DE3248459C2 - - Google Patents

Info

Publication number
DE3248459C2
DE3248459C2 DE19823248459 DE3248459A DE3248459C2 DE 3248459 C2 DE3248459 C2 DE 3248459C2 DE 19823248459 DE19823248459 DE 19823248459 DE 3248459 A DE3248459 A DE 3248459A DE 3248459 C2 DE3248459 C2 DE 3248459C2
Authority
DE
Germany
Prior art keywords
drag chain
hydrophones
light source
antenna according
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19823248459
Other languages
German (de)
Other versions
DE3248459A1 (en
Inventor
Manfred Dipl.-Ing. 2800 Bremen De Siegel
Guenter 2801 Oyten De Tummoscheit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
Krupp Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Atlas Elektronik GmbH filed Critical Krupp Atlas Elektronik GmbH
Priority to DE19823248459 priority Critical patent/DE3248459A1/en
Publication of DE3248459A1 publication Critical patent/DE3248459A1/en
Application granted granted Critical
Publication of DE3248459C2 publication Critical patent/DE3248459C2/de
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • G01V1/201Constructional details of seismic cables, e.g. streamers
    • G01V1/208Constructional details of seismic cables, e.g. streamers having a continuous structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • G01S3/784Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems using a mosaic of detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/44Special adaptations for subaqueous use, e.g. for hydrophone

Description

Die Erfindung betrifft eine akustische Unterwasser­ antenne der im Oberbegriff des Anspruchs 1 genannten Art.The invention relates to an acoustic underwater antenna mentioned in the preamble of claim 1 Art.

Solche geschleppten Unterwasserantennen oder Hydro­ phonketten werden - neben seismischer Anwendung - zur Ortung und Klassifizierung von geräuschabstrahlenden Zielen verwendet, da infolge der räumlichen Trennung von geräuscherzeugendem Schleppschiff und des durch die große räumliche Ausdehnung erzielbaren hohen Bündelungsgewinns der Antenne die Auswertung auch tiefer Sonarfrequenzen möglich ist. Voraussetzung für den erzielbaren hohen Bündelungsgewinn ist jedoch, daß die Schleppantenne nicht oder nicht nennenswert von der idealen geraden Schlepplinie abweicht. Dies ist jedoch infolge der flexiblen Konstruktion nur bedingt zutreffend und kann in vielen Fällen, so z. B. bei niedrigen Schleppgeschwindigkeiten oder Schleppen der Antenne nahe der Wasseroberfläche bei mittlerem oder starkem Seegang, nicht mehr als gegeben vorausgesetzt werden.Such towed underwater antennas or hydro Phoning chains are - in addition to seismic application - for locating and classifying noise-emitting Used as a result of spatial Separation of noise-generating tugboat and that can be achieved through the large spatial extent high bundling gain of the antenna the evaluation lower sonar frequencies are also possible. requirement for the achievable high bundling gain, however, that the tow antenna is not or not worth mentioning deviates from the ideal straight towing line. However, this is due to the flexible construction only partially applicable and can in many cases, so e.g. B. at low towing speeds or Towing the antenna near the water surface moderate or heavy swell, no more than given be assumed.

Die Abweichung der Schleppantenne oder Hydrophonkette von der geraden Schlepplinie läßt sich jedoch durch rechnerische Berücksichtigung der Antennen­ verbiegung mittels eines Computers eliminieren, vor­ ausgesetzt, die momentane Abweichung der einzelnen Hydrophone von der idealen geraden Schlepplinie ist laufend bekannt. The deviation of the trailing antenna or hydrophone chain from the straight towing line, however by taking the antennas into account eliminate bending using a computer, before exposed to the current deviation of each Hydrophone is from the ideal straight drag line continuously known.  

Bei einer bekannten Einrichtung zur Bestimmung des Ortes eines hinter einem Schiff geschleppten marinen Streamers (DE-OS 31 49 163) sind am Schiffsheck zwei akustische Quellen im Abstand von etwa 20 bis 40 m quer zur Schiffslängsrichtung angeordnet, die hoch­ frequente Schallimpulse ins Wasser aussenden. Diese Impulse werden von den einzelnen Hydrophonen empfangen, und aus der Laufzeit der Schallimpulse von den Schallquellen zu den einzelnen Hydrophonen können zusammen mit Tiefenwerten, die von den einzelnen Hydrophonen zugeordneten Tiefensensoren ausgegeben werden, die Lage der Hydrophone im Raum bestimmt werden.In a known device for determining the Location of a marine towed behind a ship Streamers (DE-OS 31 49 163) are two at the stern acoustic sources at a distance of about 20 to 40 m arranged transversely to the ship's longitudinal direction, the high emit frequent sound impulses into the water. These The individual hydrophones receive impulses, and from the duration of the sound impulses from the Sound sources to the individual hydrophones can along with depth values by the individual Depth sensors assigned to hydrophones are output the position of the hydrophones in the room is determined will.

Bei dieser bekannten Einrichtung werfen die beiden im Abstand von 20 bis 40 m quer zur Schiffslängs­ richtung angeordneten Schallquellen nicht unerheb­ liche Probleme auf. Zum einen wird der Fahrwider­ stand des Schiffes beträchtlich erhöht, so daß diese Einrichtung bei Schiffen mit hohen Schleppgeschwin­ digkeiten nicht eingesetzt werden kann. Auch bei tauchenden Schiffen können solche Schallquellen und die erforderlichen Haltekonstruktionen außenbords nicht akzeptiert werden. Andererseits werden von den Schallquellen nicht unerhebliche Strömungsgeräusche erzeugt, die wiederum den Signalempfang an der Antenne beeinträchtigen. Außerdem sind nocht zusätzliche Tiefensensoren an der Schleppantenne zur Bestimmung der Tauchtiefe der einzelnen Hydrophone er­ forderlich.In this known device, the two throw at a distance of 20 to 40 m across the length of the ship directionally arranged sound sources not insignificant problems. Firstly, the driving resistance standing of the ship increased considerably, so that this Equipment for ships with high towing speeds can not be used. Also at Diving ships can use such sound sources and the required outboard support structures not be accepted. On the other hand, from the Sound sources not inconsiderable flow noises generated, which in turn received the signal on the antenna affect. There are also additional ones Depth sensors on the tow antenna for determination the depth of the individual hydrophones conducive.

Der Erfindung liegt die Aufgabe zugrunde, eine zum Schleppen bestimmte akustische Unterwasserantenne derart zu verbessern, daß mit relativ einfachen Mitteln die Abweichung der einzelnen Hydrophone in der Schleppkette von der idealen geraden Schlepplinie laufend bestimmbar ist ohne daß zusätzliche An- oder Aufbauten am Schleppschiff und/oder an der Schleppantenne selbst erforderlich wären.The invention is based, to one Towing certain acoustic underwater antenna to improve so that with relatively simple Mean the deviation of the individual hydrophones in  the drag chain from the ideal straight drag line is continuously determinable without additional or Superstructures on the tug and / or on the towing antenna themselves would be required.

Die Aufgabe ist bei einer akustischen Unterwasserantenne der im Oberbegriff des Anspruchs 1 angegebenen Gattung erfindungsgemäß durch die Merkmale im Kennzeichenteil des Anspruchs 1 gelöst.The task is with an acoustic underwater antenna the genus specified in the preamble of claim 1 according to the invention by the features in the characterizing part of the Claim 1 solved.

Die erfindungsgemäße Antenne hat den Vorteil, ohne zusätzliche Schallquellen und Tiefensensoren auszukommen. Die räumliche Abweichung der Hydrophone von der idealen Schlepplinie kann in einem dreidimensionalen Koordinatensystem fortlaufend gemessen und daraus die erforderlichen Kompensationszeiten für die Hydrophonsignale bezüglich einer idealen Schlepplinie berechnet werden. Die erfindungsgemäße Antenne kann ohne Einschränkung sowohl mit schnellaufenden Oberflächenschiffen als auch mit Unterwasserschiffen geschleppt werden. Zusätzliche konstruktive Maßnahmen am Schleppschiff hierzu sind nicht erforderlich.The antenna according to the invention has the advantage without additional sound sources and depth sensors. The spatial deviation of the hydrophones from the ideal Towline can be in a three-dimensional Coordinate system measured continuously and from it the required compensation times for the Hydrophone signals related to an ideal towing line be calculated. The antenna according to the invention can without Restriction with both high-speed Surface ships as well as underwater ships be towed. Additional constructive measures on Tugboat are not required for this.

Bei der erfindungsgemäßen Antenne wird jeweils für einen Antennenabschnitt der Abstand eines senkrecht zur Querschnittsfläche am Anfang des Schleppkettenabschnitts ausgesendeten, eine gerade Referenzlinie bildenden Lichtstrahls bestimmt, den er am Ende des Schleppkettenabschnitts von der ggf. gekrümmten Schleppkettenachse hat. Da diese Abweichung in allen Schleppkettenabschnitten erfaßt wird, kann die Ablage der einzelnen Hydrophone von der idealen Schlepplinie, auf welcher zumindest das am Schleppkettenanfang befindliche Hydrophon liegt, iterativ durch Zusammensetzen der einzelnen gemessenen und berechneten Abweichungen ermittelt werden. Dies ist eine von einem Computer durchführbare Rechenoperation, die sich aus der Antennenkonfiguration unter Berücksichtigung einfacher geometrischer Beziehungen ergibt.In the antenna according to the invention, one for each Antenna section the distance of one perpendicular to the Cross-sectional area at the beginning of the drag chain section emitted, forming a straight reference line Beam of light determined, which he at the end of the Drag chain section from the possibly curved Has drag chain axis. Because this deviation in all Drag chain sections is detected, the storage of the individual hydrophones from the ideal towing line which is at least the one at the beginning of the drag chain Hydrophone lies, iteratively by assembling the  individual measured and calculated deviations be determined. This is one from a computer feasible arithmetic operation resulting from the Antenna configuration considering simpler geometric relationships.

Eine vorteilhafte Ausführungsform der Erfindung ergibt sich dabei aus Anspruch 3. Durch mit Lichtsender und Fotosensoren besetzten Trägerscheiben lassen sich einfach in die üblicherweise hohlzylindrischen Hydrophone einsetzen und dort halten.An advantageous embodiment of the invention results yourself from claim 3. By with light transmitter and Carrier disks with photo sensors are easy to use in the usually hollow cylindrical hydrophones insert and hold there.

Die Erfindung ist anhand von in der Zeichnung dargestellten Ausführungsbeispielen im folgenden näher beschrieben. Es zeigen jeweils in schematischer Darstellung:The invention is based on in the drawing illustrated embodiments in the following described. They each show in schematic Presentation:

Fig. 1 eine Seitenansicht einer im Seebetrieb von einem Schiff geschleppten Unterwasserantenne, Fig. 1 is a side view of a towed in the sea operation of a ship underwater antenna,

Fig. 2 eine vergrößerte perspektivische Darstellung eines von zwei Hydrophonen begrenzten Schleppkettenabschnittes der Unterwasserantenne gemäß Fig. 1, teilweise geschnitten,, Partly in section Fig. 2 is an enlarged perspective view of a limited two hydrophones drag chain section of the underwater antenna according to Fig. 1,

Fig. 3 einen Längsschnitt des Schleppkettenabschnittes in Fig. 2, Fig. 3 shows a longitudinal section of the drag chain section in Fig. 2,

Fig. 4 einen Längsschnitt des gebogenen Schleppkettenabschnittes in Fig. 2, Fig. 4 shows a longitudinal section of the bent portion drag chain in Fig. 2,

Fig. 5 einen Längsschnitt eines gebogenen Schleppkettenabschnittes einer Un­ terwasserantenne gemäß einem weiteren Ausführungsbeispiel, Fig. 5 shows a longitudinal section of a bent portion of a drag chain Un terwasserantenne according to a further embodiment,

Fig. 6 eine Draufsicht dreier benachbarter Schleppkettenabschnitte bei Abweichung der Schleppkette von der idealen Schlepplinie in Horizontalebene zur Verdeutlichung der geometrischen Beziehungen. Fig. 6 is a plan view of three adjacent drag chain sections when the drag chain deviates from the ideal drag line in the horizontal plane to illustrate the geometric relationships.

Wie in Fig. 1 schematisch skizziert, wird die Unter­ wasserantenne 10 von einem Trägerschiff 11 geschleppt. Eine Aufwickeltrommel 12 gestattet das Einziehen und Auslegen der Unterwasserantenne 10. Die Unterwasser­ antenne 10 weist eine Vielzahl von in einer Schlepp­ kette 13 hintereinander angeordneten Hydrophonen 14 auf, deren Abstand l i voneinander unveränderlich und bekannt ist. Die Schleppkette 13 wird von einem flexiblen Schlauch 15 gebildet, der die Hydrophone 14 und die elektrischen Verbindungsleitungen, hier nicht gezeichnet, von den Hydrophonen 14 zu einem auf dem Schiff installierten Empfänger 16 aufnimmt. lm Empfänger 16 werden die von den Hydrophonen 14 aufge­ faßten Signale einer Signalverarbeitung und Signal­ auswertung unterzogen. Die Schleppkette 13 bzw. der Schlauch 15 kann mit Hilfe eines Schwimmkörpers 32 am freien Schlauchende und einer Füllung des Schlauchs 15 mit Auftriebsflüssigkeit in geeigneter Tiefe ausgelegt und etwa in dieser Ebene horizontal gehalten werden. As schematically outlined in Fig. 1, the underwater antenna 10 is towed by a carrier ship 11 . A winding drum 12 allows the underwater antenna 10 to be drawn in and deployed. The underwater antenna 10 has a plurality of in a drag chain 13 arranged in series hydrophones 14 , the distance l i from each other is unchangeable and known. The drag chain 13 is formed by a flexible hose 15 which receives the hydrophones 14 and the electrical connecting lines, not shown here, from the hydrophones 14 to a receiver 16 installed on the ship. In the receiver 16 , the signals picked up by the hydrophones 14 are subjected to signal processing and signal evaluation. The drag chain 13 or the hose 15 can be designed with the aid of a floating body 32 at the free hose end and a filling of the hose 15 with buoyancy liquid at a suitable depth and can be kept horizontal in this plane.

In Fig. 2 bis 4 ist jeweils ein von zwei Hydrophonen 14 begrenzter Schleppkettenabschnitt 17 oder Schlauch­ abschnitt dargestellt. Die Hydrophone 14 sind ringförmig ausgebildet und an der Schlauchhülle 18 des Schlauchs 15 gehalten. Die hier nicht dargestellten elektrischen Verbindungsleitungen sind in der Schlauchhülle 18 selbst geführt.In Fig. 2 to 4, a limited two hydrophones 14 drag chain section 17 or the hose is shown in sections in each case. The hydrophones 14 are ring-shaped and held on the hose sleeve 18 of the hose 15 . The electrical connecting lines, not shown here, are routed in the tubular casing 18 itself.

In jedem Schleppkettenabschnitt 17 ist eine Meßvorrichtung 19 angeordnet. Die Meßvorrichtung 19 weist ein am Anfang des Schleppkettenabschnitts 17 angeordnetes Referenzglied 20 auf, das eine geradlinige gestreckte Referenzlinie 21 erzeugt, die bei geradlinig sich erstreckendem Schleppkettenabschnitt 17 in der Schleppkettenachse 22 liegt (Fig. 3) und bei Krümmung des Schleppkettenabschnitts 17 mehr oder weniger von dieser abweicht (Fig. 4). Am Ende des Schleppkettenabschnittes 17 ist als Teil der Meßvorrichtung 19 ein Meßglied 23 angeordnet, mit welchem bei Schlauchkrümmung im Schleppkettenabschnitt 17, hervorgerufen durch die Abweichung der Schleppkette 13 von der idealen Schlepplinie, die Auslenkung der Schleppkettenachse 22 von der geraden Referenzlinie 21 gemessen werden kann (Fig. 4). Die Referenzlinie 21 ist dabei rechtwinklig zur Querabmessung der Schleppkette 13 bzw. des Schlauchs 15 am Anfang des Schlepp­ kettenabschnitts 17 ausgerichtet.A measuring device 19 is arranged in each drag chain section 17 . The measuring device 19 has a valve disposed at the beginning of the drag chain portion 17. Reference member 20, which generates a rectilinear stretched reference line 21, which is rectilinearly erstreckendem drag chain portion 17 in the drag chain axis 22 (Fig. 3) and 17 more or curvature of the drag chain portion is less of this deviates ( Fig. 4). At the end of the drag chain section 17 , a measuring element 23 is arranged as part of the measuring device 19 , with which the deflection of the drag chain axis 22 from the straight reference line 21 can be measured in the event of hose curvature in the drag chain section 17 , caused by the deviation of the drag chain 13 from the ideal drag line. Fig. 4). The reference line 21 is perpendicular to the transverse dimension of the drag chain 13 or the hose 15 at the beginning of the drag chain section 17 aligned.

Das Referenzglied 20 weist eine Lichtquelle 24 auf, die einen gebündelten Lichtstrahl aussendet. Der gebündelte Lichtstrahl bildet die Referenzlinie 21. In dem in Fig. 3 und 4 dargestellten Ausführungsbeispiel ist die Lichtquelle 24 als Laserdiode mit vorgesetztem Projektionsobjektiv ausgeführt, wobei beide Bauelemente zu einer Baueinheit zusammengefaßt sind. Das Meßglied 23 ist als Fotoempfänger 25 ausgebildet. Mittels des Fotoempfängers 25 kann die Ablage des auf dem Fotoempfänger 25 von dem Lichtstrahl der Lichtquelle 24 abgebildeten Lichtpunkts bezüglich eines in der Schleppkettenachse 22 liegenden Koor­ dinatenursprungs detektiert werden. Wie insbesondere in Fig. 2 zu sehen ist, weist hierzu der Fotoempfänger 25 eine Vielzahl matrixartig angeordneter Fotosensoren 26 auf, deren räumliche Lage bezüglich des Koordinatenursprungs eindeutig bestimmbar ist. Lichtquelle 24 und Fotoempfänger 25 sind jeweils auf einer Trägerscheibe 27 angeordnet, wobei immer die Lichtquelle 24 der einen Meßvorrichtung 19 und der Foto­ empfänger 25 der benachbarten Meßvorrichtung 19 im benachbarten Schleppkettenabschnitt 17 auf der gleichen Trägerscheibe 27, und zwar jeweils auf einer der beiden gegenüberliegenden Scheibenflächen 28, 29, gehalten sind. Die Trägerscheiben 27 sind im Innern der hohlzylindrischen Hydrophone 14 befestigt und konzentrisch zu diesen angeordnet.The reference member 20 has a light source 24 which emits a bundled light beam. The bundled light beam forms the reference line 21 . In the exemplary embodiment shown in FIGS. 3 and 4, the light source 24 is designed as a laser diode with a projection lens in front, both components being combined to form one structural unit. The measuring element 23 is designed as a photo receiver 25 . By means of the photo receiver 25 , the deposition of the light point imaged on the photo receiver 25 by the light beam from the light source 24 can be detected with respect to a coordinate origin lying in the drag chain axis 22 . As can be seen in particular in FIG. 2, for this purpose the photo receiver 25 has a multiplicity of photo sensors 26 arranged in a matrix, the spatial position of which with respect to the origin of the coordinates can be clearly determined. Light source 24 and photo receiver 25 are each arranged on a carrier disk 27 , with the light source 24 of one measuring device 19 and the photo receiver 25 of the adjacent measuring device 19 in the adjacent drag chain section 17 on the same carrier disk 27 , in each case on one of the two opposite disk surfaces 28 , 29 are held. The carrier disks 27 are fastened in the interior of the hollow cylindrical hydrophones 14 and arranged concentrically to them.

Die Wirkungsweise der Meßvorrichtung 19 läßt sich anhand der Fig. 3 und 4 verdeutlichen. Ist der Schlepp­ kettenabschnitt 17 geradlinig gestreckt, so fällt der von der Lichtquelle 24 erzeugte Lichtstrahl 21 mit der Schleppkettenachse 22 zusammen. Im Fotoempfänger 25 wird der im Koordinatenursprung liegende Fotosensor 26′ beleuchtet und der Fotoempfänger 25 detektiert die Abweichung r=0 der Schleppkettenachse 22 von der von dem Lichtstrahl gebildeten Referenzlinie 21. Ist jedoch, wie in Fig. 4 dargestellt, der Schlauch 15 gekrümmt, was dann auftritt, wenn die Schleppkette 13 von der idealen Schlepplinie abweicht, so wird von der Lichtquelle 24 ein beliebiger Fotosensor 26 auf dem Fotoempfänger 25 beleuchtet. Da die Fotosensoren 26 in einer räumlichen Matrix eingebettet sind, ist jeder Fotosensor 26 eindeutig adressierbar. Die Ablage r des Lichtstrahls oder der Referenzlinie 21 von dem Koordinatenursprung ist damit feststellbar. Diese Abweichung r wird über entsprechende Signal­ leitungen dem Empfänger 16 zugeführt und dort bei der Signalverarbeitung entsprechend berücksichtigt.The operation of the measuring device 19 can be illustrated with reference to FIGS . 3 and 4. If the drag chain section 17 is stretched in a straight line, the light beam 21 generated by the light source 24 coincides with the drag chain axis 22 . In the photo receiver 25 , the photo sensor 26 'located in the coordinate origin is illuminated and the photo receiver 25 detects the deviation r = 0 of the drag chain axis 22 from the reference line 21 formed by the light beam. If, however, as shown in FIG. 4, the hose 15 is curved, which occurs when the drag chain 13 deviates from the ideal drag line, any photo sensor 26 on the photo receiver 25 is illuminated by the light source 24 . Since the photo sensors 26 are embedded in a spatial matrix, each photo sensor 26 can be uniquely addressed. The position r of the light beam or the reference line 21 from the coordinate origin can thus be determined. This deviation r is fed to the receiver 16 via corresponding signal lines and is accordingly taken into account in the signal processing.

In Fig. 6 ist ein Ausschnitt einer Schleppkette 13 mit drei Schleppkettenabschnitten 17 dargestellt, der von der idealen Schlepplinie, die in Fig. 6 durch die x-Achse repräsentiert ist, abweicht. Das in Fig. 6 dargestellte Beispiel ist zweidimensional, d. h. die Schleppkette 17 weicht lediglich in der Horizontalebene von der idealen Schlepplinie ab. Das Beispiel ist jedoch ohne weiteres auch auf die vertikale Abweichung der Schleppkette 13 von der idealen Schlepplinie auszudehnen. FIG. 6 shows a section of a drag chain 13 with three drag chain sections 17 , which deviates from the ideal drag line, which is represented in FIG. 6 by the x axis. The example shown in FIG. 6 is two-dimensional, ie the drag chain 17 only deviates from the ideal drag line in the horizontal plane. However, the example can also easily be extended to the vertical deviation of the drag chain 13 from the ideal drag line.

Der Anfang des in Fig. 6 ersten Schleppkettenab­ schnittes 17 und das dort befindliche, in Fig. 6 nicht dargestellte Hydrophon 14 befinden sich noch auf der idealen Schlepplinie. Die nachfolgenden Anfänge bzw. Enden der Schleppkettenabschnitte 17 und die nachfolgenden drei Hydrophone 14 haben jedoch eine größere Abweichung von der idealen Schlepplinie, die in Fig. 6 mit w 1, w 2 und w′ 3 bezeichnet sind. Mit Hilfe der Meßvorrichtungen 19 lassen sich die Abweichungen r der Referenzlinie 21 und der Schlepp­ kettenachse 22 voneinander in jedem Schleppketten­ abschnitt 17 messen. Diese Abweichungen sind in den einzelnen Schleppkettenabschnitten 17 der Fig. 6 mit r 1 und r 3 bezeichnet. Da der mittlere Schleppketten­ abschnitt 17 nicht gekrümmt ist, ist hier die Ablage der Referenzlinie 21 von dem Koordinatenursprung Null und damit r 2=0. Mit den aus Fig. 6 ersichtlichen geometrischen Beziehungen lassen sich die Abweichungen w 1, w 2 und w′ 3 der einzelnen Hydrophone von der idealen Schlepplinie x ohne weiteres berech­ nen sowie die Kompensationszeiten t i bestimmen, um welche die jeweiligen Hydrophonsignale verzögert werden müssen, um die jeweils aktuelle Deformation der Schleppantenne zu kompensieren. Dabei gelten folgende Beziehungen:The beginning of the first drag chain section 17 in FIG. 6 and the hydrophone 14 located there, not shown in FIG. 6, are still on the ideal drag line. The subsequent beginnings or ends of the drag chain sections 17 and the following three hydrophones 14 , however, have a greater deviation from the ideal drag line, which are denoted in Fig. 6 with w 1 , w 2 and w ' 3 . With the help of the measuring devices 19 , the deviations r of the reference line 21 and the drag chain axis 22 from each other in each drag chain section 17 can be measured. These deviations are denoted by r 1 and r 3 in the individual drag chain sections 17 of FIG. 6. Since the middle drag chain section 17 is not curved, the reference line 21 is offset from the coordinate origin zero and thus r 2 = 0. With from FIG. 6 obvious geometric relationships, the deviations can be w 1, w 2 and w '3 of each of the hydrophones from the ideal towing line x readily NEN calculation and the compensation times t i determine, by which the respective hydrophone signals must be delayed, to compensate for the current deformation of the trailing antenna. The following relationships apply:

Die einzelnen Bezeichnungen lassen sich aus Fig. 6 entnehmen so daß hier weitere Erläuterungen nicht erforderlich sind.The individual designations can be found in FIG. 6 so that further explanations are not necessary here.

Durch Einsetzen der quadrierten Gl. (4) in Gl. (5) läßt sich mit der gemessenen Größe r i die Unbekannte w i berechnen, wobei i die Zahl des fortlaufenden Schleppkettenabschnittes 17 ist. Bei dem ungekrümm­ ten Abschnitt 2 ergibt sich aus r 2=0, daß w′ 2=w 2 und w 2=l 2×sin 2α 1 ist. dy/dx in Gl. (6) kann aus den für die gebogenen Schleppkettenabschnitte 17 auf­ zustellenden Kreisgleichungen gewonnen werden, wobei für die einzelnen Schleppkettenabschnitte 17 zu wählende verschiedene Koordinatenursprünge durch Koordinatentransformation in das in Fig. 6 dargestellte y-x-Koordinatensystem überführt werden müssen. Diese Koordinatentransformationen und Berechnung der Ablagen der einzelnen Hydrophone 14 von der idealen Schlepplinie x gemäß den vorstehenden Gleichungen (1) bis (5) werden mittels eines Computers in dem Empfänger 16 durchgeführt.By inserting the squared Eq. (4) in Eq. (5) the unknown w i can be calculated using the measured variable r i , where i is the number of the continuous drag chain section 17 . In the ungekrümm th section 2 results from r 2 = 0 that w ' 2 = w 2 and w 2 = l 2 × sin 2 α 1 . d y / d x in Eq. (6) can be obtained for the curved drag chain portions 17 on the delivering circuit equations from the, wherein must be transferred for each drag chain portions 17 to be selected different coordinate origins by coordinate transformation in the illustrated in FIG. Yx coordinate system 6. These coordinate transformations and calculation of the positions of the individual hydrophones 14 from the ideal drag line x according to the above equations (1) to (5) are carried out by means of a computer in the receiver 16 .

Fig. 5 zeigt eine Modifikation der Meßvorrichtung 19. Hier werden die einzelnen Lichtquellen 24 in den Schleppkettenabschnitten 17 von dem freien Ende eines Lichtleiters 30 gebildet. Die Lichtleiter 30 sind zu einem Lichtleiterbündel 31 zusammengefaßt und bis hin zum Schleppkettenanfang geführt. Die Lichtleiter 30 sind dort an einem gemeinsamen Be­ lichtungselement, hier der Übersichtlichkeit halber nicht dargestellt, angeschlossen. Fig. 5 shows a modification of the measuring apparatus 19th Here the individual light sources 24 in the drag chain sections 17 are formed by the free end of a light guide 30 . The light guides 30 are combined to form a light guide bundle 31 and led up to the start of the drag chain. The light guides 30 are there connected to a common lighting element, not shown here for the sake of clarity.

Claims (5)

1. Akustische Unterwasserantenne mit einer Anzahl von in einer Schleppkette hintereinander angeordneten Hydrophonen, dadurch gekennzeichnet, daß die Schleppkette (13) in Schleppkettenabschnitte (17) unterteilt ist, die vorzugsweise von jeweils zwei Hydrophonen (14) begrenzt sind, und daß in jedem Schleppkettenabschnitt (17) eine Meßvorrichtung (19) angeordnet ist, die eine am Anfang des Schleppkettenabschnittes (17) etwa im Zentrum der Querschnittsfläche befindlichen Lichtquelle (24), die einen gebündelten Lichtstrahl (21) senkrecht zur Querschnittsfläche aussendet, und einen am Ende des Schleppkettenabschnitts (17) angeordneten Fotoempfänger (25) aufweist, der den Abstand des Auftreffpunktes des Lichtstrahls (21) auf dem Fotoempfänger (25) von einem Bezugspunkt (26′) bestimmt, der auf dem Fotoempfänger (25) in der Schleppkettenachse (22) liegt.1. Acoustic underwater antenna with a number of hydrophones arranged one behind the other in a drag chain, characterized in that the drag chain ( 13 ) is divided into drag chain sections ( 17 ), which are preferably delimited by two hydrophones ( 14 ) each, and that in each drag chain section ( 17 ) a measuring device ( 19 ) is arranged, which has a light source ( 24 ) located at the beginning of the drag chain section ( 17 ) approximately in the center of the cross-sectional area, which emits a bundled light beam ( 21 ) perpendicular to the cross-sectional area, and one at the end of the drag chain section ( 17 ) arranged photo receiver ( 25 ), which determines the distance of the point of impact of the light beam ( 21 ) on the photo receiver ( 25 ) from a reference point ( 26 '), which lies on the photo receiver ( 25 ) in the drag chain axis ( 22 ). 2. Antenne nach Anspruch 1, dadurch gekennzeichnet, daß der Fotoempfänger (25) eine Vielzahl matrixartig angeordneter Fotosensoren (26) aufweist, deren räumliche Lage bezüglich des Bezugspunktes (26′) eindeutig bestimmbar ist.2. Antenna according to claim 1, characterized in that the photo receiver ( 25 ) has a plurality of matrix-like photosensors ( 26 ) whose spatial position with respect to the reference point ( 26 ') can be clearly determined. 3. Antenne nach Anspruch 2 mit einem flexiblen Schlauch zur Aufnahme von Hydrophonen und elektrischen Verbindungsleitungen, dadurch gekennzeichnet, daß beidseitig eines Schleppkettenabschnitts (17) eine im Schlauch (15) gehaltene quer zur Schlaucherstreckung ausgerichtete Trägerscheibe (27) angeordnet ist, deren eine Scheibenfläche (28) die Fotosensoren (26) der einen Meßvorrichtung (19) und deren andere Scheibenfläche (29) die etwa mittig angeordnete Lichtquelle (24) der jeweils benachbarten Meßvorrichtung (19) trägt.3. Antenna according to claim 2 with a flexible hose for receiving hydrophones and electrical connecting lines, characterized in that on both sides of a drag chain section ( 17 ) a in the hose ( 15 ) held transversely to the hose extension aligned carrier disc ( 27 ) is arranged, one disc surface ( 28 ) the photo sensors ( 26 ) of one measuring device ( 19 ) and the other disk surface ( 29 ) of which the light source ( 24 ) of the adjacent measuring device ( 19 ) is arranged approximately in the center. 4. Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Lichtquelle (24) aus einer Laserdiode mit vorgesetztem Projektionsobjektiv besteht.4. Antenna according to one of claims 1 to 3, characterized in that the light source ( 24 ) consists of a laser diode with a projection lens in front. 5. Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Lichtquelle (24) vom freien Ende eines Lichtleiters (30) gebildet wird und daß die Lichtleiter (30) bis hin zum Schleppkettenanfang geführt und dort an einem gemeinsamen Belichtungselement angeschlossen sind.5. Antenna according to one of claims 1 to 3, characterized in that the light source ( 24 ) from the free end of a light guide ( 30 ) is formed and that the light guide ( 30 ) up to the start of the drag chain and are connected there to a common exposure element .
DE19823248459 1982-12-29 1982-12-29 Acoustic underwater antenna Granted DE3248459A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19823248459 DE3248459A1 (en) 1982-12-29 1982-12-29 Acoustic underwater antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19823248459 DE3248459A1 (en) 1982-12-29 1982-12-29 Acoustic underwater antenna

Publications (2)

Publication Number Publication Date
DE3248459A1 DE3248459A1 (en) 1989-11-09
DE3248459C2 true DE3248459C2 (en) 1990-11-22

Family

ID=6182037

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19823248459 Granted DE3248459A1 (en) 1982-12-29 1982-12-29 Acoustic underwater antenna

Country Status (1)

Country Link
DE (1) DE3248459A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2727765B1 (en) * 1994-12-06 1997-01-10 Thomson Csf RECEPTION METHOD WITH AMBIGUITY RAISING FOR A TOWED LINEAR ACOUSTIC ANTENNA
DE4445549C1 (en) * 1994-12-20 1996-03-07 Stn Atlas Elektronik Gmbh Trailing antenna for long range marine target direction detection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376301A (en) * 1980-12-10 1983-03-08 Chevron Research Company Seismic streamer locator

Also Published As

Publication number Publication date
DE3248459A1 (en) 1989-11-09

Similar Documents

Publication Publication Date Title
DE2430863C2 (en) Seismic exploration method
DE10156827B4 (en) System for determining the position of underwater objects
DE3144196C2 (en) Procedure for the seismic investigation of the sea bed
DE3723393A1 (en) ARRANGEMENT FOR LAYING SEISMIC CABLES
DE60212597T2 (en) TOWED LOW FREQUENCY UNDERWATER DETECTION SYSTEM
EP1827965A1 (en) Device and method for tracking an underwater vessel
DE2514665A1 (en) SEISMIC TOW
DE2709296A1 (en) ACOUSTIC DEPTH MEASURING DEVICE
DE102015116750A1 (en) Sound transducer assembly, towed sonar, winch, towboat and method for deploying and / or retrieving a sound transducer assembly
DE4344509A1 (en) Measuring acoustic back scattering characteristics of water floor esp. sea-bed
DE102007034054A1 (en) Method for passively determining at least the distance to a sound emitting target and sonar system
EP0214525A1 (en) Submarine craft
DE3248459C2 (en)
DE2118300B2 (en) Method for determining the position of a watercraft and device for its implementation
DE10128973C1 (en) Submarine with active torpedo location device using omnidirectional hydrophones for detection of sound pulses emitted by torpedo
DE2639476C2 (en) Device for controlling or guiding an underwater arrangement over an acoustically reflective, underwater object
DE2410528A1 (en) DYNAMIC ANCHORING OF SHIPS AND SIMILAR FLOATING BODIES
DE19720991C2 (en) Towing antenna
EP0292744B1 (en) Procedure for determining the position of cable sections towed behind a ship
EP0253277B1 (en) Passive method for estimating data of a target moving in water and radiating time continuous sound signals
DE19825886C2 (en) Procedure for determining the depth of submerged sound sources
DE2042809C3 (en) Reflection seismic field arrangement
DE2045234A1 (en)
DE3034953C2 (en)
DE2709152C2 (en) Fish processing machine with a feeler device

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
D2 Grant after examination
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: ATLAS ELEKTRONIK GMBH, 2800 BREMEN, DE

8339 Ceased/non-payment of the annual fee
8327 Change in the person/name/address of the patent owner

Owner name: STN ATLAS ELEKTRONIK GMBH, 28309 BREMEN, DE