DE2735440A1 - MANGANE-ZINC-FERRITE - Google Patents

MANGANE-ZINC-FERRITE

Info

Publication number
DE2735440A1
DE2735440A1 DE19772735440 DE2735440A DE2735440A1 DE 2735440 A1 DE2735440 A1 DE 2735440A1 DE 19772735440 DE19772735440 DE 19772735440 DE 2735440 A DE2735440 A DE 2735440A DE 2735440 A1 DE2735440 A1 DE 2735440A1
Authority
DE
Germany
Prior art keywords
deep
low
mol
ferrite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19772735440
Other languages
German (de)
Other versions
DE2735440B2 (en
DE2735440C3 (en
Inventor
Ingrid Dr Phil Hanke
Peter Dipl Ing Jiru
Erich Dipl Phys Dr Rer N Roess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE2735440A priority Critical patent/DE2735440C3/en
Priority to FR7822251A priority patent/FR2399393A1/en
Priority to GB7832307A priority patent/GB2001950B/en
Priority to IT26493/78A priority patent/IT1097665B/en
Publication of DE2735440A1 publication Critical patent/DE2735440A1/en
Publication of DE2735440B2 publication Critical patent/DE2735440B2/en
Application granted granted Critical
Publication of DE2735440C3 publication Critical patent/DE2735440C3/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

Für die Funktion von Filterspulen ist -neben der Güte- der Temperaturkoeffizient der Anfangspermeabilität des Kernes, im folgenden kurz TK der Anfangspermeabilität genannt, die wichtigste Eigenschaft des induktiven Bauelements. Der Temperaturkoeffizient der Induktivität, der im Filter gegenläufig zu dem der Kapazität sein muß, bestimmt bei den häufig unvermeidbar auftretenden Temperaturschwankungen die Frequenzabweichung nach der Beziehung: wobei mit L[tief]o und C[tief]o die Induktivität bzw. Kapazität bei 0°C, mit kleines Alpha[tief]L der Temperaturkoeffizient der Induktivität und mit kleines Alpha[tief]C der Temperaturkoeffizient der Kapazität bezeichnet sind.For the function of filter coils, in addition to the quality, the temperature coefficient of the initial permeability of the core, hereinafter referred to as TK for the initial permeability, is the most important property of the inductive component. The temperature coefficient of the inductance, which in the filter must be opposite to that of the capacitance, determines the frequency deviation in the often unavoidable temperature fluctuations according to the relationship: where L [deep] o and C [deep] o denote the inductance or capacitance at 0 ° C, with small alpha [low] L the temperature coefficient of the inductance and with small alpha [low] C the temperature coefficient of the capacitance.

Nur für den Fall, dass kleines Alpha[tief]L(Theta) = -kleines Alpha[tief]C(Theta) ist, kann die Filterfrequenz annähernd konstant, d. h. der Wert kleines Omega[tief]Theta ungefähr kleines Omega[tief]O gehalten werden, wobei mit kleines Omega[tief]O die Frequenz bei der Einstelltemperatur mit den Werten L[tief]o und C[tief]o ist. Daneben interessieren auch Ferritwerkstoffe für Filter mit einem nur wenig um Null schwankenden Temperaturbeiwert, z. B. für Schwingkreise mit Glimmerkondensatoren für weite Temperaturbereiche, z. B. in tragbaren Geräten, bei denen kleines Alpha[tief]L ungefähr kleines Alpha[tief]C ungefähr O ist.Only in the event that small alpha [low] L (theta) = -small alpha [low] C (theta), the filter frequency can be approximately constant, i. H. the value small omega [low] theta approximately small omega [low] O, whereas with small omega [low] O the frequency at the set temperature is with the values L [low] o and C [low] o. In addition, ferrite materials are also of interest for filters with a temperature coefficient that fluctuates only slightly around zero, e.g. B. for resonant circuits with mica capacitors for wide temperature ranges, e.g. B. in portable devices where small alpha [deep] L is about small alpha [deep] C is about O.

Die µ[tief]i (Theta) - Kurve von Mangan-Zink-Ferriten und damit auch die mit ihr verknüpften Verluste mittel- und hochpermeabler Ferrite hängen ab vom Temperaturverlauf der Sättigungsmagnetisierung und vom Temperaturgang verschiedener Energieparameter, die durch die Kristallanisotropieenergie, die Magnetostriktion usw. bestimmt werden. Durch Wahl geeigneter Zusammensetzungen und Sinterbedingungen kann man diese Abhängigkeiten so steuern, dass in einzelnen Temperaturbereichen sogenannte sekundäre Permeabilitätsmaxima oder Knicke in der µ[tief]i (Theta) - Kurve auftreten. Dadurch gelingt es, in bestimmten Temperaturbereichen oberhalb dieser Singularitäten kleine, annähernd konstante Temperaturkoeffizienten zu erreichen.The µ [deep] i (theta) curve of manganese-zinc ferrites and thus the associated losses of medium and high permeability ferrites depend on the temperature curve of the saturation magnetization and the temperature curve of various energy parameters that are caused by the crystal anisotropy energy, magnetostriction, etc. be determined. By choosing suitable compositions and sintering conditions, these dependencies can be controlled in such a way that so-called secondary permeability maxima or kinks occur in the µ [deep] i (theta) curve in individual temperature ranges. This makes it possible to achieve small, approximately constant temperature coefficients in certain temperature ranges above these singularities.

So kann z. B. mit Hilfe des Fe[hoch]2+ -Anteiles im Ferritgitter die Kristallanisotropieenergie beeinflusst werden, wobei eine bestimmte Fe[hoch]2+ -Menge erforderlich ist, um die Kristallanisotropieenergie bei einer bestimmten Temperatur auf Null abzusenken. Je niedriger diese Temperatur sein soll - nur oberhalb dieses Nulldurchganges - ist der Temperaturbeiwert genügend klein, gut steuerbar und die Verluste, insbesondere die Hystereseverluste, sind niedrig - umso mehr Fe[hoch]2+ -Ionen müssen im Ferritgitter vorhanden sein.So z. B. with the help of the Fe [high] 2+ component in the ferrite lattice the crystal anisotropy energy can be influenced, a certain amount of Fe [high] 2+ is required to lower the crystal anisotropy energy at a certain temperature to zero. The lower this temperature should be - only above this zero crossing - the temperature coefficient is sufficiently small, easily controllable and the losses, especially the hysteresis losses, are low - the more Fe [high] 2+ ions must be present in the ferrite lattice.

Der Fe[hoch]2+ -Ionenanteil im Ferritgitter ist auf zweierlei Art steuerbar, nämlichThe Fe [high] 2+ ion content in the ferrite lattice can be controlled in two ways, namely

1. über den totalen Eisengehalt, weil ein Teil der Eisenionen, der über die Einwaage von 50 Mol% Fe[tief]2O[tief]3 hinausgeht, bei der Ferritbildung aus Gründen der Ladungsneutralität zweiwertig wird - es bildet sich formal FeOFe[tief]2O[tief]3 - und1. over the total iron content, because part of the iron ions, which exceeds the initial weight of 50 mol% Fe [deep] 2O [deep] 3, becomes bivalent during ferrite formation for reasons of charge neutrality - formally FeOFe [deep] is formed 2O [deep] 3 - and

2. wie aus den deutschen Patentschriften 1 300 860, 1 223 734 und 1 671 035 entnehmbar ist, über den Einbau von vierwertigen Ionen wie z. B. Sn- und Ti-Ionen, die je einem vierwertigen Metallion zwei - zunächst dreiwertige - Eisenionen zweiwertig machen, indem sich formal Ti[hoch]4+Fe[tief]2 [hoch]2+O4 bzw. Sn[hoch]4+Fe[tief]2 [hoch]2+O[tief]4 bilden.2. As can be seen from German patents 1,300,860, 1,223,734 and 1,671,035, about the incorporation of tetravalent ions such as, for. B. Sn and Ti ions, which each make a tetravalent metal ion two - initially trivalent - iron ions divalent by formally Ti [high] 4 + Fe [low] 2 [high] 2 + O4 or Sn [high] 4 + Fe [low] 2 [high] 2 + O [low] 4 form.

Außer durch Fe[hoch]2+ -Ionen kann auch durch Kobaltionen die Kristallanisotropie stark beeinflusst und damit der Temperaturkoeffizient der Anfangspermeabilität gesteuert werden.In addition to Fe [high] 2+ ions, the crystal anisotropy can also be strongly influenced by cobalt ions and thus the temperature coefficient of the initial permeability can be controlled.

Jede dieser Methoden der Steuerung des TK, nämlich die Anwendung eines überstöchiometrischen Eisenanteils, die Substitution eines Teiles der Hauptkomponenten durch Zinn und/oder Titan oder der Zusatz von Kobalt wurde bereits zur Steuerung des TK von Mangan-Zink-Ferriten angewendet, wobei sich mit den verschiedenen Verfahren zum Teil ähnliche Ergebnisse erzielen lassen.Each of these methods of controlling the TC, namely the use of a stoichiometric iron content, the substitution of some of the main components by tin and / or titanium or the addition of cobalt has already been used to control the TC of manganese-zinc ferrites, with the different methods can achieve similar results in some cases.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Sn- und Ti-substituierten hoch- oder mittelpermeablen, verlustarmen und Ca-haltigen Mangan-Zink-Ferrit mit in einem weiten Temperaturkoeffizienten der Anfangspermeabilität und damit einen Ferrit zu schaffen, der eine Verkleinerung der Bauteile ermöglicht und zusätzlich zu einer Einengung des bis jetzt erforderlichen großen Typenspektrums beträgt.The present invention is based on the object of creating a Sn- and Ti-substituted, highly or medium-permeable, low-loss and Ca-containing manganese-zinc ferrite with a wide temperature coefficient of the initial permeability and thus a ferrite which enables the components to be reduced in size and in addition to narrowing the wide range of types required up to now.

Überraschenderweise hat es sich gezeigt, dass eine geeignete Kombination der vorstehend aufgeführten bekannten Substitutionen und Zusätze Ergebnisse bringt, die noch besser sind als die bisher bekannten, dass insbesondere ein sehr geringer Zusatz von Kobalt bei einem bereits durch Zinn- und Titananteile optimierten Mangan-Zink-Ferrit eine Erweiterung des Anwendungstemperaturbereichs ermöglicht.Surprisingly, it has been shown that a suitable combination of the known substitutions and additives listed above brings results that are even better than those previously known, that in particular a very low addition of cobalt in a manganese-zinc-alloy that has already been optimized by tin and titanium components. Ferrite enables an extension of the application temperature range.

Zur Lösung der gestellten Aufgabe sieht die Erfindung einen mit etwa 0,03 bis 0,4 Gew% CaO versetzten Ferrit folgender Zusammensetzung seiner Ausgangskomponenten:To solve the problem, the invention provides a ferrite with about 0.03 to 0.4% by weight of CaO having the following composition of its starting components:

49 bis 55 Mol% Fe[tief]2 O[tief]349 to 55 mol% Fe [deep] 2 O [deep] 3

davon 0,2 bis 5 Mol% (SnO[tief]2 + TiO[tief]2)of which 0.2 to 5 mol% (SnO [deep] 2 + TiO [deep] 2)

Rest MnO und ZnORemainder MnO and ZnO

vor, der zusätzlich sehr geringe Mengen CoO, insbesondere nur 0,02 bis 0,5 Gew% CoO enthält, wobei die CoO-Menge in Übereinstimmung mit dem Soll-Fe[hoch]2+ -Gehalt, gesteuert durch den Anteil an Sn, Ti und überstöchiometrischem Eisen, so gewählt ist, dass sich der gewünschte TK der Anfangspermeabilität einstellt.before, which additionally contains very small amounts of CoO, in particular only 0.02 to 0.5% by weight of CoO, the CoO amount in accordance with the target Fe [high] 2+ content, controlled by the proportion of Sn, Ti and hyperstoichiometric iron, is chosen so that the desired TK of the initial permeability is established.

Ein vorteilhaftes Verfahren zur Herstellung eines Ferrits vorstehender Beschaffenheit sieht vor, dass folgende Zusammensetzung von Ausgangskomponenten:An advantageous method for producing a ferrite of the above type provides that the following composition of starting components:

49 bis 55 Mol% Fe[tief]2 O[tief]349 to 55 mol% Fe [deep] 2 O [deep] 3

davon 0,2 bis 5 Mol% (SnO[tief]2 + TiO[tief]2)of which 0.2 to 5 mol% (SnO [deep] 2 + TiO [deep] 2)

Rest MnO und ZnORemainder MnO and ZnO

________________________________________________________________________________

zusätzlich 0,02 bis 0,5 Gew% CoOadditionally 0.02 to 0.5 wt% CoO

gemischt, gegebenenfalls thermisch vorbehandelt, unter Zusatz von etwa 0,05 bis 0,4 Gew% CaCO[tief]3 gemahlen, zu Kernen gepresst, in reinem inerten Gas, insbesondere N[tief]2 auf Sintertemperatur, insbesondere 1100 bis 1300°C aufgeheizt, bei dieser Temperatur in O[tief]2-haltiger N[tief]2-Atmosphäre gesintert und in N[tief]2-Atmosphäre mit abnehmendem O[tief]2-Partialdruck abgekühlt wird.mixed, if necessary thermally pretreated, with the addition of about 0.05 to 0.4% by weight CaCO [deep] 3, ground, pressed into cores, in pure inert gas, in particular N [deep] 2 at sintering temperature, in particular 1100 to 1300 ° C heated, sintered at this temperature in an O [deep] 2 -containing N [deep] 2 atmosphere and cooled in an N [deep] 2 atmosphere with decreasing O [deep] 2 partial pressure.

Die erfindungsgemäß mögliche Steuerung des TK der Anfangspermeabilität durch entsprechenden Zusatz von CoO ist beispielsweise aus den Figuren 1 und 2 ersichtlich, wobei in Fig. 1 für eine Grundzusammensetzung vonThe possible control of the TC of the initial permeability according to the invention by appropriate addition of CoO can be seen, for example, from FIGS. 1 and 2, with FIG. 1 for a basic composition of

52,95 Mol% Fe[tief]2 O[tief]352.95 mol% Fe [deep] 2 O [deep] 3

32,60 Mol% MnO32.60 mole percent MnO

13,55 Mol% ZnO13.55 mole percent ZnO

0,50 Mol% SnO[tief]20.50 mol% SnO [deep] 2

0,40 Mol% TiO[tief]20.40 mol% TiO [deep] 2

und in Fig. 2 für eine Grundzusammensetzung vonand in Fig. 2 for a basic composition of

52,43 Mol% Fe[tief]2 O[tief]352.43 mol% Fe [deep] 2 O [deep] 3

32,62 Mol% MnO32.62 mole percent MnO

13,55 Mol% ZnO13.55 mole percent ZnO

0,50 Mol% SnO[tief]20.50 mol% SnO [deep] 2

0,90 Mol% TiO[tief]20.90 mol% TiO [deep] 2

die Temperaturabhängigkeit der Anfangspermeabilität µ[tief]i vom CoO-Gehalt dargestellt ist. Je +0,01 Gew.% CoO bzw. 0,016 Mol% CoO wird hierbei das sekundäre Permeabilitätsmaximum bzw. die µ[tief]i -Schulter um ca. -7°C bzw. um ca. -7 bis -10°C verschoben. Dieselbe Verschiebung des sekundären Permeabilitätsmaximums von -7 bis -10°C durch Fe[hoch]2+ -Ionen erfordert etwa zehnmal so viele Fe[hoch]2+ -Ionen wie Co-Ionen. Es ist somit möglich, bei extrem niedrigen Eisenwerten zu arbeiten und dennoch einen bei sehr tiefer Temperatur gelegenen Knick in der µ[tief]i (Theta)-Kurve zu erhalten. Der hierdurch erzielbare Vorteil ist u. a. der, dass die bei hohem Eisengehalt auftretenden Desakkommodationserscheinungen vermieden werden. Ein zusätzlicher Vorteil der TK-Steuerung der µ[tief]i mit Hilfe von Co-Ionen besteht darin, dass nicht nur bei niedrigen Eisengehalten, sondern auch bei niedrigen Zink-Gehalten, d. h. bei hoher Curie-Temperatur gearbeitet werden kann, ohne dass die µ[tief]i (Theta)-Kurve zwischen dem Hoch- und dem Tieftemperaturmaximum durchhängt. Als Ursache dafür kommt ein von den Co-Ionen erzeugtes tertiäres Permeabilitätsmaximum (siehe Fig. 3 Ferrit A) in Betracht, wobei dieser Ferrit bewusst so ausgesintert wurde, dass sich das Maximum, das hier bei ca. +90°C liegt, deutlich ausprägt. Normalerweise wird man die Sinterung jedoch so wählen, dass der Ferrit die in Fig. 3 gestrichelt gekennzeichnete µ[tief]i (Theta)-Kurve hat, wobei dann kleines Alpha[tief]L in weiten Bereichen konstant ist. Ein Beispiel dafür ist der Ferrit B. Kleines Alpha/µ[tief]i ist hierbei mit 0,4 mal 10[hoch]-6K[hoch]-1 so klein, dass die effektive Permeabilität µ[tief]i verdoppelt werden kann, wenn im Filter derselbe Kondensator wie bisher bei Verwendung von Stoffen mitthe temperature dependence of the initial permeability µ [deep] i on the CoO content is shown. +0.01% by weight of CoO or 0.016% by weight of CoO the secondary permeability maximum or the µ [deep] i -shoulder is shifted by approx. -7 ° C or by approx. -7 to -10 ° C. The same shift of the secondary permeability maximum from -7 to -10 ° C by Fe [high] 2+ ions requires about ten times as many Fe [high] 2+ ions as Co ions. It is thus possible to work with extremely low iron values and still get a kink in the µ [deep] i (theta) curve at a very low temperature. The advantage that can be achieved hereby is, inter alia. that the symptoms of disaccommodation that occur with a high iron content are avoided. An additional advantage of the TC control of the µ [deep] i with the help of Co ions is that not only with low iron contents, but also with low zinc contents, ie. H. it is possible to work at a high Curie temperature without the µ [deep] i (theta) curve sagging between the high and low temperature maximum. A possible cause for this is a tertiary permeability maximum generated by the Co ions (see Fig. 3 Ferrite A), this ferrite being deliberately sintered in such a way that the maximum, which is here at approx. + 90 ° C, is clearly expressed . Normally, however, the sintering will be chosen in such a way that the ferrite has the µ [deep] i (theta) curve indicated by dashed lines in FIG. 3, with the small alpha [deep] L then being constant over a wide range. An example of this is the ferrite B. Small alpha / µ [deep] i is 0.4 times 10 [high] -6K [high] -1 so small that the effective permeability µ [deep] i can be doubled, if in the filter the same capacitor as before when using substances with

kleines Alpha/µ[tief]i = 0,8 mal 10[hoch]-6K[hoch]-1 verwendet wird. Die Glättung der µ[tief]i (Theta)-Kurve wurde im vorliegenden Fall dadurch erreicht, dass die mit I, II und III bezeichneten Maxima, nämlich das Hopkinson- oder Primärmaximum, sekundäre Maximum und dritte Maximum näher aneinandergeschoben wurden, so dass keine Welligkeit der µ[tief]i (Theta)-Kurve mehr eintritt.small alpha / µ [low] i = 0.8 times 10 [high] -6K [high] -1 is used. The smoothing of the µ [deep] i (theta) curve was achieved in the present case by shifting the maxima marked I, II and III, namely the Hopkinson or primary maximum, secondary maximum and third maximum closer together so that none Waviness of the µ [deep] i (theta) curve occurs more.

Die Erfindung wird nachstehend anhand von Beispielen erläutert, die insbesondere zeigen, in welch vorteilhafter Weise sich Co-Ionen in extrem niedrigen Dosierungen zur Steuerung des TK (Sn + Ti)-substituierter Mangan-Zink-Ferrite verwenden lassen und wie gleichzeitig sehr niedrige Verlustwerte und eine geringe Inkonstanz erreicht werden.The invention is explained below with the aid of examples which show in particular the advantageous manner in which Co ions can be used in extremely low doses to control the TK (Sn + Ti) -substituted manganese-zinc-ferrites and how at the same time very low loss values and a small inconsistency can be achieved.

Ausführungsbeispiel 1Embodiment 1

Ein Gemisch mit folgender Zusammensetzung seiner Ausgangskomponenten:A mixture with the following composition of its starting components:

51,5 Mol% Fe[tief]2 O[tief]351.5 mol% Fe [deep] 2 O [deep] 3

31,0 Mol% MnO31.0 mole percent MnO

16,5 Mol% ZnO16.5 mole percent ZnO

0,5 Mol% SnO[tief]20.5 mol% SnO [deep] 2

0,5 Mol% TiO[tief]20.5 mol% TiO [deep] 2

________________________________________________

zusätzlich 0,2 Gew.% CoOadditionally 0.2 wt.% CoO

wurde 2 bis 4 Stunden in destilliertem Wasser in Schwingmühlen gemischt, eine Stunde bei 850°C thermisch vorbehandelt und anschließend unter Zusatz einer CaCo[tief]3-Menge, die im Endprodukt zu etwa 0,06 Gew% CaO führt, 2 Stunden naßgemahlen. Die aus dem getrockneten Gemisch mit 1kBar verpreßten Ringkerne wurden in reinem N[tief]2-Gas aufgeheizt, bei 1250 bis 1300°C in 2 bis 4 Vol% O[tief]2-haltiger N[tief]2-Atmosphäre gesintert und in N[tief]2-Atmosphäre mit abnehmendem O[tief]2-Partialdruck abgekühlt, wobei bei 1100°C noch 0,8 Vol% O[tief]2 und unterhalb 900°C nur noch kleiner gleich als 20 ppm O[tie]2 vorhanden sind.was mixed in distilled water in vibrating mills for 2 to 4 hours, thermally pretreated for one hour at 850 ° C. and then wet-ground for 2 hours with the addition of an amount of CaCo [deep] 3, which leads to about 0.06% by weight of CaO in the end product. The toroidal cores pressed from the dried mixture with 1kbar were heated in pure N [deep] 2 gas, sintered at 1250 to 1300 ° C. in 2 to 4 vol% O [deep] 2 -containing N [deep] 2 atmosphere and in N [deep] 2 atmosphere with decreasing O [deep] 2 partial pressure, whereby at 1100 ° C still 0.8 vol% O [deep] 2 and below 900 ° C only less than or equal to 20 ppm O [tie] 2 are present.

Die Temperaturabhängigkeit der Anfangspermeabilität µ[tief]i von der Temperatur ist für diesen Ferrit in Fig. 3 (siehe Ferrit B) dargestellt. Dieser hochpermeable Ferrit besitzt eine Curie-Temperatur von 175°C und in einem weiten Temperaturbereich kleinste Verlustbeiwerte und einen streng konstanten positiven TK.The temperature dependence of the initial permeability μ [deep] i on the temperature is shown for this ferrite in FIG. 3 (see ferrite B). This highly permeable ferrite has a Curie temperature of 175 ° C and, in a wide temperature range, the smallest loss coefficients and a strictly constant positive TC.

Die technischen Daten dieses Ferrits sind:The technical data of this ferrite are:

µ[tief]i = 3500µ [deep] i = 3500

tan kleines Delta/µ[tief]i = 1,5 mal 110[hoch]-6 bei 100 kHztan small delta / µ [low] i = 1.5 times 110 [high] -6 at 100 kHz

= 0,8 mal 10[hoch]-6 bei 20 kHz= 0.8 times 10 [high] -6 at 20 kHz

= 0,5 mal 10[hoch]-6 bei 5 kHz= 0.5 times 10 [high] -6 at 5 kHz

kleines Eta[tief]B = 0,25 mal 10[hoch]-6/mT bei 100 kHzsmall Eta [low] B = 0.25 times 10 [high] -6 / mT at 100 kHz

= 0,15 mal 10[hoch]-6/mT bei 20 kHz= 0.15 times 10 [high] -6 / mT at 20 kHz

D/µ[tief]i = 2 mal 10[hoch]-6, 2 h 20 h, bei 60°C gemessen.D / µ [low] i = 2 times 10 [high] -6, 2 h 20 h, measured at 60 ° C.

Der bezogene Temperaturbeiwert kleines Alpha/µ[tief]i ist zwischen -40 und +80°C konstant und nur positiv und beträgt (0,4 plus/minus 0,05) mal 10[hoch]-6K[hoch]-1. Er kann durch stärkere Oxidation beim Abkühlen auch aufThe related temperature coefficient small alpha / µ [low] i is constant between -40 and + 80 ° C and only positive and is (0.4 plus / minus 0.05) times 10 [high] -6K [high] -1. He can also increase due to stronger oxidation when cooling

(0,7 plus/minus 0,1) mal 10[hoch]-6K[hoch]-1 für denselben Temperaturbereich eingestellt werden.(0.7 plus / minus 0.1) times 10 [high] -6K [high] -1 can be set for the same temperature range.

Ein Werkstoff gleicher Zusammensetzung, aber ohne den erfindungsgemäßen Zusatz von CoO, hat bei sonst analogen elektrischen EigenschaftenA material of the same composition, but without the addition of CoO according to the invention, has otherwise analogous electrical properties

kleines Alpha/µ[tief]i = 0,2 mal 10[hoch]-6K[hoch]-1 von 20 bis 60°Csmall alpha / µ [low] i = 0.2 times 10 [high] -6K [high] -1 from 20 to 60 ° C

und kleines Alpha/µ[tief]i = (1,5 bis 2,5) mal 10[hoch]-6K[hoch]-1 von 20 bis -40°C, also einen starken Knick in der µ[tief]i (Theta)-Kurve.and small alpha / µ [low] i = (1.5 to 2.5) times 10 [high] -6K [high] -1 from 20 to -40 ° C, ie a strong kink in the µ [low] i (Theta) curve.

Ausführungsbeispiel 2Embodiment 2

Ein Ferrit folgender Zusammensetzung seiner Ausgangskomponenten:A ferrite with the following composition of its starting components:

50,55 Mol% Fe[tief]2 O[tief]350.55 mol% Fe [deep] 2 O [deep] 3

32,25 Mol% MnO32.25 mole percent MnO

14,75 Mol% ZnO14.75 mole percent ZnO

0,61 Mol% SnO[tief]20.61 mol% SnO [deep] 2

1,84 Mol% TiO[tief]21.84 mol% TiO [deep] 2

________________________________________________

zusätzlich 0,05 Gew.% CoO wurde in der in Beispiel 1 erläuterten Weise vorbehandelt und mit 0,1 Gew% CaCO[tief]3 versetzt. Die hieraus gefertigten Preßlinge wurden anschließend in reinem N[tief]2-Gas auf 1150 bis 1200°C aufgeheizt, bei dieser Temperatur in einer 1 bis 2% O[tief]2 enthaltenden N[tief]2-Atmosphäre gesintert und in N[tief]2-Atomsphäre mit abnehmendem O[tief]2-Gehalt abgekühlt, derart, dass bei 1000°C noch 180 ppm O[tief]2 und bei 900°C noch 10 ppm O[tief]2 vorhanden waren.an additional 0.05% by weight of CoO was pretreated in the manner explained in Example 1 and 0.1% by weight of CaCO [deep] 3 was added. The compacts produced from this were then heated to 1150 to 1200 ° C. in pure N [deep] 2 gas, sintered at this temperature in an N [deep] 2 atmosphere containing 1 to 2% O [deep] 2 and sintered in N [ deep] 2 atmosphere with decreasing O [deep] 2 content, such that 180 ppm O [deep] 2 were still present at 1000 ° C and 10 ppm O [deep] 2 were still present at 900 ° C.

Das so erhaltene mittelpermeable Ferrit besaß folgende technische Daten:The medium-permeable ferrite obtained in this way had the following technical data:

µ[tief]i = 1600µ [deep] i = 1600

tan kleines Delta/µ[tief]i = 1,1 mal 10[hoch]-6 bei 100 kHztan small delta / µ [low] i = 1.1 times 10 [high] -6 at 100 kHz

= 6,7 mal 10[hoch]-6 bei 500 kHz= 6.7 times 10 [high] -6 at 500 kHz

kleines Eta[tief]B = 0,2 mal 10[hoch]-6/mT (100 kHz)small Eta [low] B = 0.2 times 10 [high] -6 / mT (100 kHz)

D/µ[tief]i = 3 mal 10[hoch]-6 bei 60°C gemessen, zwischen 2 h und 20 hD / µ [low] i = 3 times 10 [high] -6 measured at 60 ° C, between 2 h and 20 h

kleines Alpha/µ[tief]i = (0,45 plus/minus 0,05) mal 10[hoch]-6K[hoch]-1 von -20 bis +80°Csmall alpha / µ [low] i = (0.45 plus / minus 0.05) times 10 [high] -6K [high] -1 from -20 to + 80 ° C

Ein gleichartig zusammengesetzter Stoff ohne den erfindungsgemäßen Anteil an Co hat bei sonst gleichen Eigenschaften folgende Temperaturbeiwerte: kleines Alpha/µ[tief]i = 0,6 mal 10[hoch]-6K[hoch]-1 von 20 bis 80°CA similarly composed substance without the proportion of Co according to the invention has the following temperature coefficients with otherwise identical properties: small alpha / µ [low] i = 0.6 times 10 [high] -6K [high] -1 from 20 to 80 ° C

kleines Alpha/µ[tief]i = (1,5 2,5) mal 10[hoch]-6K[hoch]-1 von 20 bis -40°Csmall alpha / µ [low] i = (1.5 2.5) times 10 [high] -6K [high] -1 from 20 to -40 ° C

Ausführungsbeispiel 3Embodiment 3

Ein niederpermeabler Werkstoff mit folgender Einwaagezusammensetzung:A low-permeability material with the following sample composition:

51,4 Mol% Fe[tief]2 O[tief]351.4 mol% Fe [deep] 2 O [deep] 3

33,1 Mol% MnO33.1 mole percent MnO

14,1 Mol% ZnO14.1 mole percent ZnO

0,5 Mol% SnO[tief]20.5 mol% SnO [deep] 2

0,9 Mol% TiO[tief]20.9 mol% TiO [deep] 2

________________________________________________

zusätzlich 0,15 Gew% CoOadditionally 0.15 wt% CoO

und 0,1 Gew% CaCO[tief]3and 0.1 wt% CaCO [deep] 3

wurde im wesentlichen in der in Beispiel 1 erläuterten Weise behandelt. Die 1 bis 2-stündige Sinterung erfolgte bei 1150°C in einer 1% O[tief]2 enthaltenden N[tief]2-Atmosphäre. Die Abkühlung wurde in N[tief]2-Atmosphäre mit stetig abnehmendem O[tief]2-Gehalt auf < 20 ppm bei 900°C durchgeführt.was treated essentially in the manner set out in Example 1. The 1 to 2-hour sintering took place at 1150 ° C. in an N [deep] 2 atmosphere containing 1% O [deep] 2. The cooling was carried out in an N [deep] 2 atmosphere with a steadily decreasing O [deep] 2 content to <20 ppm at 900 ° C.

Der so gefertigte Ferrit zeichnete sich durch folgende Eigenschaften aus:The ferrite produced in this way was characterized by the following properties:

µ[tief]i = 1200µ [deep] i = 1200

tan kleines Delta/µ[tief]i = 1,5 mal 10[hoch]-6 (100 kHz)tan small delta / µ [low] i = 1.5 times 10 [high] -6 (100 kHz)

= 5,0 mal 10[hoch]-6 (500 kHz)= 5.0 times 10 [high] -6 (500 kHz)

= 15 mal 10[hoch]-6 (800 kHz)= 15 times 10 [high] -6 (800 kHz)

kleines Eta[tief]B = 0,4 mal 10[hoch]-6/mT (100 kHz)small Eta [low] B = 0.4 times 10 [high] -6 / mT (100 kHz)

D/µ[tief]i < 5 mal 10[hoch]-6, bei 60°C, zwischen 2 und 20 hD / µ [low] i <5 times 10 [high] -6, at 60 ° C, between 2 and 20 h

kleines Alpha/µ[tief]i = (0,75 plus/minus 0,05) mal 10[hoch]-6K[hoch]-1 von -40 bis +80°Csmall alpha / µ [low] i = (0.75 plus / minus 0.05) times 10 [high] -6K [high] -1 from -40 to + 80 ° C

Ohne den erfindungsgemäßen Co-Zusatz ist bei sonst ähnlichen Eigenschaften bei Raumtemperatur ein starker Knick in der µ[tief]i (Theta)-Kurve vorhanden, mitWithout the addition of Co according to the invention, there is a strong kink in the μ [deep] i (theta) curve with otherwise similar properties at room temperature, with

kleines Alpha/µ[tief]i = 0,2 mal 10[hoch]-6K[hoch]-1 von 20 bis 60°Csmall alpha / µ [low] i = 0.2 times 10 [high] -6K [high] -1 from 20 to 60 ° C

kleines Alpha/µ[tief]i = (1,5..2) mal 10[hoch]-6K[hoch]-1 von 20 bis -40°Csmall alpha / µ [low] i = (1.5..2) times 10 [high] -6K [high] -1 from 20 to -40 ° C

Ausführungsbeispiel 4Embodiment 4

In Tabelle 1 ist anhand der Stoffe ß1 bis ß5 gezeigt, wie bei einer vorgegebenen Zusammensetzung durch zunehmende CoO-Mengen (s. Fig. 2) der Knick bzw. das Maximum in der µ[tief]i (Theta)-Kurve nach tieferen Temperaturen verschoben wird, wobei gleichzeitig im Tieftemperaturbereich (und bei Temperaturen oberhalb der Temperatur des Maximus) extrem niedrige Verlustbeiwerte auftreten. Man erhält damit Werkstoffe, die sich z. B. gemeinsam mit TK-O-Kondensatoren verwenden lassen. Für die Praxis am günstigsten sind die Stoffe ß1 bis ß4. Es handelt sich dabei um mittelpermeable Stoffe, die bis zu Frequenzen von einigen 100 kHz sehr gut eingesetzt werden können. ß0 zeigt die Eigenschaften eines Stoffes ohne den erfindungsgemäßen Zusatz. Die Herstellung der Preßlinge erfolgt wie in Beispiel 1. Gesintert wurden die Kerne bei 1190°C in 2,2 % O,[tief]2-haltiger N[tief]2-Atmosphäre. Die Kerne wurden in N[tief]2-Atmosphäre mit stetig abnehmendem O[tief]2-Partialdruck abgekühlt.In table 1 it is shown on the basis of the substances β1 to β5 how the kink or the maximum in the µ [deep] i (theta) curve after lower temperatures due to increasing amounts of CoO (see Fig. 2) for a given composition is shifted, while at the same time extremely low loss coefficients occur in the low temperature range (and at temperatures above the temperature of the Maximus). This gives materials that are z. B. can be used together with TK-O capacitors. The substances ß1 to ß4 are most favorable in practice. These are medium-permeable substances that can be used very well up to frequencies of a few 100 kHz. β0 shows the properties of a substance without the additive according to the invention. The compacts are produced as in Example 1. The cores were sintered at 1190 ° C. in a 2.2% O, [deep] 2-containing N [deep] 2 atmosphere. The cores were cooled in an N [deep] 2 atmosphere with steadily decreasing O [deep] 2 partial pressure.

Ausführungsbeispiel 5Embodiment 5

In Tabelle 2 sind Stoffe zusammengestellt, die ebenfalls einen um Null schwankenden Temperaturkoeffizienten haben, bei einer Permeabilität von etwa 2000. Die Herstellung der Pulver und Rohlinge erfolgte wie in Beispiel 1. Gesintert wurden die Stoffe bei etwa 1200 bis 1250° in einer 2 bis 4 % O[tief]2 enthaltenden N[tief]2-Atmosphäre, abgekühlt in N[tief]2 mit abnehmendem O[tief]2-Gehalt.In Table 2 substances are compiled which also have a temperature coefficient fluctuating around zero, with a permeability of about 2000 N [deep] 2 atmosphere containing% O [deep] 2, cooled in N [deep] 2 with decreasing O [deep] 2 content.

2 Patentansprüche2 claims

3 Figuren3 figures

Tabelle 1: Mittelpermeable Werkstoffe mit extrem niedrigen Verlusten bei tiefen und normalen Temperaturen und einem um plus/minus Null schwankenden Temperaturkoeffizienten in einem weiten TemperaturbereichTable 1: Medium-permeable materials with extremely low losses at low and normal temperatures and a temperature coefficient fluctuating around plus / minus zero over a wide temperature range

Tabelle 2: Hochpermeable Werkstoffe mit niedrigen Verlustbeiwerten in einem weiten Temperaturbereich und einem um plus/minus Null schwankenden Temperaturkoeffizienten in einem weiten TemperaturbereichTable 2: Highly permeable materials with low loss coefficients in a wide temperature range and a temperature coefficient fluctuating around plus / minus zero in a wide temperature range

Claims (2)

1. Sn-Ti-substituierter, hoch- oder mittelpermeabler verlustarmer und kalziumhaltiger Mangan-Zink-Ferrit mit in einem weiten Temperaturbereich, insbesondere zwischen -60°C und +100°C, konstantem und positivem oder nur geringfügig um Null schwankenden Temperaturkoeffizienten der Anfangspermeabilität, dadurch gekennzeichnet, dass ein mit etwa 0,03 bis 0,4 Gew.% CaO versetzter Ferrit folgender Zusammensetzung seiner Ausgangskomponenten:1. Sn-Ti-substituted, high- or medium-permeability low-loss and calcium-containing manganese-zinc ferrite with a constant and positive temperature coefficient of initial permeability over a wide temperature range, in particular between -60 ° C and + 100 ° C, or temperature coefficient that fluctuates only slightly around zero , characterized in that a ferrite mixed with about 0.03 to 0.4% by weight of CaO has the following composition of its starting components: 49 bis 55 Mol% Fe[tief]2O[tief]349 to 55 mol% Fe [deep] 2O [deep] 3 davon 0,2 bis 5 Mol% SnO[tief]2 + TiO[tief]2of which 0.2 to 5 mol% SnO [deep] 2 + TiO [deep] 2 Rest MnO und ZnORemainder MnO and ZnO zusätzlich sehr geringe Mengen CoO, insbesondere nur 0,02 bis 0,5 Gew.% CoO enthält, wobei die CoO-Menge in Übereinstimmung mit dem Soll-Fe[hoch]2+ -Gehalt, gesteuert durch den Anteil an Sn, Ti und überstöchiometrischem Eisen, so gewählt ist, dass sich der gewünschte TK der Anfangspermeabilität µ[tief]1 einstellt.additionally contains very small amounts of CoO, in particular only 0.02 to 0.5 wt overstoichiometric iron, is chosen so that the desired TC of the initial permeability µ [deep] 1 is established. 2. Verfahren zur Herstellung eines Mangan-Zink-Ferrits nach Anspruch 1, dadurch gekennzeichnet, dass folgende Zusammensetzung von Ausgangskomponenten:2. A method for producing a manganese-zinc ferrite according to claim 1, characterized in that the following composition of starting components: 49,55 Mol% Fe[tief]2O[tief]349.55 mol% Fe [deep] 2O [deep] 3 0,2 bis 5 Mol% (SnO[tief]2 und/oder TiO[tief]2)0.2 to 5 mol% (SnO [deep] 2 and / or TiO [deep] 2) Rest MnO und ZnORemainder MnO and ZnO __________________________________________________________ zusätzlich 0,02 bis 0,5 Gew% CoOadditionally 0.02 to 0.5 wt% CoO gemischt, insbesondere thermisch vorbehandelt, unter Zusatz von etwa 0,05 bis 0,4 Gew.% CaCO[tief]3 gemahlen, zu Kernen gepresst, in reinem inerten Gas, insbesondere N[tief]2, auf Sintertemperatur, insbesondere 1100 bis 1300°C aufgeheizt, bei dieser Temperatur in O[tief]2-haltiger N[tief]2-Atmosphäre gesintert und in N[tief]2-Atmosphäre mit abnehmendem O[tief]2-Partialdruck abgekühlt wird.mixed, in particular thermally pretreated, with the addition of about 0.05 to 0.4 wt ° C, sintered at this temperature in O [deep] 2 -containing N [deep] 2 atmosphere and cooled in N [deep] 2 atmosphere with decreasing O [deep] 2 partial pressure.
DE2735440A 1977-08-05 1977-08-05 Manganese zinc ferrite Expired DE2735440C3 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE2735440A DE2735440C3 (en) 1977-08-05 1977-08-05 Manganese zinc ferrite
FR7822251A FR2399393A1 (en) 1977-08-05 1978-07-27 MANGANESE AND ZINC FERRITE
GB7832307A GB2001950B (en) 1977-08-05 1978-08-04 Magnetic-zinc ferrites
IT26493/78A IT1097665B (en) 1977-08-05 1978-08-04 FERRITE WITH MANGANESE AND ZINC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2735440A DE2735440C3 (en) 1977-08-05 1977-08-05 Manganese zinc ferrite

Publications (3)

Publication Number Publication Date
DE2735440A1 true DE2735440A1 (en) 1979-02-08
DE2735440B2 DE2735440B2 (en) 1981-04-02
DE2735440C3 DE2735440C3 (en) 1982-04-08

Family

ID=6015760

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2735440A Expired DE2735440C3 (en) 1977-08-05 1977-08-05 Manganese zinc ferrite

Country Status (4)

Country Link
DE (1) DE2735440C3 (en)
FR (1) FR2399393A1 (en)
GB (1) GB2001950B (en)
IT (1) IT1097665B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8403282A (en) * 1984-10-30 1986-05-16 Philips Nv TITANIC AND COBALT-CONTAINING MANGANESE-ZINC FERRITE CORE AND METHOD OF MANUFACTURING THE SAME
JP2000091115A (en) * 1998-09-07 2000-03-31 Kureha Chem Ind Co Ltd Resin composition and molded object
JP3584438B2 (en) * 1999-11-19 2004-11-04 ミネベア株式会社 Mn-Zn ferrite and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2165009B2 (en) * 1971-12-28 1975-12-04 Siemens Ag, 1000 Berlin Und 8000 Muenchen Process for the production of a manganese-zinc ferrite

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL135865C (en) 1963-07-26
DE1671035C2 (en) 1966-07-01 1975-02-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen Ferromagnetically highly permeable manganese-zinc-ferrite core with great temporal and thermal constancy of the initial permeability and process for its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2165009B2 (en) * 1971-12-28 1975-12-04 Siemens Ag, 1000 Berlin Und 8000 Muenchen Process for the production of a manganese-zinc ferrite

Also Published As

Publication number Publication date
GB2001950A (en) 1979-02-14
FR2399393A1 (en) 1979-03-02
DE2735440B2 (en) 1981-04-02
DE2735440C3 (en) 1982-04-08
IT7826493A0 (en) 1978-08-04
FR2399393B1 (en) 1983-11-18
IT1097665B (en) 1985-08-31
GB2001950B (en) 1982-02-10

Similar Documents

Publication Publication Date Title
DE69917088T2 (en) Ferrite, and transformer and their operating method
DE1070540B (en)
DE970458C (en) Soft magnetic core material made of nickel-zinc ferrite
DE1671035C2 (en) Ferromagnetically highly permeable manganese-zinc-ferrite core with great temporal and thermal constancy of the initial permeability and process for its production
DE68908769T2 (en) Soft magnetic iron-based alloy.
DE3619659C2 (en) Use of a glass-like alloy based on Fe
DE1073929B (en) Process for the production of shaped ferromagnetic materials
DE2735440C3 (en) Manganese zinc ferrite
DE2917602C2 (en)
AT164420B (en) Magnetic core made from a ferromagnetic ferrite
DE2143439A1 (en) Ferrites with a low disaccommodation behavior
DE1302342C2 (en) PROCESS FOR PRODUCING A SOFT MAGNETIC FERRITE WITH ISOPERMAL CHARACTER
DE2642852C2 (en) Process for the production of a high and medium permeability Mn-Zn-Sn-Ti ferroferrite for a wide temperature and frequency range
DE2012041C3 (en) Manganese-zinc ferrite core and process for its manufacture
DE1696392B1 (en) Permanent magnet material with magnetoplumbite structure and process for its production
CH270970A (en) Magnetic material made from ferromagnetic mixed crystals of ferrites and method for producing the same.
EP0140409B1 (en) Magnet core of lithium-zinc-manganese ferrite
DE1949599C3 (en) Ferrimagnetic, highly permeable manganese-zinc ferrite core and process for its production
DE1300859B (en) Process for the production of magnetic material with high permeability
DE2113344C3 (en) Ferrite with a garnet crystal structure
DE1292060B (en) Magnetic high frequency ferrite
AT211561B (en) Ferromagnetic material and process for its manufacture
DE1571569A1 (en) Process for the production of ferromagnetic material
DE1796225B1 (en) METHOD FOR PRODUCING MN-ZN-FERRITE AS A MAGNETIC MATERIAL
DE2719280A1 (en) METHOD FOR MANUFACTURING FERRITE MAGNETIC CORE

Legal Events

Date Code Title Description
OAP Request for examination filed
OD Request for examination
C3 Grant after two publication steps (3rd publication)
8320 Willingness to grant licences declared (paragraph 23)
8339 Ceased/non-payment of the annual fee