DE29916584U1 - Swash optics for high-performance light sources - Google Patents
Swash optics for high-performance light sourcesInfo
- Publication number
- DE29916584U1 DE29916584U1 DE29916584U DE29916584U DE29916584U1 DE 29916584 U1 DE29916584 U1 DE 29916584U1 DE 29916584 U DE29916584 U DE 29916584U DE 29916584 U DE29916584 U DE 29916584U DE 29916584 U1 DE29916584 U1 DE 29916584U1
- Authority
- DE
- Germany
- Prior art keywords
- laser
- axis
- wedge
- optical axis
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 5
- 230000003667 anti-reflective effect Effects 0.000 claims 1
- 238000004140 cleaning Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0652—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0875—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0875—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
- G02B26/0883—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism
- G02B26/0891—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements the refracting element being a prism forming an optical wedge
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20351—Scanning mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20351—Scanning mechanisms
- A61B2018/20355—Special scanning path or conditions, e.g. spiral, raster or providing spot overlap
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Description
Taumeloptik für HochleistungslichtquellenWobble optics for high-performance light sources
AufgabenstellungTask
Es soll eine Optik geschaffen werden, die in der Lage ist, die Strahlung hochintensiver Lichtquellen wie z.B. Laser in vorhersehbarer Weise, entweder synchron oder asynchron die Wischbewegung einer menschlichen Hand nachahmend, über eine zu bestrahlende Oberfläche zu führen.The aim is to create an optic that is capable of guiding the radiation of high-intensity light sources such as lasers in a predictable manner, either synchronously or asynchronously imitating the wiping movement of a human hand, over a surface to be irradiated.
Stand der TechnikState of the art
Bisher wird optische Strahlung sowohl im Bereich der Materialbearbeitung wie Informationstechnik lediglich regulär über zu beaufschlagende Oberflächen, sei es in vorbestimmter, konturgebender Scan-Technik oder zeilen- bzw. kreisförmiger Scan-Technik geführt. Demgegenüber sind bisher keine technischen Lösungen verfügbar, mit denen es gelingt, Hochintensitätslichtstrahlung, vorzugsweise eines Lasers, in vorher stimmbarer Weise, synchron oder asynchron die Wischbewegung einer menschlichen Hand nachahmend, über die Oberfläche des mit Lichtleistung zu beaufschlagenden Materials zu führen.To date, optical radiation in the field of material processing and information technology has only been guided regularly over surfaces to be exposed, whether using predetermined, contour-forming scanning technology or line or circular scanning technology. In contrast, there are currently no technical solutions available that make it possible to guide high-intensity light radiation, preferably from a laser, in a pre-determined manner, synchronously or asynchronously imitating the wiping movement of a human hand, over the surface of the material to be exposed to light.
Erfindungsgemäße LösungInventive solution
Erfindungsgemäß werden in einer koaxialen Anordnung in einem ersten Ausführungsbeispiel zwei gegeneinander ausgerichtete Keilplatten derart montiert, dass die jeweils der eintretenden bzw. austretenden Strahlung zugewandte Seite orthogonal zur Strahlnchtung verläuft und dass die einander gegenüberliegenden Seiten keilförmig angeordnet sind. Durch eine mechanisch oder motorisch angesteuerte Abstandsänderung kann der durch die keilförmigen Platten eintretende Parallelversatz der einfallenden optischen Strahlung in dem durch die Durchmesser der Keilplatten vorgegebenen Rahmen frei eingestellt werden. Weiterhin sind die beiden Keilplatten frei gegeneinander drehbar und werden in dem bevorzugten Ausführungsbeispiel motorisch gegeneinander periodisch oder asynchron verstellt. Hierdurch wird erreicht, dass im Rahmen des durch den Abstand der Keilplatten vorgegebenen maximales Radius der durch die Keilplatten hindurchdringende Lichtstrahl sich synchron, d.h. in Form von Lissajoufiguren bzw. asynchron über die gesamte Fläche des vorgegebenen Kreisradius bewegt. Insbesondere in Verbindung mit einem Hochintensitäts-Riesenpulslaser zur Oberflächenreinigung kann mit einer derartigen Taumeloptik die Wischbewegung der menschlichen Hand nachgeahmt werden, was überraschenderweise zu gleichmäßigeren Reinigungseffekten fuhrt,According to the invention, in a first embodiment, two wedge plates aligned against each other are mounted in a coaxial arrangement in such a way that the side facing the incoming or outgoing radiation runs orthogonally to the direction of the beam and that the opposite sides are arranged in a wedge shape. By changing the distance mechanically or motor-controlled, the parallel offset of the incident optical radiation caused by the wedge-shaped plates can be freely adjusted within the framework specified by the diameter of the wedge plates. Furthermore, the two wedge plates can be freely rotated against each other and, in the preferred embodiment, are adjusted against each other periodically or asynchronously by motor. This ensures that, within the maximum radius specified by the distance between the wedge plates, the light beam penetrating through the wedge plates moves synchronously, i.e. in the form of Lissajou figures or asynchronously, over the entire area of the specified circular radius. Especially in combination with a high-intensity giant pulse laser for surface cleaning, such a wobble optic can imitate the wiping motion of the human hand, which surprisingly leads to more uniform cleaning effects.
als dieses bei regulärer Strahlführung, sei es durch lineares oder kreisförmiges Scannen, eintreten würde.than would occur with regular beam guidance, be it through linear or circular scanning.
Die in der Anordnung nach Abb. 2-4 vorgesehenen Kreisplatten erhalten für die benutzte Wirkwellenlänge eine Schwerpunktentspiegelung, um somit sicher einen Rückreflex in den Laserresonator zu vermeiden.
Wie in Abb. 2a und 3 dargestellt, können anstelle der keilförmigen Platten auch sogenannte dicke planparallele Platten verwendet werden, die gegenüber der Achse des Systems in einem wählbaren Anstellwinkel, der gleichzeitig den Parallelversatz der Wirkstrahlung zur Eingangsachse bestimmt, vorgesehen werden. The circular plates provided in the arrangement shown in Fig. 2-4 are provided with an anti-reflection coating for the effective wavelength used in order to reliably prevent a back reflection into the laser resonator.
As shown in Fig. 2a and 3, instead of the wedge-shaped plates, so-called thick plane-parallel plates can also be used, which are arranged at a selectable angle of attack relative to the axis of the system, which simultaneously determines the parallel offset of the effective radiation to the input axis.
Erfindungsgemäß ist jedoch auch jede andere technische Lösung, wie z.B. außeraxial gefasste und rotierende Linsensysteme, die innerhalb einer vorherbestimmbaren äußeren Geometrie, vorzugsweise einer Kreisfläche, die Wischbewegung einer menschlichen Hand in entweder synchroner oder asynchroner Weise, realisieren können.However, any other technical solution, such as off-axis mounted and rotating lens systems, which can realize the wiping movement of a human hand in either a synchronous or asynchronous manner within a predeterminable external geometry, preferably a circular area, is also in accordance with the invention.
Abb. 1 zeigt das Prinzip der Taumeloptik im einfachsten Falle: Der kollimierte Laserstrahl 1 fällt vom Laser kommend in die Optik 2 und verläßt diese als parallelversetzter Strahl 3 (Abb. la). Die Optik verändert die Lage des Ausgangsstrahls zeitlich, sie scannt den Ausgangsstrahl dergestalt, daß er stets eine Parallelversetzung erfährt. In dem gezeichneten FallFig. 1 shows the principle of wobble optics in the simplest case: The collimated laser beam 1 from the laser falls into the optics 2 and leaves it as a parallel-displaced beam 3 (Fig. la). The optics change the position of the output beam over time, scanning the output beam in such a way that it always experiences a parallel displacement. In the case shown
hat sich die Lage des Ausgangsstrahls nach einer kurzen Zeit verändert, sodaß der Ausgangsstrahl 4 oberhalb seiner alten Position 3 liegt. Dabei hat der Strahlmittelpunkt in diesem einfachen Fall einen Halbkreis beschrieben. the position of the output beam has changed after a short time, so that the output beam 4 is above its old position 3. In this simple case, the beam center has described a semicircle.
Abb. 2a zeigt, daß diese einfache Kreisscanbewegung durch eine gekippte planparallele Platte 4 bewirkt wird, welche um die Achse des einfallenden Strahls 1 rotiert wird.Fig. 2a shows that this simple circular scanning movement is caused by a tilted plane-parallel plate 4 which is rotated around the axis of the incident beam 1.
Abb. 2b zeigt eine weitere mögliche Anordnung, bestehend aus zwei Prismen 4, 5, welche in der gezeichneten gegensinnigen Stellung einen Parallelversatz ders einfallenden Strahls 1 bewirken. Sie sind gemeinsam in einer Halterung 6 gehaltert. Bei Rotation dieser Halteriung beschreibt der Mittelpunkt des die Taumeloptik verlassenden Strahls 3 einen Kreis, dessen Durchmesser durch den Abstand der beiden Prismen so eingestellt ist, daß er gerade das doppelte des Durchmessers des Laserstrahls beträgt. Auf diese Weise wird eine Fläche so abgescannt, daß in ihrer Mitte keine unbestrahlte Teilfäche verbleibt, aber auch keine extreme Überhöhung der absorbierten Energie stattfindet.Fig. 2b shows another possible arrangement, consisting of two prisms 4, 5, which in the opposite position shown cause a parallel offset of the incident beam 1. They are held together in a holder 6. When this holder rotates, the center of the beam 3 leaving the wobble optics describes a circle, the diameter of which is set by the distance between the two prisms so that it is exactly twice the diameter of the laser beam. In this way, an area is scanned in such a way that no unirradiated part of the area remains in the middle, but also no extreme increase in the absorbed energy occurs.
Abbildung 3 zeigt eine weitere bevorzugte Anordnung. Der Strahl wird mittels zwei planparallelen Platten wiederum parallelversetzt. Die Stärke der Parallelversetzung ist hierFigure 3 shows another preferred arrangement. The beam is again parallel-displaced using two plane-parallel plates. The strength of the parallel displacement is
abhängig von der Verdrehung der beiden Platten zueinander. Durch gezielte Relativdrehbewegung lassen sich periodische Strahlablenkungen in Form von Lissajoufiguren erzeugen.depends on the rotation of the two plates relative to each other. Through targeted relative rotation, periodic beam deflections in the form of Lissajou figures can be generated.
Ein weiteres bevorzugtes Beispiel zeigt Abb. 4. Hier sind zwei Prismen 4, 5 einzeln dergestalt gehaltert, daß sie eine gemeinsame Rotation zuzüglich einer Relativdrehbewegung zueinander um eine gemeinsame Achse durchführen können, als auch daß der Abstand zwischen ihnen variabel ist. Diese drei Verstell-, möglichkeiten werden motorisch betätigt, wobei es freisteht, einzelne von ihnen periodisch zu betreiben.Another preferred example is shown in Fig. 4. Here, two prisms 4, 5 are individually mounted in such a way that they can perform a common rotation plus a relative rotational movement to each other around a common axis, and the distance between them is variable. These three adjustment options are motor-operated, and it is optional to operate individual ones periodically.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE29916584U DE29916584U1 (en) | 1999-09-21 | 1999-09-21 | Swash optics for high-performance light sources |
DE19945087A DE19945087A1 (en) | 1999-09-21 | 1999-09-21 | Scanning optics for high power laser uses prism pair allows variable scan |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE29916584U DE29916584U1 (en) | 1999-09-21 | 1999-09-21 | Swash optics for high-performance light sources |
DE19945087A DE19945087A1 (en) | 1999-09-21 | 1999-09-21 | Scanning optics for high power laser uses prism pair allows variable scan |
Publications (1)
Publication Number | Publication Date |
---|---|
DE29916584U1 true DE29916584U1 (en) | 2000-05-04 |
Family
ID=38921798
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19945087A Withdrawn DE19945087A1 (en) | 1999-09-21 | 1999-09-21 | Scanning optics for high power laser uses prism pair allows variable scan |
DE29916584U Expired - Lifetime DE29916584U1 (en) | 1999-09-21 | 1999-09-21 | Swash optics for high-performance light sources |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19945087A Withdrawn DE19945087A1 (en) | 1999-09-21 | 1999-09-21 | Scanning optics for high power laser uses prism pair allows variable scan |
Country Status (1)
Country | Link |
---|---|
DE (2) | DE19945087A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7922751B2 (en) | 2004-02-04 | 2011-04-12 | Erchonia Corporation | Stand-alone scanning laser device |
US7947067B2 (en) | 2004-02-04 | 2011-05-24 | Erchonia Corporation | Scanning treatment laser with sweep beam spot and universal carriage |
US7993382B2 (en) | 2004-02-06 | 2011-08-09 | Erchonia Corporation | Fat reduction using external laser radiation and niacin |
CN111025626B (en) * | 2019-12-31 | 2021-11-16 | 福建福光股份有限公司 | Nine-aperture light beam deflection control device |
-
1999
- 1999-09-21 DE DE19945087A patent/DE19945087A1/en not_active Withdrawn
- 1999-09-21 DE DE29916584U patent/DE29916584U1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE19945087A1 (en) | 2001-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69212133T2 (en) | Optical scanner | |
DE102011000863A1 (en) | Optoelectronic sensor and method for detecting objects | |
DE2224217A1 (en) | Device for optically scanning an image field | |
DE2622113B2 (en) | Optical device for correcting the spherical aberration of a spherical concave mirror | |
EP0877913A1 (en) | Device for measuring the thickness of transparent objects | |
DE2755094C2 (en) | Optical-mechanical scanner | |
WO2021198165A1 (en) | Optical arrangement and laser system | |
DE102017212384A1 (en) | Deflection device for a laser beam | |
DE29916584U1 (en) | Swash optics for high-performance light sources | |
EP2388145A1 (en) | Deflection mirror unit and device for laser marking with same | |
EP0634636B1 (en) | Michelson-type interferometer | |
EP0353647B1 (en) | Device to measure the rotation angle or the rotational position of a rotating object | |
DD228352A5 (en) | Interferometer | |
DE19924824C1 (en) | Device for altering length of transmission path of electromagnetic wave has two opposed, mutually inclined reflectors between which beam is reflected, reflector separation varying device | |
WO2009129802A1 (en) | Method and device for volumetric scanning | |
DE3022365A1 (en) | Optical scanner using rotating mirror - has narrow cylindrical surface on rotor and equally-spaced flat facets | |
DE102014012456A1 (en) | Optical beam guiding unit and material processing device with an optical beam guiding unit | |
DE19756936C1 (en) | Michelson interferometer has rotating reflector and retro-reflectors | |
EP3491446A1 (en) | Device for deflecting laser radiation or deflecting light | |
DE2059502B2 (en) | Optical sensing device for determining the position of a flat or spherical surface of a radiation-reflecting object | |
DE1547344C3 (en) | Electro-optical scanning device | |
DE3027744C1 (en) | Optical radar | |
DE3543648A1 (en) | Method and device for systematic deflection of light | |
DE2715908B1 (en) | Device for scanning and / or for line offset in optoelectronic scanning devices | |
DE1548705B2 (en) | FORCE TRANSDUCER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R207 | Utility model specification |
Effective date: 20000608 |
|
R081 | Change of applicant/patentee |
Owner name: W.O.M. WORLD OF MEDICINE AG, DE Free format text: FORMER OWNER: LASER- UND MEDIZIN-TECHNOLOGIE GGMBH, 12207 BERLIN, DE Effective date: 20000313 Owner name: W.O.M. WORLD OF MEDICINE AG, DE Free format text: FORMER OWNER: LASER- UND MEDIZIN-TECHNOLOGIE GMBH, BERLIN, 14195 BERLIN, DE Effective date: 20030416 |
|
R156 | Lapse of ip right after 3 years |
Effective date: 20030401 |