DE2356921C2 - Process for the production of silicon nitride bodies by reaction sintering of silicon powder in a nitrogen atmosphere and subsequent pressure sintering - Google Patents

Process for the production of silicon nitride bodies by reaction sintering of silicon powder in a nitrogen atmosphere and subsequent pressure sintering

Info

Publication number
DE2356921C2
DE2356921C2 DE2356921A DE2356921A DE2356921C2 DE 2356921 C2 DE2356921 C2 DE 2356921C2 DE 2356921 A DE2356921 A DE 2356921A DE 2356921 A DE2356921 A DE 2356921A DE 2356921 C2 DE2356921 C2 DE 2356921C2
Authority
DE
Germany
Prior art keywords
silicon
sintering
reaction
silicon nitride
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE2356921A
Other languages
German (de)
Other versions
DE2356921A1 (en
Inventor
Norman Lawrence Surbiton Surrey Parr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Development Corp UK
Original Assignee
National Research Development Corp UK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Development Corp UK filed Critical National Research Development Corp UK
Publication of DE2356921A1 publication Critical patent/DE2356921A1/en
Application granted granted Critical
Publication of DE2356921C2 publication Critical patent/DE2356921C2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/74Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
    • C04B35/76Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Description

Es ist bekannt (DE-AS 16 46 700), Siliciumnitrid-Keramikkörper herzustellen, indem zuerst Siliciumnitrid hergestellt, dieses dann gebrochen und gemahlen und pulverförmiges Siliciumnitrid unter Druck in Gegenwart eines B2O3- oder Phosphat-Bindemittels gesintert wird. Alle diese Verfahren sind sehr aufwendig und die erhaltenen Keramikkörper nicht sehr dicht. Im Stand der Technik der DE-AS 16 46 700 ist das Reaktionssintern von Siliciumpulver allein oder mit feuerfesten Zusätzen in Stickstoffatmosphäre unter Bildung von Siliciumnitrid-Körpern erwähnt. Die DE-OS 21 34 072 betrifft die Herstellung von Siliciumnitrid-Gegenständen durch Reaktionssintern eines Preßlings aus Silicium, enthaltend ein Flußmittel, in nitrierender Atmosphäre und anschließendes Heißpressen des reaktionsgesinterten Körpers. Nachteilig bei diesem Verfahren ist, daß der reaktionsgesinterte Körper noch eine beträchtliche Porosität aufweist und daher bei dem sich anschließenden Heißpressen zur Eliminierung dieser Porosität und Erreichung einer optimalen Dichte des Bauteils praktisch die gleichen Schwierigkeiten auftreten wie beim Heißpressen von aus Siliciumnitrid geformten Rohlingen.It is known (DE-AS 16 46 700) to produce silicon nitride ceramic bodies by first producing silicon nitride, which is then broken and ground and powdered silicon nitride is sintered under pressure in the presence of a B 2 O 3 or phosphate binder. All of these processes are very complex and the ceramic bodies obtained are not very dense. In the prior art of DE-AS 16 46 700, the reaction sintering of silicon powder alone or with refractory additives in a nitrogen atmosphere with the formation of silicon nitride bodies is mentioned. DE-OS 21 34 072 relates to the production of silicon nitride objects by reaction sintering a compact made of silicon containing a flux in a nitriding atmosphere and subsequent hot pressing of the reaction sintered body. The disadvantage of this method is that the reaction-sintered body still has considerable porosity and therefore practically the same difficulties arise in the subsequent hot pressing to eliminate this porosity and achieve an optimal density of the component as in the hot pressing of blanks formed from silicon nitride.

Aufgabe der Erfindung ist die Verringerung der Kosten zur Herstellung von Siliciumnitrid-Formkörpern praktisch theoretischer Dichte gegenüber dem Heißpressen von Siliciumnitrid-Pulvern, sowie die *5 Verringerung der Porosität und Erleichterung des Heißpressens der reaktionsgesinterten Gegenstände gegenüber den bekannten Verfahren zum Reaktionssintern von Silicium und anschließendem Heißpressen des reaktionsgesinterten Siliciumnitrid-Körpers. soThe object of the invention is to reduce the costs of producing silicon nitride molded bodies practically theoretical density compared to hot pressing of silicon nitride powders, as well as the * 5 Reducing the porosity and facilitating hot pressing of the reaction sintered articles compared to the known process for the reaction sintering of silicon and subsequent hot pressing of the reaction sintered silicon nitride body. so

Ausgehend von dem oben genannten Stand der Technik wird diese Aufgabe dadurch gelöst, daß man den Preßling zwischen dem Reaktionssintern und Diurksintern mit einem Flußmittel infiltriert. Das Flußmittel ist vorzugsweise Magnesiumoxid in einer Menge von I bis 5 Vol.-%.Based on the above-mentioned prior art, this object is achieved in that one infiltrated the compact with a flux between the reaction sintering and diurksintering. That Flux is preferably magnesium oxide in an amount of 1 to 5% by volume.

Die vollständige Umwandlung des Siliciumpulver-Formlings zu einem ineinander greifenden Kristallaggregat von Siliciumnitrid erreicht man in Stickstockatmosphäre bei einer Temperatur unmittelbar unter dem Schmelzpunkt von Silicium. Dies dauert im allgemeinen etwa 12 h, abhängig von der Querschnittsfläche des Preßlings. Die Reaktion setzt bei 1200°C ein, ist jedoch schneller bei Temperaturen in der Nähe von 1400°C. Da die Reaktion exotherm ist, ist es insbesondere bei großen Querschnittsflächen vorzuziehen, nicht über 13500C zu gehen, um ein örtliches Schmelzen von Sjliciumpulvern zu Klumpen, die einem Reaktionssintern unzugänglich wären, zu verhindern. Die Nitridbildung kann vorzugsweise auch 2stufig ausgeführt werden (GB-PS 8 87 942). Obwohl keine Dimensionsänderungen oder merkliche Verziehungen während des Reaktionssinterns stattfinden, ist es notwendig, ausreichenden Materialüberschuß vorzusehen, um das Schrumpfen während des folgenden Drucksinterns zu kompensieren. Es kann auch notwendig sein, Überschußmateria! an bestimmten Flächen vorzusehen, die letztlich abgearbeitet werden, damit der erhaltene Formkörper hohe Oberflächengüte aufweistThe complete conversion of the silicon powder molding to an interlocking crystal aggregate of silicon nitride is achieved in a stick-stick atmosphere at a temperature just below the melting point of silicon. This generally takes about 12 hours, depending on the cross-sectional area of the compact. The reaction starts at 1200 ° C, but is faster at temperatures near 1400 ° C. Since the reaction is exothermic, it is preferable, especially for large cross-sectional areas not to go more than 1,350 0 C to localized melting of Sjliciumpulvern to lumps that were inaccessible to reaction sintering to prevent. The nitride formation can preferably also be carried out in two stages (GB-PS 8 87 942). Although no dimensional changes or noticeable distortions take place during the reaction sintering, it is necessary to provide sufficient excess material to compensate for the shrinkage during the subsequent pressure sintering. It may also be necessary to remove excess material! to be provided on certain surfaces that are ultimately processed so that the molded body obtained has a high surface quality

Der Siliciumnitrid-Körper wird dazu in einer Graphitform, überzogen mit einer Bornitrid-Anstrichmasse, unter leichtem Druck verdichtet, während die Temperatur auf maximal 16000C bis 18500C gesteigert und gleichzeitig der Preßdruck auf 1035 N/cm2 erhöht wird. Diese Bedingungen werden dann kurze Zeit, unabhängig von der Materialstärke, in der Form aufrechterhalten und dann langsam aufgehoben. Es schließt sich nun ein Tempern zur Aufhebung der Restspannung an. Durch Verdichten des Siüciumpulvers zu einem Körper in etwa Endform und durch Anwendung von Graphitformen und möglicherweise einer einfachen Schmiedeoperatron ist es möglich, Formkörper weitestgehend der Endform herzustellen, so daß die aufwendigen Nacharbeitskosten minimal gehalten werden.The silicon body is to in a graphite mold, coated with a boron nitride paint composition, compacted under gentle pressure while the temperature to a maximum of 1600 0 C increased to 1850 0 C and at the same time the pressing pressure 1035 N / cm 2 is increased. These conditions are then maintained in the mold for a short time, regardless of the material thickness, and then slowly removed. This is now followed by tempering to remove the residual stress. By compacting the Siüciumpulver into a body in an approximately final shape and by using graphite molds and possibly a simple forging operator, it is possible to produce shaped bodies largely in the final shape, so that the costly reworking costs are kept to a minimum.

Dieses Verfahren wird erfindungsgemäß vereinfacht durch Infiltrieren eines Flußmittels in den porösen Sinterkörper vor der Stufe des Drucksintern. Als Flußmittel eignen sich Magnesiumoxid, Magnesiumnitrid, Calciumoxid, Aluminiumoxid, Eisenoxid, Berylliumoxid, Berylliumnitrid und Calciumnitrid.According to the invention, this process is simplified by infiltrating a flux into the porous Sintered body before the step of pressure sintering. Magnesium oxide, magnesium nitride, Calcium oxide, aluminum oxide, iron oxide, beryllium oxide, beryllium nitride and calcium nitride.

Zur Herstellung von Gegenständen mit einer ungewöhnlichen Kombination von physikalischen und mechanischen Eigenschaften, insbesondere für Teile für tribologische und Hochtemperatur-Systeme werden dem Siliciumpulver vor dem Reaktionssintern weitere Stoffe zugesetztFor making items with an unusual combination of physical and mechanical properties, especially for parts for tribological and high temperature systems further substances were added to the silicon powder before the reaction sintering

Beispiele für diese Materialien sind Dispersionen von 1 bis 50 Vol.-% Siliciumdioxid, Siliciumcarbid, Graphit, Bornitrid, Aluminium, Titan oder Eisen in feinteiliger oder grobkörniger Form in regelloser Anordnung oder als orientierte Drähte oder Fasern oder aber auch in Sandwichstruktur.Examples of these materials are dispersions of 1 to 50% by volume silicon dioxide, silicon carbide, graphite, Boron nitride, aluminum, titanium or iron in finely divided or coarse-grained form in a random arrangement or as oriented wires or fibers or in a sandwich structure.

Durch selektive Anordnung von Verstärkungsmaterialien während der Anfangsstufen der Herstellung ist es möglich, Teile mit lokal besseren Eigenschaften, wie Oberflächenhärte, elektrische Leitfähigkeit, thermisches Isolationsvermögen, herzustellen oder mit speziellen Eigenschaften hinsichtlich der Verbindung von Keramik und Metall. Fs ist auch möglich, die Struktur dieser Produkte zu modifizieren und die Eigenschaften durch weitere Warmbearbeitung zu beeinflussen, welche auch darauf gerichtet sein kann, um aus dem Rohkörper besondere Formen herzustellen.It is through selective placement of reinforcement materials during the initial stages of manufacture possible parts with locally better properties, such as surface hardness, electrical conductivity, thermal Insulation capacity, to be produced or with special properties with regard to the connection of ceramics and metal. Fs is also possible to modify the structure of these products and the properties through to influence further hot working, which can also be aimed at getting out of the raw body to produce special shapes.

Auf speziellen Wunsch eines Abnehmers wurden Körper mit praktisch theoretischer Dichte aus Siliciumnitrid, enthaltend 1 bis 5Vol.-% Magnesiumoxid, hergestellt mit zusätzlich 10 bis 30 Vol.-% Siliciumcarbid für besondere tribologische Hochtemperatur-Eigenschaften, mit IO bis 30 Vol.-% Graphit für Lagereigenschaften, mit 10 bis 30% Bornitrid für tribologische und Verschleiß-Eigenschaften und schließlich 10 bis 30% Eisen für Schlagfestigkeit und Eigenschaften bei Raumtemperatur.At the special request of a customer, bodies with a practically theoretical density were made of silicon nitride, Containing 1 to 5% by volume of magnesium oxide, produced with an additional 10 to 30% by volume of silicon carbide for special tribological high-temperature properties, with IO up to 30 vol .-% graphite for storage properties, with 10 to 30% boron nitride for tribological and wear properties and finally 10 to 30% Iron for impact resistance and room temperature properties.

Claims (2)

Patentansprüche:Patent claims: 1. Verfahren zur Herstellung von Siliciumnitrid-Körpern durch Reaktionssintern von Siliciumpulver in Stickstoffatmosphäre und Drucksintern des reaktionsgesinterten Körpers bis etwa zur endgültigen Form, dadurch gekennzeichnet, daß man den reaktionsgesinterten Körper mit einem Flußmittel infiltriert und dann drucksintert1. Process for the production of silicon nitride bodies by reaction sintering silicon powder in a nitrogen atmosphere and pressure sintering the reaction sintered body to approximately the final shape, characterized in that the reaction sintered body is infiltrated with a flux and then pressure sintered 2. Verfahren nach Anspruch 1, dadurch gekenn- ι ο zeichnet, daß man dem Siliciumpulver Siliciumdioxid, Siliciumcarbid, Graphit, Bornitrid, Aluminium, Titan und/oder Eisen, insbesondere in einer Menge von 10 bis 30 Vo!.-%, zusetzt2. The method according to claim 1, characterized in that the silicon powder silicon dioxide, Silicon carbide, graphite, boron nitride, aluminum, Titanium and / or iron, in particular in an amount of 10 to 30% by volume, is added 1515th
DE2356921A 1972-11-14 1973-11-14 Process for the production of silicon nitride bodies by reaction sintering of silicon powder in a nitrogen atmosphere and subsequent pressure sintering Expired DE2356921C2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB5244572A GB1393579A (en) 1972-11-14 1972-11-14 Method of producing high density silicon nitride

Publications (2)

Publication Number Publication Date
DE2356921A1 DE2356921A1 (en) 1974-05-30
DE2356921C2 true DE2356921C2 (en) 1982-09-23

Family

ID=10463949

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2356921A Expired DE2356921C2 (en) 1972-11-14 1973-11-14 Process for the production of silicon nitride bodies by reaction sintering of silicon powder in a nitrogen atmosphere and subsequent pressure sintering

Country Status (2)

Country Link
DE (1) DE2356921C2 (en)
GB (1) GB1393579A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1117334B (en) * 1977-12-23 1986-02-17 Fiat Spa PROCEDURE FOR THE SYNTERIZATION OF SILICON NITRIDE REACTION BONDED
JPS6022676B2 (en) * 1980-02-23 1985-06-03 日本鋼管株式会社 Silicon nitride/boron nitride composite sintered body and its manufacturing method
US4388255A (en) * 1981-03-27 1983-06-14 Boeing Aerospace Co. (A Division Of The Boeing Company) Method for producing pre-shaped α-silicon nitride whisker compacts and loose whiskers for composite material reinforcement
EP0120849B1 (en) * 1982-09-30 1987-05-27 Ford Motor Company Method of making high strength hot pressed silicon nitride
DE3278499D1 (en) * 1982-09-30 1988-06-23 Ford Motor Co Process for producing cutting tools from si3n4-silicon nitride by chemical bonding or by hot-pressing
US4579699A (en) * 1983-09-29 1986-04-01 The Boeing Company Method for making α-Si3 N4 whiskers and articles therefrom

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1069108A (en) * 1965-04-22 1967-05-17 Montedison Spa A process for preparing silicon nitride articles
GB1340696A (en) * 1970-07-10 1973-12-12 Lucas Industries Ltd Method of manufacturing silicon nitride products

Also Published As

Publication number Publication date
DE2356921A1 (en) 1974-05-30
GB1393579A (en) 1975-05-07

Similar Documents

Publication Publication Date Title
DE3205877C2 (en)
DE2549637A1 (en) HIGH DENSITY SILICON CARBIDE SHAPED BODY AND PROCESS FOR THEIR PRODUCTION
DE1646796A1 (en) Process for the production of highly refractory moldings from silicon nitride
DE2750290B2 (en) Refractory articles and metal-ceramic composites made of silicate-containing aluminum titanate
DE2548740C2 (en) Process for the production of bodies from silicon nitride
DE19710671A1 (en) Method of manufacturing a component and component
DE69032117T2 (en) METHOD FOR PRODUCING SINTERED CERAMIC MATERIALS
EP0071241B1 (en) Substantially pore-free polycrystalline silicon carbide articles produced by hot isostatic pressing
DE2520993C3 (en) Refractory mass on the basis of silicic acid anhydride and its use for the production of the lining of a pouring funnel and a method for treating such a lining
DE1646700B1 (en) Process for the production of molded bodies from silicon nitride or its mixtures with silicon carbide
DE2356921C2 (en) Process for the production of silicon nitride bodies by reaction sintering of silicon powder in a nitrogen atmosphere and subsequent pressure sintering
DE2923729C2 (en)
DE1767967B1 (en) METHOD FOR MANUFACTURING SINTER BODIES FROM AL METHOD FOR MANUFACTURING SINTER BODIES FROM AL
DE2936940A1 (en) METHOD FOR PRODUCING A SIALON SINTER PRODUCT
DE69015143T2 (en) Process for producing a high density composite material from metal borides.
DE504484C (en) Process for the production of hard bodies for tools, in particular drawing dies, from carbides, silicides, borides, aluminum oxide or mixtures of these
DE69120250T2 (en) Ceramic composite structure of high strength and process for its production
EP1390321A1 (en) Metal-ceramic composite material and method for production thereof
DE4007825C2 (en)
DE69218944T2 (en) BORCARBIDE COPPER CERMETS AND METHOD FOR THEIR PRODUCTION
DE2751851A1 (en) SINTERABLE POWDER MADE FROM SILICON CARBIDE POWDER, SINTER CERAMIC PRODUCTS MADE FROM THIS POWDER AND METHOD FOR MANUFACTURING THE PRODUCTS
EP0181317B1 (en) Process for manufacturing a porous filter body from metal powder
DE3337025C2 (en)
US4788168A (en) Method for producing carbon-ceramic composite material
DE588911C (en) Sintered hard metal alloy containing boron carbide for work equipment and tools and processes for their manufacture

Legal Events

Date Code Title Description
OD Request for examination
D2 Grant after examination
8339 Ceased/non-payment of the annual fee