DE20220908U1 - Überspannungsschutzeinrichtung - Google Patents

Überspannungsschutzeinrichtung Download PDF

Info

Publication number
DE20220908U1
DE20220908U1 DE20220908U DE20220908U DE20220908U1 DE 20220908 U1 DE20220908 U1 DE 20220908U1 DE 20220908 U DE20220908 U DE 20220908U DE 20220908 U DE20220908 U DE 20220908U DE 20220908 U1 DE20220908 U1 DE 20220908U1
Authority
DE
Germany
Prior art keywords
electrode
protection device
spark gap
electrodes
air breakdown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE20220908U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Contact GmbH and Co KG
Original Assignee
Phoenix Contact GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Contact GmbH and Co KG filed Critical Phoenix Contact GmbH and Co KG
Priority to DE20220908U priority Critical patent/DE20220908U1/de
Priority claimed from DE10212697A external-priority patent/DE10212697A1/de
Publication of DE20220908U1 publication Critical patent/DE20220908U1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed

Abstract

Überspannungsschutzeinrichtung, mit einer ersten Elektrode (1), mit einer zweiten Elektrode (2), mit einer zwischen beiden Elektroden (1, 2) existenten bzw. wirksamen Luft-Durchschlag-Funkenstrecke (3) und mit einem die Elektroden (1, 2) aufnehmenden Gehäuse (4), wobei beim Zünden der Luft-Durchschlag-Funkenstrecke (3) zwischen den beiden Elektroden (1, 2) ein Lichtbogen (5) entsteht, dadurch gekennzeichnet, daß der Luft-Durchschlag-Funkenstrecke (3) eine Impedanz (6) parallel geschaltet ist und daß der Parallelschaltung (7) aus Luft-Durchschlag-Funkenstrecke (3) und Impedanz (6) eine Isolationsstrecke (8) in Reihe geschaltet ist.

Description

  • Die Erfindung betrifft eine Überspannungsschutzeinrichtung, mit einer ersten Elektrode, mit einer zweiten Elektrode, mit einer zwischen den beiden Elektroden existenten bzw. wirksamen Luft-Durchschlag-Funkenstrecke und mit einem die Elektroden aufnehmenden Gehäuse, wobei beim Zünden der Luft-Durchschlag-Funkenstrecke zwischen den beiden Elektroden ein Lichtbogen entsteht.
  • Elektrische, insbesondere aber elektronische Meß-, Steuer-, Regel- und Schaltkreise, vor allem auch Telekommunikationseinrichtungen und -anlagen, sind empfindlich gegen transiente Überspannungen, wie sie insbesondere durch atmosphärische Entladungen, aber auch durch Schalthandlungen oder Kurzschlüsse in Energieversorgungsnetzen auftreten können. Diese Empfindlichkeit hat in dem Maße zugenommen, in dem elektronische Bauelemente, insbesondere Transistoren und Thyristoren, verwendet werden; vor allem sind zunehmend eingesetzte integrierte Schaltkreise in starkem Maße durch transiente Überspannungen gefährdet.
  • Elektrische Stromkreise arbeiten mit der für sie spezifizierten Spannung, der Nennspannung (in der Regel ≅ Netzspannung), normalerweise störungsfrei. Das gilt dann nicht, wenn Überspannungen auftreten. Als Überspannungen gelten alle Spannungen, die oberhalb der oberen Toleranzgrenze der Nennspannung liegen. Hierzu zählen vor allem auch die transienten Überspannungen, die aufgrund von atmosphärischen Entladungen, aber auch durch Schalthandlungen oder Kurzschlüsse in Energieversorgungsnetzen auftreten können und galvanisch, induktiv oder kapazitiv in elektrische Stromkreise eingekoppelt werden können. Um nun elektrische oder elektronische Stromkreise, insbesondere elektronische Meß-, Steuer-, Regel- und Schaltkreise, vor allem auch Telekommunikationseinrichtungen und -anlagen, wo auch immer sie eingesetzt sind, gegen transiente Überspannungen zu schützen, sind Überspannungsschutzeinrichtungen entwickelt worden und seit mehr als zwanzig Jahren bekannt.
  • Wesentlicher Bestandteil von Überspannungsschutzeinrichtung der hier in Rede stehenden Art ist mindestens eine Funkenstrecke, die bei einer bestimmten Überspannung, der Ansprechspannung, anspricht und damit verhindert, daß in dem durch eine Überspannungsschutzeinrichtung geschützten Stromkreis Überspannungen auftreten, die größer als die Ansprechspannung der Funkenstrecke sind.
  • Eingangs ist ausgeführt worden, daß die erfindungsgemäße Überspannungsschutzeinrichtung zwei Elektroden und eine zwischen den beiden Elektroden existente bzw. wirksame Luft-Durchschlag-Funkenstrecke aufweist. Mit Luft-Durchschlag-Funkenstrecke ist ganz allgemein eine Durchschlag-Funkenstrecke gemeint; umfaßt sein soll damit also auch eine Durchschlag-Funkenstrecke, bei der nicht Luft, sondern ein anderes Gas zwischen den Elektroden vorhanden ist. Neben Überspannungsschutzeinrichtungen mit einer Luft-Durchschlag-Funkenstrecke gibt es Überspannungsschutzeinrichtungen mit einer Luft-Überschlag-Funkenstrecke, bei denen beim Ansprechen eine Gleitentladung auftritt.
  • Überspannungsschutzeinrichtungen mit einer Luft-Durchschlag-Funkenstrecke haben gegenüber Überspannungsschutzeinrichtungen mit einer Luft-Überschlag-Funkenstrecke den Vorteil einer höheren Stoßstromtragfähigkeit, jedoch den Nachteil einer höheren – und auch nicht sonderlich konstanten – Ansprechspannung. Deshalb sind bereits verschiedene Überspannungsschutzeinrichtungen mit einer Luft-Durchschlag-Funkenstrecke vorgeschlagen worden, die in bezug auf die Ansprechspannung verbessert worden sind. Dabei sind im Bereich der Elektroden bzw. der zwischen den Elektroden wirksamen Luft-Durchschlag-Funkenstrecke in verschiedener Weise Zündhilfen realisiert worden, z. B. dergestalt, daß zwischen den Elektroden mindestens eine Gleitentladung auslösende Zündhilfe vorgesehen worden ist, die zumindest teilweise in die Luft-Durchschlag-Funkenstrecke hineinragt, stegartig ausgeführt ist und aus Kunststoff besteht (vgl. z. B. die deutschen Offenlegungsschriften 41 41 681 oder 44 02 615).
  • Die bei den bekannten Überspannungsschutzeinrichtungen vorgesehenen, zuvor angesprochenen Zündhilfen können gleichsam als "passive Zündhilfen" bezeichnet werden, "passive Zündhilfen" deshalb, weil sie nicht selbst "aktiv" ansprechen, sondern nur durch eine Überspannung ansprechen, die an den Hauptelektroden auftritt.
  • Aus der deutschen Offenlegungsschrift 198 03 636 ist ebenfalls eine Überspannungsschutzeinrichtung mit zwei Elektroden, mit einer zwischen den beiden Elektroden wirksamen Luft-Durchschlag-Funkenstrecke und einer Zündhilfe bekannt. Bei dieser bekannten Überspannungsschutzeinrichtung ist die Zündhilfe, im Gegensatz zu den zuvor beschriebenen, eine Gleitentladung auslösenden Zündhilfen, als "aktive Zündhilfe" ausgebildet, nämlich dadurch, daß neben den beiden Elektroden – dort als Hauptelektroden bezeichnet – noch zwei Zündelektroden vorgesehen sind. Diese beiden Zündelektroden bilden eine zweite, als Zündfunkenstrecke dienende Luft-Durchschlag-Funkenstrecke. Bei dieser bekannten Überspannungsschutzeinrichtung gehört zu der Zündhilfe außer der Zündfunkenstrecke noch ein Zündkreis mit einem Zündschaltelement. Bei Anliegen einer Überspannung an der bekannten Überspannungsschutzeinrichtung sorgt der Zündkreis mit dem Zündschaltelement für ein Ansprechen der Zündfunkenstrecke. Die Zündfunkenstrecke bzw. die beiden Zündelektroden sind in bezug auf die beiden Hauptelektroden derart angeordnet, daß dadurch, daß die Zündfunkenstrecke angesprochen hat, die Luft-Durchschlag-Funkenstrecke zwischen den beiden Hauptelektroden, Hauptfunkenstrecke genannt, anspricht. Das Ansprechen der Zündfunkenstrecke führt zu einer Ionisierung der in der Luft-Durchschlag-Funkenstrecke vorhandenen Luft, so daß – schlagartig – nach Ansprechen der Zündfunkenstrecke dann auch die Luft-Durchschlag-Funkenstrecke zwischen den beiden Hauptelektroden, also die Hauptfunkenstrecke, anspricht.
  • Bei den bekannten, zuvor beschriebenen Ausführungsformen von Überspannungsschutzeinrichtungen mit Zündhilfen führen die Zündhilfen zu einer verbesserten, nämlich niedrigeren und konstanteren Ansprechspannung.
  • Bei Überspannungsschutzeinrichtungen der in Rede stehenden Art – mit oder ohne Verwendung einer Zündhilfe – entsteht beim Zünden der Luft-Durchschlag-Funkenstrecke durch den entstehenden Lichtbogen eine niederimpedante Verbindung zwischen den beiden Elektroden. Über diese niederimpedante Verbindung fließt zunächst – gewollt – der abzuleitende Blitzstrom. Bei anliegender Netzspannung folgt dann jedoch über diese niederimpedante Verbindung der Überspannungsschutzeinrichtung ein unerwünschter Netzfolgestrom, so daß man bestrebt ist, den Lichtbogen möglichst schnell nach abgeschlossenem Ableitvorgang zu löschen. Eine Möglichkeit zur Erreichung dieses Ziels besteht darin, die Lichtbogenlänge und damit die Lichtbogenspannung zu vergrößern.
  • Eine Möglichkeit, den Lichtbogen nach dem Ableitvorgang zu löschen, nämlich die Lichtbogenlänge und damit die Lichtbogenspannung zu vergrößern, ist bei der Überspannungsschutzeinrichtung, wie sie aus der deutschen Offenlegungsschrift 44 02 615 bekannt ist, realisiert. Die aus der deutschen Offenlegungsschrift 44 02 615 bekannte Überspannungsschutzeinrichtung weist zwei schmale Elektroden auf, die jeweils winkelförmig ausgebildet sind und jeweils ein Funkenhorn und einen davon abgewinkelten Anschlußschenkel aufweisen. Darüber hinaus sind die Funkenhörner der Elektroden in ihren an die Anschlußschenkel angrenzenden Bereichen mit einer Bohrung versehen. Die in den Funkenhörnern der Elektroden vorgesehenen Bohrungen sorgen dafür, daß im Augenblick des Ansprechens des Überspannungsschutzelements, also des Zündens, der entstandene Lichtbogen durch eine thermische Druckwirkung "in Fahrt gesetzt wird", also von seiner Entstehungsstelle wegwandert. Da die Funkenhörner der Elektroden V-förmig zueinander angeordnet sind, wird somit die von dem Lichtbogen zu überbrückende Strecke beim Herauswandern des Lichtbogens vergrößert, wodurch auch die Lichtbogenspannung ansteigt. Nachteilig ist hierbei jedoch, daß zur Erreichung der gewünschten Vergrößerung der Lichtbogenlänge die geometrischen Abmessungen der Elektroden entsprechend groß sein müssen, so daß auch die Überspannungsschutzeinrichtung insgesamt an bestimmte Geometrievorgaben gebunden ist.
  • Eine weitere Möglichkeit, den Lichtbogen nach dem Ableitvorgang zu löschen, besteht in der Kühlung des Lichtbogens durch die Kühlwirkung von Isolierstoffwänden sowie die Verwendung von Gas abgebenden Isolierstoffen. Dabei ist eine starke Strömung des Löschgases notwendig, was einen hohen konstruktiven Aufwand erfordert.
  • Darüber hinaus besteht noch die Möglichkeit, eine Vergrößerung der Lichtbogenspannung durch Druckerhöhung zu erzielen. Hierzu wird in der DE 196 04 947 C1 vorgeschlagen, das Volumen im Innenraum des Gehäuses so zu wählen, daß durch den Lichtbogen eine Druckerhöhung auf ein Vielfaches des atmosphärischen Druckes erreicht wird. Dabei wird die Steigerung des Folgestromlöschvermögens durch eine druckabhängige Beeinflussung der Bogenfeldstärke erreicht. Damit diese Überspannungsschutzeinrichtung zuverlässig funktioniert ist jedoch zum einen ein sehr druckbeständiges Gehäuse erforderlich, muß zum anderen die Höhe der Netzspannung sehr genau bekannt sein, um das Volumen im Innenraum des Gehäuses entsprechend auslegen zu können.
  • Ist bei Überspannungsschutzeinrichtungen der in Rede stehenden Art der Lichtbogen gelöscht, so ist zwar zunächst die niederimpedante Verbindung zwischen den beiden Elektroden unterbrochen, der Raum zwischen den beiden Elektroden, d. h. der Bereich der Luft-Durchschlag-Funkenstrecke, ist jedoch noch fast vollständig mit Plasma gefüllt. Durch das vorhandene Plasma ist jedoch die Ansprechspannung zwischen den beiden Elektroden derart herabgesetzt, daß es bereits bei anliegender Betriebsspannung zu einem erneuten Zünden der Luft-Durchschlag-Funkenstrecke kommen kann. Dieses Problem tritt besonders dann auf, wenn die Überspannungsschutzeinrichtung ein gekapseltes oder halboffenes Gehäuse aufweist, da dann ein Abkühlen oder Verflüchtigen des Plasmas durch das im wesentlichen geschlossene Gehäuse verhindert wird.
  • Um ein erneutes Zünden der Überspannungsschutzeinrichtung, d. h. der Luft-Durchschlag-Funkenstrecke, zu verhindern, sind bisher verschiedene Maßnahmen getroffen worden, um die ionisierte Gaswolke von den Zündelektroden wegzutreiben oder abzukühlen. Hierzu sind konstruktiv aufwendige Labyrinthe und Kühlkörper verwendet worden, wodurch sich die Herstellung der Überspannungsschutzeinrichtung verteuert.
  • Der Erfindung liegt nun die Aufgabe zugrunde, eine Überspannungsschutzeinrichtung der eingangs beschriebenen Art anzugeben, die sich durch ein hohes Netzfolgestromlöschvermögen auszeichnet, trotzdem jedoch konstruktiv einfach realisiert werden kann.
  • Die erfindungsgemäße Überspannungsschutzeinrichtung, bei der die zuvor aufgezeigte Aufgabe gelöst ist, ist nun zunächst und im wesentlichen dadurch gekennzeichnet, daß der Luft-Durchschlag-Funkenstrecke eine Impedanz parallel geschaltet ist und daß der Parallelschaltung aus Luft-Durchschlag-Funkenstrecke und Impedanz eine Isolationsstrecke in Reihe geschaltet ist.
  • Wie im Stand der Technik, so liegt auch die erfindungsgemäße Überspannungsschutzeinrichtung in der Regel parallel zum Eingang des zu schützenden Stromkreises bzw. der zu schützenden Anlage bzw. des zu schützenden Gerätes. Die – zweipolige – Überspannungsschutzeinrichtung ist also elektrisch, und zwar galvanisch, mit den Leitungen bzw. Anschlüssen verbunden, zwischen denen betriebsmäßig die Netzspannung ansteht. Nachfolgend werden, wie nicht unüblich, die erste Leitung bzw. der erste Anschluß auch mit spannungsführend beschrieben, während die zweite Leitung bzw. der zweite Anschluß auch mit Masse bezeichnet wird. Unter Verwendung dieser Terminologie wird dann als Regelfall davon ausgegangen, daß die erste Elektrode der Überspannungseinrichtung mit der spannungsführenden Leitung bzw. dem spannungsführenden Anschluß und die zweite Elektrode der Überspannungseinrichtung mit Masse zu verbinden sind bzw. verbunden sind. Selbstverständlich kann auch der Anschluß der erfindungsgemäßen Überspannungsschutzeinrichtung umgekehrt erfolgen und selbstverständlich kann die erfindungsgemäße Überspannungsschutzeinrichtung nicht nur zum Schutz von Stromkreisen verwendet werden, bei denen als Netzspannung eine Wechselspannung vorliegt, vielmehr ist die erfindungsgemäße Überspannungsschutzeinrichtung ohne weiteres auch dann einsetzbar, wenn die Netzspannung des zu schützenden Stromkreises eine Gleichspannung ist.
  • Die Impedanz, die der Luft-Durchschlag-Funkenstrecke parallel geschaltet ist, würde für sich dazu führen, daß bei Anliegen der Nennspannung (Netzspannung) des elektrischen Stromkreises, der durch die Überspannungsschutzeinrichtung geschützt werden soll, die Überspannungsschutzeinrichtung insgesamt leitend würde, da die bei Netzspannung nicht leitende Luft-Durchschlag-Funkenstrecke durch die parallele Impedanz "kurzgeschlossen" würde. Dadurch, daß der Parallelschaltung aus Luft-Durchschlag-Funkenstrecke und Impedanz jedoch eine Isolationsstrecke in Reihe geschaltet ist, ist sichergestellt, daß bei Anliegen der Nennspannung die Überspannungsschutzeinrich tung insgesamt nicht leitend ist. Die Isolationsstrecke ist dabei so ausgelegt, daß sie bei Nennspannung nicht leitend ist, bei Auftreten einer Überspannung jedoch leitend wird.
  • Tritt nun an der erfindungsgemäßen Überspannungsschutzeinrichtung eine Überspannung auf, die größer als die Ansprechspannung ist, so wird die der Impedanz parallel geschaltete Luft-Durchschlag-Funkenstrecke leitend, d. h. es entsteht ein Lichtbogen zwischen den beiden Elektroden der Luft-Durchschlag-Funkenstrecke. Über die dadurch entstandene niederimpedante Verbindung fließt nun zunächst der abzuleitende Blitzstrom.
  • Bei anliegender Netzspannung würde nun über die niederimpedante Verbindung zwischen den beiden Elektroden der unerwünschte Netzfolgestrom fließen. Durch das vorherige Anliegen der Überspannung ist nun jedoch auch die Isolationsstrecke leitend geworden. Dies führt nun zunächst dazu, daß sich der Netzfolgestrom auf die Parallelschaltung aus Luft-Durchschlag-Funkenstrecke und Impedanz aufteilt. Daraus folgt dann, daß nur noch ein Teil des Netzfolgestroms über die Luft-Durchschlag-Funkenstrecke fließt, sich der Strom des Lichtbogens somit verringert, was wiederum zu einer Vergrößerung der Impedanz des Lichtbogens führt. Vergrößert sich die Impedanz des Lichtbogens – und damit die Impedanz der Luft-Durchschlag-Funkenstrecke – so führt dies dazu, daß sich der Anteil des Netzfolgestroms, der über die parallele Impedanz fließt vergrößert bzw. der Anteil, der über die Luft-Durchschlag-Funkenstrecke fließt weiter abnimmt, so daß sich auch der Strom des Lichtbogens weiter verringert, wodurch schließlich der Lichtbogen vollständig gelöscht wird.
  • Gemäß einer ersten bevorzugten Ausgestaltung der erfindungsgemäßen Überspannungsschutzeinrichtung wird die Impedanz durch einen Widerstand gebildet, der in dem Brennraum zwischen den beiden Elektroden angeordnet ist. Die Isolationstrecke kann konstruktiv dadurch besonders einfach realisiert werden, daß eine dritte Elektrode vorgesehen ist, die zwischen der ersten Elektrode und dem Widerstand angeordnet ist, so daß zwischen der ersten Elektrode und der dritten Elektrode eine zweite Luft-Durchschlag-Funkenstrecke gebildet wird, die als Isolationsstrecke wirkt.
  • Gemäß einer zweiten alternativen Ausgestaltung der erfindungsgemäßen Überspannungsschutzeinrichtung ist die Isolationsstrecke durch ein Spannungsschaltelement realisiert.
  • Das Spannungsschaltelement ist dabei so gewählt bzw. dimensioniert, daß es bei Nennspannung nicht leitet, bei der Ansprechspannung der Überspannungsschutzeinrichtung jedoch leitend wird, also "schaltet". Als Spannungsschaltelement kann ein Varistor, eine Suppressordiode oder ein gasgefüllter Spannungsableiter vorgesehen sein. Es besteht aber auch die Möglichkeit, als Spannungsschaltelement eine Kombination eines Varistors und einer Suppressordiode, eine Kombination eines Varistors und eines gasgefüllten Überspannungsableiters, eine Kombination einer Suppressordiode und eines gasgefillten Überspannungsableiters oder Kombination eines Varistors, einer Suppressordiode und eines gasgefüllten Überspannungsableiters vorzusehen.
  • Durch die Auswahl und Dimensionierung des Spannungsschaltelements ist es somit auf einfacher Art und Weise möglich, die parallel geschaltete Impedanz an die beiden Parameter Nennspannung und Ansprechspannung anzupassen.
  • Der die Impedanz bildende Widerstand besteht aus einem Material, das elektrisch leitfähig und lichtbogenbeständig ist, so daß er bei einem auftretenden Lichtbogen in der Überspannungsschutzeinrichtung nicht zerstört wird. Der Widerstand besteht vorzugsweise aus einem leitfähigen Kunststoff, aus einem metallischen Material oder aus einer leitfähigen Keramik. Der Widerstand kann beispielsweise aus einem POM-Teflon Kunststoff hergestellt sein, der durch einen Rußzusatz die gewünschte Leitfähigkeit erhält. Daneben kann der Widerstand auch aus Materialien hergestellt sein, die ein nichtlineares Widerstandsverhalten aufweisen.
  • Im einzelnen gibt es nun eine Vielzahl von Möglichkeiten, die erfindungsgemäße Überspannungsschutzeinrichtung auszugestalten und weiterzubilden. Dazu wird verwiesen einerseits auf die dem Schutzanspruch 1 nachgeordneten Schutzansprüche, andererseits auf die nachfolgende Beschreibung bevorzugter Ausführungsbeispiele in Verbindung mit der Zeichnung. In der Zeichnung zeigen
  • 1 ein stark vereinfachtes Funktionsprinzips der Anordnung der Impedanz bei einer erfindungsgemäßen Überspannungsschutzeinrichtung,
  • 2 eine Prinzipskizze eines ersten Ausführungsbeispiels einer erfindungsgemäßen Überspannungsschutzeinrichtung und
  • 3 eine Prinzipskizze eines zweiten Ausführungsbeispiels einer erfindungsgemäßen Überspannungsschutzeinrichtung.
  • In 1 ist ein stark vereinfachtes Ersatzschaltbild eines Teils der erfindungsgemäße Überspannungsschutzeinrichtung dargestellt. Zu der Überspannungsschutzeinrichtung – die auch in den 2 und 3 nur hinsichtlich ihres prinzipiellen Aufbaus dargestellt ist – gehören jeweils eine erste Elektrode 1, eine zweite Elektrode 2 und eine zwischen den beiden Elektroden 1 und 2 existente bzw. wirksame Luft-Durchschlag-Funkenstrecke 3. Die Überspannungsschutzeinrichtung weist daneben noch ein – in 1 nicht dargestelltes – Gehäuse 4 auf, in dem die Elektroden 1, 2 angeordnet sind. Für die erfindungsgemäßen Überspannungsschutzeinrichtungen gilt, wie für die Überspannungsschutzeinrichtungen, von denen die Erfindung ausgeht, daß beim Zünden der Luft-Durchschlag-Funkenstrecke 3 zwischen den beiden Elektroden 1 und 2 ein – nur in 1 dargestellter – Lichtbogen 5 entsteht. Erfindungsgemäß ist den beiden Elektroden 1 und 2 bzw. der Luft-Durchschlag-Funkenstrecke 3 eine Impedanz 6 parallel geschaltet, die ebenfalls in dem Gehäuse 4 angeordnet ist, und der Parallelschaltung 7 aus Luft-Durchschlag-Funkenstrecke 3 und Impedanz 6 eine Isolationsstrecke 8 in Reihe geschaltet.
  • Gemäß dem in den 2 und 3 wird die Impedanz 6 durch einen Widerstand 9 gebildet, der im Brennraum 10 im Inneren des Gehäuses 4 angeordnet ist. Die Isolationsstrecke 8 ist dadurch realisiert, daß eine dritte Elektrode 11 vorgesehen ist, die zwischen der ersten Elektrode 1 und dem Widerstand 9 angeordnet ist, so daß zwischen der ersten Elektrode 1 und der dritten Elektrode 11 eine zweite Luft-Durchschlag-Funkenstrecke 12 existent bzw. wirksam ist, die als Isolationsstrecke 8 fungiert.
  • Bei der erfindungsgemäßen Überspannungsschutzeinrichtung wird nun ein Netzfolgestrom IF dadurch verhindert bzw. ein aufgetretener Netzfolgestrom IF dadurch zum Erlöschen gebracht, daß der Luft-Durchschlag-Funkenstrecke 3 die Impedanz 6 parallel geschaltet ist. Tritt an der erfindungsgemäßen Überspannungsschutzeinrichtung eine Überspannung auf, die gleich oder größer als die vorgegebene Ansprechspannung ist, so wird sowohl die Luft-Durchschlag-Funkenstrecke 3 als auch die Isolationsstrecke 8 bzw. die zweite Luft-Durchschlag-Funkenstrecke 9 leitend, indem zwischen der ersten Elektrode 1 und der zweiten Elektrode 2 – beim vereinfachten Funktionsprinzip gemäß 1 – bzw. zwischen der ersten Elektrode 1 und der dritten Elektrode 11 sowie zwischen der dritten Elektrode 11 und der zweiten Elektrode 2 je ein Lichtbogen entsteht. Durch die Parallelschaltung der Impedanz 6 zur Luft-Durchschlag-Funkenstrecke 3 teilt sich ein fließender Netzfolgestrom IF auf die beiden Teilströme IL (Strom des Lichtbogens 5) und IR (Strom über die Impedanz 6) auf. Diese Aufteilung des Netzfolgestroms IF bewirkt bereits eine erste Reduzierung des Stroms IL des Lichtbogens 5.
  • Der negative differentielle Widerstand des Lichtbogens bewirkt, daß sich durch eine Reduzierung des Stroms IL des Lichtbogens 5 die Impedanz des Lichtbogens 5 bzw. der Luft-Durchschlag-Funkenstrecke 3 erhöht. Erhöht sich nun die Impedanz des von der Luft-Durchschlag-Funkenstrecke 3 gebildeten Zweiges der Parallelschaltung 7, so führt dies dazu, daß sich der Strom IR über die Impedanz 6 gegenüber den Strom IL des Lichtbogens 5 erhöht. Es erhöht sich also der Anteil des Netzfolgestroms IF, der über die parallel geschaltete Impedanz 6 fließt. Die dadurch resultierende weitere Reduzierung des Stroms IL des Lichtbogens 5 führt zu einer weiteren Erhöhung der Impedanz des Lichtbogens 5 bzw. der Luft-Durchschlag-Funkenstrecke 3, bis schließlich der Lichtbogen 5 gänzlich gelöscht ist. Die Impedanz 6 begrenzt den fließenden Strom so stark, daß auch die Isolationsstrecke 8 gelöscht wird, was dazu führt, daß die Überspannungsschutzeinrichtung insgesamt nicht mehr leitend ist und somit der Netzfolgestrom IF zum Erlöschen gebracht wird.
  • Aufgrund der Kenntnis der Kennlinie des Lichtbogens 5 kann der Fachmann den Widerstand 9 unter Berücksichtigung des Volumens der Überspannungsschutzeinrichtung, des Abstandes der Elektroden 1, 2 und 11 zueinander, der Netzspannung und des zu erwartenden Kurzschlußstromes so auswählen, daß ein Netzfolgestrom IF nach Möglichkeit vollständig verhindert oder ein auftretender Netzfolgestrom IF innerhalb kürzester Zeit zum Erlöschen gebracht wird. Der Widerstand 9 kann dabei aus einem leitfähigen Kunststoff, aus einem metallischen Material oder aus einer leitfähigen Keramik bestehen, wobei der Widerstand 9 durch entsprechende Zusätze zum einen die gewünschte Leitfähigkeit zum anderen die erforderliche Lichtbogenbeständigkeit erhält.
  • Aus den Darstellungen bevorzugter Ausführungsbeispiele in den 2 und 3 ist erkennbar, daß der Abstand zwischen der ersten Elektrode 1 und der dritten Elektrode 11 geringer ist als der Abstand zwischen der dritten Elektrode 11 und der zweiten Elektrode 2, wobei die Abstände zwischen den Elektroden jedoch auch anders gewählt werden können. Die beiden Ausführungsformen gemäß den beiden 2 und 3 unterscheiden sich nun zunächst dadurch, daß bei der Ausführung der Überspannungsschutzeinrichtung gemäß 3 die dritte Elektrode 11 elektrisch leitend mit einem Zündschaltelement 13 verbunden ist. Mit Hilfe des Zündschaltelements 13 kann dann die dritte Elektrode 11 als Zündhilfe ausgebildet sein, wobei die dritte Elektrode 11 zusammen mit dem Zündschaltelement 13 dann eine "aktive Zündhilfe" darstellt, wie sie in der nachveröffentlichten DE 10146 728 beschrieben ist.
  • Weiter ist aus 3 erkennbar, daß der Raum 14 zwischen der ersten Elektrode 1 und der dritten Elektrode 11 mit dem Brennraum 10 zwischen der dritten Elektrode 11 und der zweiten Elektrode 2 durch eine Öffnung 15 verbunden ist. Durch eine solche Verbindung der beiden Räume 10, 14 wird die Zündung einer Luft-Durchschlag-Funkenstrecke 12, 3 begünstigt, wenn die andere Luft-Durchschlag-Funkenstrecke 3, 12 bereits gezündet hat.
  • Die 2 und 3 zeigen darüber hinaus noch zwei unterschiedliche, bevorzugte geometrische Ausgestaltungen des Widerstands 9, wobei der Widerstand 9 gemäß dem Ausführungsbeispiel in 2 als im wesentlichen zylindrischer Block und der Widerstand 9 gemäß 3 als Ring ausgebildet ist. Dadurch ergibt sich dann ein ringförmiger Brennraum 10 oder ein zylindrischer Brennraum 10'. Wie sowohl aus 2 als auch aus 3 erkennbar ist, sind die Ecken bzw. Kanten 16 des Widerstands 9, die mit den Elektroden 2 und 11 in mechanischem Kontakt stehen, abgerundet bzw. abgeschrägt. Dadurch entsteht ein Spalt 17 zwischen dem Widerstand 9 und der Elektrode 2 bzw. 11, durch den die Oberflächenfeldstärke bei Auftreten einer Überspannung an den Ecken bzw. Kanten 16 des Widerstands 9 erhöht wird. Bei Auftreten einer Überspannung mit einem entsprechend großen Strom führt dieser Strom an der Kontaktstellt zwischen der Ecke 16 des Widerstands 9 und der zugeordneten Elektrode 2, 11 wegen des erhöhten Übergangswiderstandes zu einer Entladung, die zu einer Vorionisierung des Kontaktbereichs führt, so daß sich ein Lichtbogen ausbildet, der den Spalt 17 überbrückt. Ein solcher Lichtbogen kann nun am Rand des Widerstands 9 entlangwandern, was dazu führt, daß die Luft-Durchschlag-Funkenstrecke 3 zwischen den beiden Elektroden 2, 11 zündet. Somit kann der Widerstand 9 nicht nur zur Unterdrückung eines nicht gewünschten Netzfolgestroms IF sondern zusätzlich auch als Zündhilfe für die Überspannungsschutzeinrichtung genutzt werden.
  • Aus den 2 und 3 ist schließlich noch erkennbar, daß das Gehäuse 4, welches vorzugsweise als metallisches Druckgehäuse ausgebildet ist, ein inneres Isoliergehäuse 18 aufweist, wobei bei dem Ausführungsbeispiels gemäß 3 die dritte Elektrode 11 mit dem metallischen Druckgehäuse 4 verbunden ist.

Claims (13)

  1. Überspannungsschutzeinrichtung, mit einer ersten Elektrode (1), mit einer zweiten Elektrode (2), mit einer zwischen beiden Elektroden (1, 2) existenten bzw. wirksamen Luft-Durchschlag-Funkenstrecke (3) und mit einem die Elektroden (1, 2) aufnehmenden Gehäuse (4), wobei beim Zünden der Luft-Durchschlag-Funkenstrecke (3) zwischen den beiden Elektroden (1, 2) ein Lichtbogen (5) entsteht, dadurch gekennzeichnet, daß der Luft-Durchschlag-Funkenstrecke (3) eine Impedanz (6) parallel geschaltet ist und daß der Parallelschaltung (7) aus Luft-Durchschlag-Funkenstrecke (3) und Impedanz (6) eine Isolationsstrecke (8) in Reihe geschaltet ist.
  2. Überspannungsschutzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß als Impedanz (6) ein Widerstand (9) vorgesehen ist und der Widerstand (9) im Brennraum (10) zwischen den beiden Elektroden (1, 2, 11) angeordnet ist.
  3. Überspannungsschutzeinrichtung nach Anspruch 2, dadurch gekennzeichnet, daß eine dritte Elektrode (11) vorgesehen ist, die zwischen der ersten Elektrode (1) und dem Widerstand (9) angeordnet ist, wobei die Isolationsstrecke (8) durch die zwischen der ersten Elektroden (1) und der dritten Elektrode (11) existente bzw. wirksame zweite Luft-Durchschlag-Funkenstrecke (12) realisiert ist.
  4. Überspannungsschutzeinrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Abstand zwischen der ersten Elektrode (1) und der dritten Elektrode (11) geringer ist als der Abstand zwischen der dritten Elektrode (11) und der zweiten Elektrode (2).
  5. Überspannungsschutzeinrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der Widerstandswert des Widerstandes (9) hinsichtlich der Nennspannung und des erwarteten Netzfolgestroms so bemessen ist, daß durch die Stromaufteilung des Netzfolgestroms auf die Parallelschaltung (7) aus Luft-Durchschlag-Funkenstrecke (3) und Widerstand (9) der Lichtbogen (5) vollständig gelöscht wird.
  6. Überspannungsschutzeinrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die dritte Elektrode (11) elektrisch leitend mit einem Zündschaltelement (13) verbunden ist.
  7. Überspannungsschutzeinrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß der Brennraum (10) zwischen der ersten Elektrode (1) und der dritten Elektrode (11) mit dem Raum (14) zwischen der dritten Elektrode (11) und der zweiten Elektrode (2) verbunden ist.
  8. Überspannungsschutzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß als Isolationsstrecke (7) ein Spannungsschaltelement vorgesehen ist.
  9. Überspannungsschutzeinrichtung nach Anspruch 8, dadurch gekennzeichnet, daß als Spannungsschaltelement ein Varistor, eine Suppressordiode oder ein gasgefüllter Überspannungsableiter vorgesehen ist.
  10. Überspannungsschutzeinrichtung nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß der Widerstand (9) aus einem leitfähigen Kunststoff, aus einem metallischen Material oder einer leitfähigen Keramik besteht und mit zumindest einer Elektrode (2, 11) in mechanischem Kontakt steht.
  11. Überspannungsschutzeinrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Widerstand (9) als im wesentlichen quadratisch- oder rechteckförmiger Block oder als Ring ausgebildet ist.
  12. Überspannungsschutzeinrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß zumindest eine Ecke (16) oder Kante des Widerstands (9), die mit einer Elektrode (2, 11) in mechanischem Kontakt steht, abgerundet oder abgeschrägt ist.
  13. Überspannungsschutzeinrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das Gehäuse (4) als metallisches Druckgehäuses ausgebildet ist und ein inneres Isoliergehäuse (18) aufweist.
DE20220908U 2001-12-17 2002-03-21 Überspannungsschutzeinrichtung Expired - Lifetime DE20220908U1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE20220908U DE20220908U1 (de) 2001-12-17 2002-03-21 Überspannungsschutzeinrichtung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10162149.3 2001-12-17
DE10162149 2001-12-17
DE20220908U DE20220908U1 (de) 2001-12-17 2002-03-21 Überspannungsschutzeinrichtung
DE10212697A DE10212697A1 (de) 2001-12-17 2002-03-21 Überspannungsschutzeinrichtung

Publications (1)

Publication Number Publication Date
DE20220908U1 true DE20220908U1 (de) 2004-07-29

Family

ID=26010798

Family Applications (1)

Application Number Title Priority Date Filing Date
DE20220908U Expired - Lifetime DE20220908U1 (de) 2001-12-17 2002-03-21 Überspannungsschutzeinrichtung

Country Status (6)

Country Link
US (1) US20050041349A1 (de)
EP (1) EP1456921B1 (de)
CN (1) CN1613171A (de)
DE (1) DE20220908U1 (de)
RU (1) RU2292615C2 (de)
WO (1) WO2003052892A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2879033B1 (fr) * 2004-12-03 2007-03-16 Soule Prot Surtensions Sa Dispositif de protection d'une installation electrique, procede et utilisation correspondants
US20080266730A1 (en) * 2007-04-25 2008-10-30 Karsten Viborg Spark Gaps for ESD Protection
DE102011102941B4 (de) * 2011-03-18 2014-12-11 Dehn + Söhne Gmbh + Co. Kg Funkenstrecke mit mehreren in Reihe geschalteten, in einer Stapelanordnung befindlichen Einzelfunkenstrecken
DE102011001734B4 (de) * 2011-04-01 2016-02-18 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzeinrichtung
DE102011053415A1 (de) * 2011-09-08 2013-03-14 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzgerät
DE102013114260A1 (de) * 2013-12-17 2015-06-18 Eaton Electrical Ip Gmbh & Co. Kg Doppelkontakt-Schalter mit Vakuumschaltkammern
DE102014102065B4 (de) * 2014-02-18 2017-08-17 Phoenix Contact Gmbh & Co. Kg Zündelement zur Verwendung bei einem Überspannungsschutzelement, Überspannungsschutzelement und Verfahren zur Herstellung eines Zündelements
FR3051292B1 (fr) * 2016-05-12 2020-09-11 Citel Dispositif de protection contre les surtensions transitoires
RU174488U1 (ru) * 2017-04-20 2017-10-17 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулева" Министерства обороны Российской Федерации Устройство защиты от импульсных перенапряжений
DE102017218582B4 (de) * 2017-10-18 2019-12-24 Phoenix Contact Gmbh & Co. Kg Bauraumbegrenztes Schutzmodul mit zumindest zwei Überspannungsschutzelementen in parallelen Stromzweigen
DE102019101212A1 (de) * 2018-07-04 2020-01-09 Dehn Se + Co Kg Überspannungsschutzanordnung mit einer in einem Gehäuse befindlichen Hörnerfunkenstrecke mit Kammer zur Lichtbogenlöschung
US11013075B2 (en) * 2018-12-20 2021-05-18 Nxp Usa, Inc. RF apparatus with arc prevention using non-linear devices
CN114284870B (zh) * 2022-02-16 2022-08-30 华中科技大学 一种自触发式直击雷防护装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567987A (en) * 1968-06-06 1971-03-02 Gerald L Schnurmacher Spark plug construction
JP2513105B2 (ja) * 1992-03-31 1996-07-03 三菱マテリアル株式会社 サ―ジアブソ―バ
DE4240138C2 (de) * 1992-11-28 1995-05-24 Dehn & Soehne Blitzstromtragfähige Anordnung mit zumindest zwei in Reihe geschalteten Funkenstrecken
DE19717802B4 (de) * 1997-04-26 2009-09-17 Dehn + Söhne GmbH + Co KG Funkenstrecke
DE19803636A1 (de) * 1998-02-02 1999-08-05 Phoenix Contact Gmbh & Co Überspannungsschutzsystem
DE19856939A1 (de) * 1998-12-10 2000-06-15 Bettermann Obo Gmbh & Co Kg Schaltungsanordnung zum Schutz von elektrischen Installationen gegen Überspannungsereignisse
DE20020771U1 (de) * 2000-02-22 2001-02-15 Dehn & Soehne Druckfest gekapselte Funkenstreckenanordnung zum Ableiten von schädlichen Störgrößen durch Überspannung

Also Published As

Publication number Publication date
RU2292615C2 (ru) 2007-01-27
WO2003052892A1 (de) 2003-06-26
RU2004121978A (ru) 2006-01-20
EP1456921B1 (de) 2009-09-16
EP1456921A1 (de) 2004-09-15
US20050041349A1 (en) 2005-02-24
CN1613171A (zh) 2005-05-04

Similar Documents

Publication Publication Date Title
DE10338835B4 (de) Überspannungsschutzeinrichtung
DE102009048045B4 (de) Überspannungsschutzelement
EP1033798B1 (de) Überspannungsschutzeinrichtung
EP1456921B1 (de) Überspannungsschutzeinrichtung
EP1423894B1 (de) Überspannungsschutzeinrichtung
EP0600222B1 (de) Blitzstromtragfähige Anordnung mit zumindest zwei in Reihe geschalteten Funkenstrecken
EP1692751B1 (de) Überspannungsschutzeinrichtung
DE10018012A1 (de) Druckfest gekapselte Funkenstreckenanordnung zum Ableiten von schädlichen Störgrößen durch Überspannungen
EP2064787B1 (de) Funkenstreckenanordnung für höhere bemessungsspannungen
DE10146728B4 (de) Überspannungsschutzeinrichtung
DE102008038486A1 (de) Überspannungsschutzeinrichtung
EP1461852B1 (de) Mehrpoliges überspannungsschutzsystem und verfahren zum sicheren betrieb eines mehrpoligen überspannungsschutzsystems
EP1226638B1 (de) Überspannungsschutzeinrichtung
DE102014015611B4 (de) Überspannungsableiter
DE102017114383B4 (de) Überspannungsableiter
DE3829650A1 (de) Kombinierte loeschfunkenstrecke
DE102007015364B4 (de) Überspannungsschutzeinrichtung
DE10212697A1 (de) Überspannungsschutzeinrichtung
DE10040603B4 (de) Überspannungsschutzeinrichtung
DE102014015609B3 (de) Überspannungsableiter
DE102008049471A1 (de) Funkenstreckenanordnung für höhere Bemessungsspannungen
DE102014104576A1 (de) Überspannungsableiter
DE102018133389A1 (de) Überspannungsableiter
DE10120563A1 (de) Überspannungsschutzelement und Überspannungsschutzeinrichtung
DE202005008085U1 (de) Überspannungsschutzeinrichtung

Legal Events

Date Code Title Description
R207 Utility model specification

Effective date: 20040902

R150 Utility model maintained after payment of first maintenance fee after three years

Effective date: 20050415

R151 Utility model maintained after payment of second maintenance fee after six years

Effective date: 20080408

R152 Utility model maintained after payment of third maintenance fee after eight years

Effective date: 20100505

R071 Expiry of right
R071 Expiry of right