DE3508469C2 - - Google Patents
Info
- Publication number
- DE3508469C2 DE3508469C2 DE3508469A DE3508469A DE3508469C2 DE 3508469 C2 DE3508469 C2 DE 3508469C2 DE 3508469 A DE3508469 A DE 3508469A DE 3508469 A DE3508469 A DE 3508469A DE 3508469 C2 DE3508469 C2 DE 3508469C2
- Authority
- DE
- Germany
- Prior art keywords
- layer
- laser light
- oxide
- irradiating
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000011521 glass Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000003197 gene knockdown Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/036—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
- H01L31/0392—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
- H01L31/03921—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/0445—PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
- H01L31/046—PV modules composed of a plurality of thin film solar cells deposited on the same substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/0445—PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
- H01L31/046—PV modules composed of a plurality of thin film solar cells deposited on the same substrate
- H01L31/0463—PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Strukturieren von auf einem transparenten Substrat aufgebrachten Schichtfolgen, nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for structuring of applied on a transparent substrate Layer sequences, according to the preamble of the claim 1.
Ein derartiges Verfahren ist aus S. Nakano et al. "New Manufacturing Processes for a-Si Solar Cell Modules", 5th E. C. Photovoltaic Solar Energy Conference, Kavouri (Athen), Oktober 1983, Seiten 712-716, bekannt. Dort wird zur Herstellung einer Solarzelle auf einem Glas substrat zunächst eine geschlossene Schicht aus einem transparenten, elektrisch leitenden Oxid (TCO) nieder geschlagen, welche als Frontseitenelektrode dienen soll. Anschließend wird diese Schicht dadurch strukturiert, daß in regelmäßigen Abständen parallele Bahnen durch Bestrahlung mit Laserlicht wieder entfernt werden. Auf die so strukturierte Oxidschicht wird eine geschlossene Siliziumschicht aufgebracht, die dann anschließend ebenfalls mit Laserlicht so bestrahlt wird, daß streifenförmige Bereiche der amorphen Siliziumschicht entfernt werden. In beiden Fällen wird das Laserlicht von der dem Glassubstrat abgewandten Seite her einge strahlt. Als Laser wird, jedenfalls zur Bestrahlung der amorphen Siliziumschicht, ein YAG-Laser der Wellenlänge λ = 1,06 µm verwendet. Dabei muß die Leistung des Laser strahles genau auf die Dicke der amorphen Silizium schicht abgestellt sein. Nach der geschilderten Be strahlung der amorphen Siliziumschicht liegt eine Struktur vor, bei der auf dem Glassubstrat mit Abstand zueinander parallele Oxidstreifen angeordnet sind, auf denen wiederum parallele Schichtstreifen aus amorphem Silizium liegen, die quer zur Streifenrichtung so weit verschoben sind, daß das Glas in den Lücken zwischen den Oxidstreifen teilweise und ebenso die Oxidstreifen selbst teilweise freiliegen. Anschließend wird auf diese Struktur noch eine Metallschicht aufgebracht, die dann ebenfalls durch Laserbestrahlung strukturiert wird, um als Rückseitenelektrode dienen zu können.Such a method is known from S. Nakano et al. "New Manufacturing Processes for a-Si Solar Cell Modules", 5th EC Photovoltaic Solar Energy Conference, Kavouri (Athens), October 1983, pages 712-716. In order to produce a solar cell on a glass substrate, a closed layer of a transparent, electrically conductive oxide (TCO) is first deposited, which is to serve as the front electrode. This layer is then structured by removing parallel tracks at regular intervals by irradiation with laser light. A closed silicon layer is applied to the oxide layer structured in this way, which is then subsequently also irradiated with laser light in such a way that strip-shaped regions of the amorphous silicon layer are removed. In both cases, the laser light is emitted from the side facing away from the glass substrate. A YAG laser with a wavelength of λ = 1.06 µm is used as the laser, at least to irradiate the amorphous silicon layer. The power of the laser beam must be exactly on the thickness of the amorphous silicon layer. After the described radiation of the amorphous silicon layer, there is a structure in which parallel oxide strips are arranged at a distance from one another on the glass substrate, on which in turn there are parallel layer strips of amorphous silicon which are displaced so far transversely to the strip direction that the glass in the Gaps between the oxide strips are partially exposed and also the oxide strips themselves are partially exposed. A metal layer is then applied to this structure, which is then also structured by laser irradiation in order to be able to serve as a rear-side electrode.
Bei der Bestrahlung der Oxid- sowie der amorphen Sili ziumschicht mit Laserlicht von der dem Glassubstrat abgewandten Seite her ergibt sich nun der Nachteil, daß das durch die Bestrahlung verdampfende Oxid bzw. Silizium gerade in eine Richtung entweichen will, die der Einstrahlungsrichtung des intensiven Laserlichtes entgegengerichtet ist. Dies führt dazu, daß Teile des verdampfenden Materials sich in der näheren Umgebung ganz unkontrolliert wieder niederschlagen können, wo durch die elektrischen Eigenschaften der so hergestell ten Solarzelle beeinträchtigt werden können. So kann in den Randbereichen der amorphen Siliziumschicht, die im allgemeinen eine pin-Struktur aufweisen wird, das gewünschte Dotierungsprofil verwischt werden. Auch können unerwünschte Kurzschlüsse in den fertigen Solar zellen die Folge eines derartigen Herstellungsverfahrens sein.When the oxide and the amorphous sili are irradiated Zium layer with laser light from the glass substrate opposite side, there is now the disadvantage that the oxide or vaporized by the radiation Silicon just wants to escape in a direction that the direction of radiation of the intense laser light is opposite. This leads to parts of the evaporating material in the vicinity to be able to knock down again in an uncontrolled manner through the electrical properties of the thus manufactured ten solar cell can be affected. So can in the edge areas of the amorphous silicon layer, the will generally have a pin structure that desired doping profile are blurred. Also can cause undesirable short circuits in the finished solar cells result from such a manufacturing process be.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren der eingangs genannten Art bereitzustellen, mit dem die gewünschte Schichtstruktur möglichst sauber und möglichst ohne Beeinträchtigung der angestrebten elektrooptischen Eigenschaften hergestellt werden kann.The object of the present invention is therefore a To provide methods of the type mentioned at the outset, with which the desired layer structure is as clean as possible and if possible without affecting the desired electro-optical properties can be produced.
Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß mit dem Laserlicht von der Seite des transparenten Substrats her bestrahlt, zur Bestrahlung der Oxid schicht Laserlicht einer Wellenlänge aus dem Absorp tionsbereich der Oxidschicht und zur Bestrahlung der amorphen Halbleiterschicht Laserlicht einer Wellenlänge aus dem Absorptionsbereich der amorphen Halbleiter schicht gewählt wird.According to the invention, this object is achieved by that with the laser light from the side of the transparent Irradiated substrate, to irradiate the oxide layer laser light of a wavelength from the absorber tion area of the oxide layer and for irradiation of the amorphous semiconductor layer laser light of a wavelength from the absorption area of the amorphous semiconductors layer is selected.
Der oben im Zusammenhang mit dem Stand der Technik ge schilderte Nachteil wird demnach dadurch vermieden, daß das Laserlicht durch das transparente Substrat, welches Glas oder auch eine transparente Kunststoffschicht sein kann, hindurch eingestrahlt wird. Die Wellenlängen sind so zu wählen, daß in dem zu entfernenden Material je weils möglichst optimal absorbiert wird, während bei der Entfernung der amorphen Halbleiterbereiche die eventuell darunterliegende Oxidschicht für die gewählte Wellenlänge transparent sein muß. Die gebräuchlichen Oxidschichten (TCO), wie beispielsweise Indiumoxid, Zinnoxid oder Mischungen hieraus (ITO) oder auch Zermet schichten, absorbieren vorwiegend im infraroten Spek tralbereich, wo amorphes Silizium transparent ist, dessen Absorptionsbereich im sichtbaren, bei Wellen längen unterhalb von ca. 0,6 µm liegt. Somit ist für die Bestrahlung einer Oxidschicht ein Infrarot-Laser und für die Bestrahlung einer amorphen Siliziumschicht ein Laser zu wählen, dessen Grundwelle in dem ange gebenen sichtbaren Wellenlängenbereich liegt.The above ge in connection with the prior art described disadvantage is thus avoided in that the laser light through the transparent substrate, which Glass or a transparent plastic layer can be irradiated through. The wavelengths are to be chosen so that depending on the material to be removed because it is absorbed as optimally as possible, while at the removal of the amorphous semiconductor regions possibly underlying oxide layer for the selected one Wavelength must be transparent. The most common Oxide layers (TCO), such as indium oxide, Tin oxide or mixtures thereof (ITO) or zermet layers, absorb mainly in infrared spectra central area where amorphous silicon is transparent, its absorption range in the visible, in waves lengths below about 0.6 µm. So for the irradiation of an oxide layer using an infrared laser and for the irradiation of an amorphous silicon layer to choose a laser whose fundamental wave in the ang given visible wavelength range.
Durch die Bestrahlung von der Seite des transparenten Substrats her wird erreicht, daß das Material in den bestrahlten Bereichen sehr sauber entfernt wird. Bei intensiver Einstrahlung können die zuerst getroffenen und erhitzten Schichtbereiche sogar verdampfen und das darüberliegende Material regelrecht abspringen, und dies auf eine geometrisch sehr saubere Weise. Bei Bestrahlung der amorphen Siliziumschicht kann insbesondere etwa eingebauter Wasserstoff schnell in die Dampfphase übergehen, wodurch das Abtrennen des zu entfernenden Materials beschleunigt wird.By irradiation from the side of the transparent It is achieved that the material in the substrate irradiated areas is removed very cleanly. At The first to be hit can be more intense and even evaporate heated layer areas and that jump off overlying material, and this in a geometrically very clean way. At Irradiation of the amorphous silicon layer can in particular about quickly built-in hydrogen pass the vapor phase, causing the separation of the removing material is accelerated.
Die Wahl der besonderen Wellenlängenbereiche hängt natürlich unmittelbar damit zusammen, daß die Ein strahlung nunmehr von der Seite des transparenten Sub strats her vorgenommen wird. Beim Bestrahlen der auf die strukturierte Oxidschicht aufgebrachten amorphen Halbleiterschicht, bei der es sich auch um eine im wesentlichen Germanium enthaltende Schicht handeln kann, muß nämlich teilweise durch noch stehengebliebene Oxidbereiche hindurchgestrahlt werden, ohne daß diese hierdurch beschädigt werden dürfen. Deswegen muß nun ein Wellenlängenbereich ausgewählt werden, für den die Oxidschicht transparent ist.The choice of special wavelength ranges depends of course, directly related to the fact that the radiation from the side of the transparent sub strats forth here. When irradiating the the structured oxide layer applied amorphous Semiconductor layer, which is also an im act essential layer containing germanium can, must, in part, by still standing Oxide areas are irradiated without this may be damaged as a result. So now a wavelength range for which the Oxide layer is transparent.
Als besonders vorteilhaft erweist es sich, einen YAG- Laser zu verwenden, wie auch schon bei dem bekannten Verfahren. Während jedoch dort die Grundwelle mit einer Wellenlänge von λ = 1,06 µm zur Bestrahlung der amorphen Siliziumschicht verwendet wird und offen bleibt, mit welcher Art Laserlicht die Oxidschicht strukturiert wird, soll nunmehr für die Strukturierung beider Schichten derselbe YAG-Laser verwendet werden, wobei die Oxidschicht nun aber mit der Grundwelle (g TCO = 1,06 µm) und die amorphe Siliziumschicht mit deren 1. Harmonischer (λ a-Si = 0,53 µm) zu bestrahlen ist. Die 1. Harmonische wird hierbei durch Zwischen schaltung eines gebräuchlichen Frequenzverdoppler kristalls gewonnen. Es braucht für beide Bestrahlungs vorgänge demnach nur ein einziger Laser verwendet zu werden, bzw. zwei Laser derselben Sorte oder ein Laser mit Strahlteiler.It proves to be particularly advantageous to use a YAG laser, as in the known method. However, while the fundamental wave with a wavelength of λ = 1.06 µm is used to irradiate the amorphous silicon layer and the type of laser light used to structure the oxide layer remains open, the same YAG laser should now be used for the structuring of both layers, whereby the oxide layer is now to be irradiated with the fundamental wave ( g TCO = 1.06 µm) and the amorphous silicon layer with its 1st harmonic ( λ a-Si = 0.53 µm). The 1st harmonic is obtained by interposing a common frequency doubler crystal. Accordingly, only one laser needs to be used for both irradiation processes, or two lasers of the same type or one laser with a beam splitter.
Im folgenden wird die Erfindung anhand der Figuren näher erläutert. Es zeigt in schematischer WeiseIn the following the invention with reference to the figures explained in more detail. It shows in a schematic way
Fig. 1 im Querschnitt ein Glassubstrat mit einer TCO-Schicht, Fig. 1 in cross section, a glass substrate with a TCO layer,
Fig. 2 im Querschnitt die Struktur der Fig. 1 nach der ersten Laserbestrahlung, Fig. 2 in cross section the structure of Fig. 1 after the first laser irradiation,
Fig. 3 die Struktur der Fig. 2 nach Aufbringen einer amorphen Siliziumschicht, Fig. 3 shows the structure of Fig. 2 after the application of an amorphous silicon layer,
Fig. 4 die Struktur der Fig. 3 nach der zweiten Laserbestrahlung, Fig. 4 shows the structure of Fig. 3 after the second laser irradiation,
Fig. 5 die Struktur der Fig. 4 nach Aufbringen einer metallischen Elektrodenschicht, Fig. 5 shows the structure of Fig. 4 after deposition of a metallic electrode layer,
Fig. 6 die Struktur der Fig. 5 nach Strukturierung der Metallschicht. Fig. 6 shows the structure of Fig. 5 after structuring the metal layer.
Fig. 1 zeigt ein sowohl für sichtbares als auch infra rotes Licht transparentes Glassubstrat 1 mit einer darauf aufgebrachten transparenten Oxidschicht 2 (TCO), beispielsweise aus Indium-Zinn-Oxid (ITO) bestehend. Nach Bestrahlung mit einem intensiven Infrarot-Laser strahl sind streifenförmige Bereiche 4 aus der das infrarote Licht absorbierenden, jedoch für sichtbares Licht transparenten Oxidschicht 2 entfernt, siehe Fig. 2. Nach anschließendem Aufbringen einer amorphen Silizium schicht, beispielsweise durch Abscheiden aus einer Silanatmosphäre mittels Glimmentladung, entsteht die in Fig. 3 wiedergegebene Struktur, bei der über der struk turierten Oxidschicht 2 eine geschlossene amorphe Siliziumschicht 3 liegt. Durch nochmaliges Bestrahlen ebenfalls durch das Glassubstrat 1 hindurch, mit einem intensiven Laserstrahl einer unterhalb von 0,6 µm lie genden Wellenlänge ist die in Fig. 4 gezeigte Struktur erzeugbar, bei der nunmehr die amorphe Siliziumschicht 3 in streifenförmigen, sich senkrecht zur Zeichenebene erstreckenden Bereichen entfernt ist. Hierbei wurde in Bereichen 5 durch das für sichtbares Licht transparente Oxid hindurchgestrahlt, dort das amorphe Silizium ent fernt, ohne die durchstrahlte Oxidschicht zu beschädi gen. Fig. 1 shows a transparent to both visible and infra red light glass substrate 1 having thereon a transparent oxide layer 2 (TCO) such as indium tin oxide (ITO) consisting. After irradiation with an intense infrared laser beam, strip-shaped regions 4 are removed from the oxide layer 2 which absorbs the infrared light but is transparent to visible light, see FIG. 2. After subsequent application of an amorphous silicon layer, for example by deposition from a silane atmosphere by means of a glow discharge arises reproduced in Fig. 3 structure in which on the constructive-structured oxide layer 2 a closed amorphous silicon layer 3 is located. The structure shown in FIG. 4 can be produced by again irradiating through the glass substrate 1 , with an intense laser beam of a wavelength below 0.6 μm, in which the amorphous silicon layer 3 is now in strip-shaped areas extending perpendicular to the plane of the drawing is removed. Here, in regions 5 , radiation was passed through the oxide which was transparent to visible light, where the amorphous silicon was removed without damaging the oxide layer through which it was irradiated.
Selbstverständlich kann die gemäß Fig. 3 aufgebrachte amorphe Siliziumschicht das gewünschte Dotierungsprofil, beispielsweise im Sinne einer pin- oder einer nip- Struktur, aufweisen.Naturally, 3 deposited amorphous silicon layer, the FIG., The desired doping profile, for example in the sense of a pin or a NIP structure, have.
Im Anschluß an die Strukturierung der amorphen Silizium schicht gemäß Fig. 4 kann auf übliche Weise eine später als rückwärtige Elektrodenschicht dienende Metallschicht 6 aufgebracht werden, siehe Fig. 5, welche dann beispiels weise ebenfalls durch Laserbestrahlung so strukturiert werden kann, daß die in Fig. 6 wiedergegebene Reihen schaltung streifenförmiger Solarzellen entsteht.Following the structuring of the amorphous silicon layer according to FIG. 4, a metal layer 6 later serving as the rear electrode layer can be applied in a conventional manner, see FIG. 5, which can then also be structured, for example, by laser irradiation in such a way that the layer shown in FIG. 6 reproduced rows of circuit-shaped solar cells.
Das erfindungsgemäße Verfahren kann nicht nur zur Her stellung von Solarzellen verwendet werden, sondern bei spielsweise auch zur Herstellung von optischen Bild sensoren auf der Basis von amorphen Halbleitern, bei spielsweise Silizium.The method according to the invention can not only be used for manufacturing position of solar cells are used, but in for example for the production of optical images sensors based on amorphous semiconductors for example silicon.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19853508469 DE3508469A1 (en) | 1985-03-09 | 1985-03-09 | Process for patterning layer sequences applied to a transparent substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19853508469 DE3508469A1 (en) | 1985-03-09 | 1985-03-09 | Process for patterning layer sequences applied to a transparent substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
DE3508469A1 DE3508469A1 (en) | 1986-09-11 |
DE3508469C2 true DE3508469C2 (en) | 1987-08-13 |
Family
ID=6264730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19853508469 Granted DE3508469A1 (en) | 1985-03-09 | 1985-03-09 | Process for patterning layer sequences applied to a transparent substrate |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE3508469A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3727825A1 (en) * | 1987-08-20 | 1989-03-02 | Siemens Ag | Series-connected thin-film solar module made from crystalline silicon |
DE3727826A1 (en) * | 1987-08-20 | 1989-03-02 | Siemens Ag | SERIES-CONNECTED THIN-LAYER SOLAR MODULE MADE OF CRYSTAL SILICON |
DE3921038A1 (en) * | 1988-06-28 | 1990-01-04 | Ricoh Kk | Semiconductor substrate and method of fabrication thereof |
DE4022745A1 (en) * | 1990-07-18 | 1992-01-23 | Hans Lang Gmbh & Co Kg Ing | Mirror patterning - uses laser beam directed through glass pane to evaporate the reflection layer partially |
DE4324318C1 (en) * | 1993-07-20 | 1995-01-12 | Siemens Ag | Method for series connection of an integrated thin-film solar cell arrangement |
DE19640594A1 (en) * | 1996-10-01 | 1998-04-02 | Siemens Ag | Light-induced interface decomposition for the structuring and separation of semiconductor materials |
DE19619317C2 (en) * | 1996-05-14 | 2000-10-05 | Voith Hydro Gmbh | Impeller for an open jet tube |
US8129209B2 (en) | 2000-10-17 | 2012-03-06 | Osram Ag | Method for fabricating a semiconductor component based on GaN |
US8436393B2 (en) | 2000-05-26 | 2013-05-07 | Osram Gmbh | Light-emitting-diode chip comprising a sequence of GaN-based epitaxial layers which emit radiation and a method for producing the same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3816660C1 (en) * | 1988-05-17 | 1989-09-07 | Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De | Sensor, especially photodetector arrangement |
US5173446A (en) * | 1988-06-28 | 1992-12-22 | Ricoh Company, Ltd. | Semiconductor substrate manufacturing by recrystallization using a cooling medium |
US5459346A (en) * | 1988-06-28 | 1995-10-17 | Ricoh Co., Ltd. | Semiconductor substrate with electrical contact in groove |
US5310446A (en) * | 1990-01-10 | 1994-05-10 | Ricoh Company, Ltd. | Method for producing semiconductor film |
WO1997027727A1 (en) * | 1996-01-26 | 1997-07-31 | Emi-Tec Elektronische Materialien Gmbh | Process for producing a conductor structure |
CN1292494C (en) | 2000-04-26 | 2006-12-27 | 奥斯兰姆奥普托半导体有限责任公司 | Radiation-emitting semiconductor element and method for producing same |
DE102004015142B3 (en) * | 2004-03-27 | 2005-12-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing optical components |
US7202141B2 (en) | 2004-03-29 | 2007-04-10 | J.P. Sercel Associates, Inc. | Method of separating layers of material |
GB2472613B (en) * | 2009-08-11 | 2015-06-03 | M Solv Ltd | Capacitive touch panels |
-
1985
- 1985-03-09 DE DE19853508469 patent/DE3508469A1/en active Granted
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3727825A1 (en) * | 1987-08-20 | 1989-03-02 | Siemens Ag | Series-connected thin-film solar module made from crystalline silicon |
DE3727826A1 (en) * | 1987-08-20 | 1989-03-02 | Siemens Ag | SERIES-CONNECTED THIN-LAYER SOLAR MODULE MADE OF CRYSTAL SILICON |
DE3921038A1 (en) * | 1988-06-28 | 1990-01-04 | Ricoh Kk | Semiconductor substrate and method of fabrication thereof |
DE3921038C2 (en) * | 1988-06-28 | 1998-12-10 | Ricoh Kk | Method for producing a semiconductor substrate or solid structure |
DE4022745A1 (en) * | 1990-07-18 | 1992-01-23 | Hans Lang Gmbh & Co Kg Ing | Mirror patterning - uses laser beam directed through glass pane to evaporate the reflection layer partially |
DE4324318C1 (en) * | 1993-07-20 | 1995-01-12 | Siemens Ag | Method for series connection of an integrated thin-film solar cell arrangement |
DE19619317C2 (en) * | 1996-05-14 | 2000-10-05 | Voith Hydro Gmbh | Impeller for an open jet tube |
DE19640594A1 (en) * | 1996-10-01 | 1998-04-02 | Siemens Ag | Light-induced interface decomposition for the structuring and separation of semiconductor materials |
DE19640594B4 (en) * | 1996-10-01 | 2016-08-04 | Osram Gmbh | module |
US8436393B2 (en) | 2000-05-26 | 2013-05-07 | Osram Gmbh | Light-emitting-diode chip comprising a sequence of GaN-based epitaxial layers which emit radiation and a method for producing the same |
US8129209B2 (en) | 2000-10-17 | 2012-03-06 | Osram Ag | Method for fabricating a semiconductor component based on GaN |
US8809086B2 (en) | 2000-10-17 | 2014-08-19 | Osram Gmbh | Method for fabricating a semiconductor component based on GaN |
Also Published As
Publication number | Publication date |
---|---|
DE3508469A1 (en) | 1986-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3508469C2 (en) | ||
EP1166358B1 (en) | Method for removing thin layers on a support material | |
DE4324318C1 (en) | Method for series connection of an integrated thin-film solar cell arrangement | |
DE3780386T2 (en) | CONVERSION METHOD FOR PASSIVATING SHORT CIRCUIT ROUTES IN SEMICONDUCTOR DEVICES AND ARRANGEMENTS MADE THEREOF. | |
DE69016910T2 (en) | Photovoltaic device and its manufacturing process. | |
EP0200089B1 (en) | Process for producing narrow metal-free strips in the metallized coating of a plastic foil | |
DE4229399C2 (en) | Method and device for producing a functional structure of a semiconductor component | |
EP0536431B1 (en) | Method for working a thin film device by laser | |
DE3686195T2 (en) | INTERCONNECTING SOLAR CELLS BY INTERRUPTED LEADING AREAS. | |
DE4315959C2 (en) | Method for producing a structured layer of a semiconductor material and a doping structure in a semiconductor material under the action of laser radiation | |
EP2507834B1 (en) | Method for removing at least sections of a layer of a layer stack | |
DE4202455C1 (en) | ||
DE3446807C2 (en) | ||
EP0286918A2 (en) | Method of manufacturing serially switched thin-film solar cells | |
DE19933703A1 (en) | Device and method for removing layers on a workpiece | |
DE3015362C2 (en) | ||
DE2411517A1 (en) | METHOD FOR PRODUCING A LIGHT SENSITIVE HETEROGENIC DIODE | |
DE4412050C2 (en) | Photoelectrochemical solar module and method of manufacturing the same | |
DE3023165A1 (en) | Solar cell with high efficiency - using thin film of amorphous silicon on thin film of aluminium with matt reflecting surface | |
DE69833167T2 (en) | Method for producing an integrated thin-film solar cell battery | |
DE2538300B2 (en) | METHOD FOR PRODUCING A SOLAR ABSORBING LAYER | |
DE69430286T2 (en) | Process for the production of photovoltaic modules from crystalline silicon | |
DE112010004503T5 (en) | METHOD AND DEVICE FOR REMOVING THIN FINISHES FROM ONE SUBSTRATE | |
DE3714920C1 (en) | Method for producing a thin-layer solar cell arrangement | |
DE4420434A1 (en) | Solar modulus prodn. for converting solar light to electricity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
D2 | Grant after examination | ||
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |