DE3742331C2 - - Google Patents

Info

Publication number
DE3742331C2
DE3742331C2 DE19873742331 DE3742331A DE3742331C2 DE 3742331 C2 DE3742331 C2 DE 3742331C2 DE 19873742331 DE19873742331 DE 19873742331 DE 3742331 A DE3742331 A DE 3742331A DE 3742331 C2 DE3742331 C2 DE 3742331C2
Authority
DE
Germany
Prior art keywords
optical waveguide
temperature
glass
coupler
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19873742331
Other languages
German (de)
Other versions
DE3742331A1 (en
Inventor
Hartmut Dr. 3406 Bovenden De Gruhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DR.SCHUETTEN GMBH, MATZINGEN, CH
Original Assignee
OPTOCOM GESELLSCHAFT fur OPTOELEKTRONISCHE DATENVERARBEITUNG und SENSORIK MBH 6900 HEIDELBERG DE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPTOCOM GESELLSCHAFT fur OPTOELEKTRONISCHE DATENVERARBEITUNG und SENSORIK MBH 6900 HEIDELBERG DE filed Critical OPTOCOM GESELLSCHAFT fur OPTOELEKTRONISCHE DATENVERARBEITUNG und SENSORIK MBH 6900 HEIDELBERG DE
Priority to DE19873742331 priority Critical patent/DE3742331A1/en
Publication of DE3742331A1 publication Critical patent/DE3742331A1/en
Application granted granted Critical
Publication of DE3742331C2 publication Critical patent/DE3742331C2/de
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2852Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using tapping light guides arranged sidewardly, e.g. in a non-parallel relationship with respect to the bus light guides (light extraction or launching through cladding, with or without surface discontinuities, bent structures)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Auskoppeln von mindestens sichtbarem Licht aus einem aus einem Glaskern und einem Mantel aus organischem Material bestehenden ersten Lichtwellenleiter in einen zweiten Lichtwellenleiter mittels der Temperatur in einem Koppler zur Lichtmodulation oder zur Temperaturmessung bei großem Meßbereich nach dem Oberbegriff des Anspruchs 1.The invention relates to a method for decoupling at least visible light from one consisting of a glass core and a coat organic material existing first optical fiber in a second optical fiber using the temperature in a coupler for light modulation or for temperature measurement with a large measuring range according to the preamble of claim 1.

Ein solches Verfahren zur Temperaturmessung ist aus der US 41 51 747 bekannt.Such a method for temperature measurement is known from US 41 51 747 known.

Jedoch ist bei den dort verwendeten Lichtwellenleitern die Temperaturmessung auf den Bereich hoher Temperaturen beschränkt. However, with the optical fibers used there Temperature measurement limited to the range of high temperatures.  

In der GB 20 73 439 wird ein Verfahren zur Temperaturmessung mit Hilfe von Lichtwellenleitern angegeben. Jedoch ist bei den dabei verwendeten Lichtwellenleitern der Meßbereich auf Werte T < -100°C eingeschränkt, da bei noch tieferen Temperaturen die Dämpfung des Lichtwellenleiters so stark zunimmt, daß das Signal nicht mehr meßbar ist. Ein Lichtwellenleiter nach der GB 20 73 439 ist 9 m lang.GB 20 73 439 describes a method for temperature measurement with the aid of optical fibers specified. However, with the optical fibers used the measuring range is limited to values T <-100 ° C, since at lower temperatures, the attenuation of the optical fiber is so strong increases that the signal is no longer measurable. An optical fiber according to GB 20 73 439 it is 9 m long.

Aus der GB 21 84 859 ist bekannt, daß sich in Form eines bikonischen Tapers ein temperaturgesteuerter Koppler innerhalb eines monomoden Lichtwellenleiters herstellen läßt. Jedoch muß dabei der physikalische Aufbau des Lichtwellenleiters verändert werden.From GB 21 84 859 it is known that in the form of a biconical Tapers is a temperature controlled coupler within a monomode fiber can be made. However, the physical Structure of the optical fiber can be changed.

Verwendet man den bikonischen Taper nach der GB 21 84 859 zur Temperaturmessung, so ist man im Meßbereich des IntervallsIf one uses the biconical taper according to GB 21 84 859 for temperature measurement, then one in the measuring range of the interval

29°CT55°C29 ° CT55 ° C

beschränkt.limited.

Der bikonische Taper nach der GB 21 84 859 ist auch als Modulator verwendbar.The biconical taper according to GB 21 84 859 is also usable as a modulator.

Ausgehend von einem Verfahren gemäß dem Oberbegriff des Anspruchs 1 ist es Aufgabe der Erfindung, das Verfahren zur Verwendung in einem größeren Temperatur- und Wellenlängenbereich weiterzubilden, ohne daß der mechanische Aufbau des ersten Lichtwellenleiters geändert zu werden braucht.Starting from a method according to the preamble of the claim 1 is an object of the invention, the method for use in to further develop a larger temperature and wavelength range, without the mechanical structure of the first optical fiber needs to be changed.

Diese Aufgabe wird bei dem Verfahren gemäß dem Oberbegriff des Hauptanspruchs durch den kennzeichnenden Teil des Hauptanspruchs gelöst. Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen näher gekennzeichnet. Ein ca. 1 m langes Stück des Lichtwellenleiters ermöglicht Temperaturmessungen im Bereich -196°C<T<+20°C.This task is in the process according to the preamble of Main claim through the characterizing part of the main claim solved. Further advantageous embodiments of the invention are characterized in more detail in the subclaims. An approx 1 m long piece of the optical fiber enables temperature measurements in the area -196 ° C <T <+ 20 ° C.

Die Erfindung wird anhand der Fig. 1-3, insbesondere anhand des Ausführungsbeispiels nach der Fig. 3, näher erläutert.The invention is explained with reference to FIGS. 1-3, and in particular reference to the embodiment of FIG. 3 in more detail.

Fig. 1 zeigt das Temperaturverhalten der Brechungsindizes, Fig. 1 shows the temperature behavior of the refractive indices,

Fig. 2 zeigt das Übertragungsverhalten der Lichtwellenleiter und Fig. 2 shows the transmission behavior of the optical fibers and

Fig. 3 zeigt eine Anordnung zum Auskoppeln optischer Strahlung. Fig. 3 shows an arrangement for coupling optical radiation.

In dem in Fig. 1 gezeigten Diagramm ist der Brechungsindex n über der Temperatur T aufgetragen. Der Brechungsindex des Quarz-Kerns nK ist bei Raumtemperatur (20°C), entsprechend dem rechten Ende der eingetragenen Kurven größer als der Brechungsindex des Silikon-Mantels nM der hier zugrundegelegten Multimode-Stufenindexfaser PCS der Fa. Quartz in Bad Pyrmont. Der Unterschied wird mit fallender Temperatur kleiner und strebt bei einer Grenztemperatur Tg gegen Null. Ab dieser Temperatur ist eine Führung von optischer Strahlung im Kern nicht mehr möglich, da keine Totalreflexion an der Grenzfläche zwischen Kern und Mantel auftreten kann.The refractive index n is plotted against the temperature T in the diagram shown in FIG. 1. The refractive index of the quartz core n K at room temperature (20 ° C), corresponding to the right end of the curves, is greater than the refractive index of the silicone cladding n M of the multimode step index fiber PCS from Quartz in Bad Pyrmont. The difference becomes smaller as the temperature falls and tends towards zero at a limit temperature T g . From this temperature onwards, it is no longer possible to guide optical radiation in the core, since no total reflection can occur at the interface between the core and the jacket.

Die Diagramme in Fig. 2 zeigen die transmittierte Lichtleistung P als Funktion der mit flüssiger Luft auf -196°C abgekühlten Länge l des Lichtwellenleiters PCS. Dabei ist die Wellenlänge des transmittierten Lichtes ein wesentlicher Parameter. Fig. 2a (2b) gilt für =0,7425 µm (1,5 µm). Bei Fig. 2c wurde bei der Messung das kontinuierliche Spektrum eines schwarzen Strahlers mit T=2000 K (0,4 µm<λ<2,2 µm) verwendet.The diagrams in FIG. 2 show the transmitted light power P as a function of the length l of the optical waveguide PCS that has cooled to -196 ° C. with liquid air. The wavelength of the transmitted light is an essential parameter. Fig. 2a (2b) applies to = 0.7425 µm (1.5 µm). In Fig. 2c, the continuous spectrum of a black body with T = 2000 K (0.4 micrometers <λ <2.2 microns) was used in the measurement.

Die Fig. 3 zeigt eine Anordnung zum Auskoppeln von Licht an einer beliebigen Stelle des Lichtwellenleiters 1, ohne diesen mechanisch zu beschädigen. Der Lichtwellenleiter 1 besteht aus dem Quarz-Kern 11 und dem Silikon-Mantel 12. Eine Klemme 2 umschließt mit ihren Glasbacken 21 und 22 den Lichtwellenleiter 1. Der Mantel 12 und die Innenseiten der Glasbacken 21 und 22 sind mit einem unter der eingetragenen Schutzmarke Tefzel bekannten transparenten Kunststoff beschichtet. Fig. 3 shows an arrangement for extracting light at any point of the optical waveguide 1, to damage mechanically without this. The optical waveguide 1 consists of the quartz core 11 and the silicone jacket 12 . A terminal 2 encloses the optical waveguide 1 with its glass jaws 21 and 22 . The jacket 12 and the inside of the glass jaws 21 and 22 are coated with a transparent plastic known under the registered trademark Tefzel.

In einer der Glasbacken mündet ein Auskoppel-Lichtwellenleiter 3 mit dem Kern 31 und dem Mantel 32.An outcoupling optical waveguide 3 with the core 31 and the jacket 32 opens into one of the glass jaws.

Über ein Rohrsystem 4, welches aus einem inneren Rohr 41 und einem konzentrisch zu diesem angeordneten äußeren Rohr 42 besteht, wird die zur Kühlung notwendige flüssige Luft zu- (inneres Rohr 41) und abgeführt (äußeres Rohr 42).Via a pipe system 4 , which consists of an inner pipe 41 and an outer pipe 42 arranged concentrically to this, the liquid air required for cooling is supplied (inner pipe 41 ) and discharged (outer pipe 42 ).

Claims (4)

1. Verfahren zum Auskoppeln von mindestens sichtbarem Licht aus einem aus einem Glaskern und einem Mantel aus organischem Material bestehenden ersten Lichtwellenleiter in einen zweiten Lichtwellenleiter mittels der Temperatur in einem Koppler zur Lichtmodulation oder zur Temperaturmessung bei großem Meßbereich, dadurch gekennzeichnet, daß das Glas des Kerns Quarz und das organische Material des Mantels Silikon ist, daß der Koppler gekühlt wird, daß der erste Lichtwellenleiter im Koppler unversehrt ist, daß tiefe Temperaturen gemessen werden und auch IR-Licht verwendet werden kann.1. A method for decoupling at least visible light from a first optical waveguide consisting of a glass core and a jacket made of organic material into a second optical waveguide by means of the temperature in a coupler for light modulation or for temperature measurement in a large measuring range, characterized in that the glass of the core Quartz and the organic material of the silicone sheath is that the coupler is cooled, that the first optical waveguide in the coupler is intact, that low temperatures are measured and that IR light can also be used. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Koppler eine von flüssiger Luft durchströmte Klemme (2) mit Glasbacken (21, 22) umfaßt, in die der zweite Lichtwellenleiter (3) eingeführt ist und deren Glasbacken den ersten Lichtwellenleiter (1) umschließen.2. The method according to claim 1, characterized in that the coupler comprises a clamp ( 2 ) with glass jaws ( 21, 22 ) through which liquid air flows, into which the second optical waveguide ( 3 ) is inserted and the glass jaws of the first optical waveguide ( 1 ) enclose. 3. Verfahren nach dem Anspruch 1, dadurch gekennzeichnet, daß der erste Lichtwellenleiter (1) der Temperatur-Sensor und kürzer als ein Meter ist.3. The method according to claim 1, characterized in that the first optical waveguide ( 1 ) is the temperature sensor and shorter than one meter. 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß Temperaturen zwischen +20°C und -196°C gemessen werden.4. The method according to claim 3, characterized in that Temperatures between + 20 ° C and -196 ° C can be measured.
DE19873742331 1987-12-14 1987-12-14 Method for influencing the conducting properties of optical waveguides as a function of temperature Granted DE3742331A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19873742331 DE3742331A1 (en) 1987-12-14 1987-12-14 Method for influencing the conducting properties of optical waveguides as a function of temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873742331 DE3742331A1 (en) 1987-12-14 1987-12-14 Method for influencing the conducting properties of optical waveguides as a function of temperature

Publications (2)

Publication Number Publication Date
DE3742331A1 DE3742331A1 (en) 1989-06-29
DE3742331C2 true DE3742331C2 (en) 1992-12-10

Family

ID=6342563

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19873742331 Granted DE3742331A1 (en) 1987-12-14 1987-12-14 Method for influencing the conducting properties of optical waveguides as a function of temperature

Country Status (1)

Country Link
DE (1) DE3742331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19702126A1 (en) * 1996-10-11 1998-04-23 Geso Ges Fuer Sensorik Geotech Building safety management system with fibre-optics

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553675A1 (en) * 1992-01-29 1993-08-04 Siemens Aktiengesellschaft Method and device for control of the temperature of a turbine component
DE4242546A1 (en) * 1992-12-16 1994-06-23 Richter Thomas Technical glasses in auto-radial combination for determining physical dimensions
US6151438A (en) * 1998-09-24 2000-11-21 Lucent Technologies Inc. Fiber device having variable refractive index region proximal the core

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151747A (en) * 1978-06-21 1979-05-01 Electric Power Research Institute, Inc. Monitoring arrangement utilizing fiber optics
EP0037266A3 (en) * 1980-03-31 1983-09-14 RAYCHEM CORPORATION (a California corporation) Method and apparatus for controlling the temperature of or indicating the presence of a material by means of a waveguide, heat activatable articles incorporating waveguides; and novel waveguides and a method of making such waveguides
GB2184859B (en) * 1985-12-04 1989-10-11 Gen Electric Plc Fibre optic devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19702126A1 (en) * 1996-10-11 1998-04-23 Geso Ges Fuer Sensorik Geotech Building safety management system with fibre-optics
DE19702126C2 (en) * 1996-10-11 2001-02-08 Geso Ges Fuer Sensorik Geotech Process and device for emergency management in or on buildings, for facility management and for building automation using fiber-optic sensors
DE19702126C5 (en) * 1996-10-11 2008-08-14 Hurtig, Eckart, Dr. Method and device for damage management in or on buildings, for facility management and building automation using fiber optic sensors

Also Published As

Publication number Publication date
DE3742331A1 (en) 1989-06-29

Similar Documents

Publication Publication Date Title
DE3876161T2 (en) MODEL FIELD MODIFYING FIBER OPTICAL COUPLER.
DE2819590C2 (en) Device for measuring the voltage present in a solid body
EP1134566A1 (en) Method for measuring temperature by optical fibre and optical fibre temperature sensor
DE69619850T2 (en) sensor arrangement
DE4310291A1 (en) Optical coupler
EP0267381A2 (en) Device for and use of a fibre-optical sensor to measure minimum extensions
DE3341048A1 (en) FIBER OPTIC THERMOMETER
DE3742331C2 (en)
DE3239011A1 (en) METHOD FOR MANUFACTURING AN OPTICAL COUPLING DEVICE, IN PARTICULAR METHOD FOR REDUCING THE WALL THICKNESS OF SHEETS OF LIGHTWAVE LADDER FIBERGLASS EXISTING FROM QUARTZ GLASS
EP0313128B1 (en) Measuring arrangement for testing a plurality of optical fibres
EP0297669A2 (en) Method for measuring a reflected optical radiation
DE68901727T2 (en) OPTICAL PERFORMANCE.
DE3141904A1 (en) CONNECTOR FOR LIGHTWAVE GUIDE
EP0380801A2 (en) Process for determining the optical loss of optical fibres in reflected light
EP0246691B1 (en) Device for measuring the transmitting damping of an optical fibre
DE69225226T2 (en) LIGHT TRANSFER METHOD
EP0387413B1 (en) Fiber optic beam splitter
DE3133822C2 (en) Arrangement for the optical measurement of high temperatures in closed, hot rooms
EP0274791A1 (en) Method for measuring the curvature dependent specific attenuation height of a light waveguide
DE3045085A1 (en) Temp. sensor using multimode optical fibre - with step index profile and core casing combination of inorganic and organic material
DE2913794C2 (en)
DE19620168C2 (en) Method for producing a sensor head and sensor head for a temperature measuring device
DE3404290A1 (en) Optical plug
DE3913652A1 (en) Device for temperature measurement having a sensor body
DE19523110A1 (en) Fibre-optic liq. refractometer e.g. for soln. concn. monitoring

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: OPTOCOM GESELLSCHAFT FUER OPTOELEKTRONISCHE DATENV

D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: DR.SCHUETTEN GMBH, MATZINGEN, CH

8339 Ceased/non-payment of the annual fee