith Metal ion injection into metals I. trapped amounts, sputtering coefficients and the sputtering model of saturation
JPS6326349A (en) Formation of cubic boron nitride film
CH599658A5 (en) Electrically conducting material, esp. silver contg. cadmium oxide
Zhang et al. Dynamic mixing deposition of niobium nitride films by cathodic arc plasma in ambient nitrogen
DE3704328A1 (en) Layered material or layered workpiece and process for the production thereof
DE102018112335A1 (en) magnetron sputtering

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
D1 Grant (no unexamined application published) patent law 81
8322 Nonbinding interest in granting licenses declared
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee
8370 Indication of lapse of patent is to be deleted
8339 Ceased/non-payment of the annual fee