DE202022100505U1 - Wärmebehandlungsvorrichtung - Google Patents

Wärmebehandlungsvorrichtung Download PDF

Info

Publication number
DE202022100505U1
DE202022100505U1 DE202022100505.2U DE202022100505U DE202022100505U1 DE 202022100505 U1 DE202022100505 U1 DE 202022100505U1 DE 202022100505 U DE202022100505 U DE 202022100505U DE 202022100505 U1 DE202022100505 U1 DE 202022100505U1
Authority
DE
Germany
Prior art keywords
steel component
temperature
furnace
heat treatment
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE202022100505.2U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwartz GmbH
Original Assignee
Schwartz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwartz GmbH filed Critical Schwartz GmbH
Priority to DE202022100505.2U priority Critical patent/DE202022100505U1/de
Publication of DE202022100505U1 publication Critical patent/DE202022100505U1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0494Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a localised treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0018Details, accessories not peculiar to any of the following furnaces for charging, discharging or manipulation of charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Abstract

Wärmebehandlungsvorrichtung (100) aufweisend einen ersten Ofen (110), eine Behandlungsstation (150), einen zweiten Ofen und eine Steuerungseinheit, welche zur Durchführung eines Verfahrens mit folgenden Schritten eingerichtet ist:
a) Erwärmen des gesamten Stahlbauteils (200) in dem ersten Ofen (110) auf eine Temperatur oberhalb der AC3-Temperatur des Stahlbauteils (200),
b) Transferieren des Stahlbauteils (200) von dem ersten Ofen (110) in die Behandlungsstation,
c) Kühlen eines oder mehrerer zweiter Bereiche des Stahlbauteils (200) in der Behandlungsstation auf eine Temperatur unterhalb der AC3-Temperatur des Stahlbauteils (200),
d) Transferieren des Stahlbauteils (200) von der Behandlungsstation in den zweiten Ofen,
e) Erwärmen des gesamten Stahlbauteils (200) in dem zweiten Ofen, wobei der eine oder die mehreren zweiten Bereiche auf eine Temperatur unterhalb der AC3-Temperatur des Stahlbauteils (200) erwärmt werden und wobei ein oder mehrere erste Bereiche auf eine auf eine Temperatur oberhalb der AC3-Temperatur des Stahlbauteils (200) erwärmt werden.

Description

  • Die Erfindung betrifft eine Wärmebehandlungsvorrichtung zur gezielten bauteilzonenindividuellen Wärmebehandlung eines Stahlbauteils.
  • Die Erfindung ist eine Weiterentwicklung der Lehre der WO 2017/129603 . In der Technik besteht bei vielen Anwendungsfällen in unterschiedlichen Branchen der Wunsch nach hochfesten Metallblechteilen bei geringem Teilegewicht. Beispielsweise ist es in der Fahrzeugindustrie das Bestreben, den Kraftstoffverbrauch von Kraftfahrzeugen zu reduzieren und den CO2-Ausstoß zu senken, dabei aber gleichzeitig die Insassensicherheit zu erhöhen. Es besteht daher ein stark zunehmender Bedarf an Karosseriebauteilen mit einem günstigen Verhältnis von Festigkeit zu Gewicht. Zu diesen Bauteilen gehören insbesondere A-und B-Säulen, Seitenaufprallschutzträger in Türen, Schweller, Rahmenteile, Stoßstangenfänger, Querträger für Boden und Dach, vordere und hintere Längsträger. Bei modernen Kraftfahrzeugen besteht die Rohkarosse mit einem Sicherheitskäfig üblicherweise aus einem gehärteten Stahlblech mit ca. 1.500MPa Festigkeit. Dabei werden vielfach Al-Si-beschichtete Stahlbleche verwendet. Zur Herstellung eines Bauteils aus gehärtetem Stahlblech wurde der Prozess des so genannten Presshärtens entwickelt. Dabei werden Stahlbleche zuerst auf Austenittemperatur erwärmt, dann in ein Pressenwerkzeug gelegt, schnell geformt und durch das wassergekühlte Werkzeug zügig auf weniger als Martensitstarttemperatur abgeschreckt. Dabei entsteht hartes, festes Martensitgefüge mit ca. 1.500MPa Festigkeit. Ein solcherart gehärtetes Stahlblech weist aber nur eine geringe Bruchdehnung auf. Die kinetische Energie eines Aufpralls kann deshalb nicht ausreichend in Verformungswärme umgesetzt werden.
  • Für die Automobilindustrie ist es daher wünschenswert, Karosseriebauteile herstellen zu können, die mehrere unterschiedliche Dehnungs- und Festigkeitszonen im Bauteil aufweisen, so dass eher feste Bereiche (im Folgenden erste Bereiche) einerseits und eher dehnfähige Bereiche (im Folgenden zweite Bereiche) andererseits in einem Bauteil vorliegen. Einerseits sind Bauteile mit hoher Festigkeit grundsätzlich wünschenswert, um mechanisch hoch belastbare Bauteile mit geringem Gewicht zu erhalten. Auf der anderen Seite sollen auch hochfeste Bauteile partiell weiche Bereiche haben können. Dieses bringt die gewünschte, partiell erhöhte Deformierbarkeit im Crashfall. Nur damit kann die kinetische Energie eines Aufpralls abgebaut werden und so die Beschleunigungskräfte auf Insassen und das übrige Fahrzeug minimiert werden. Zudem erfordern moderne Fügeverfahren entfestigte Stellen, die das Fügen artgleicher oder unterschiedlicher Materialien ermöglichen. Oft müssen beispielsweise Falz-Crimp- oder Nietverbindungen zum Einsatz kommen, die verformbare Bereiche im Bauteil voraussetzen.
  • Dabei sollten die allgemeinen Ansprüche an eine Produktionsanlage weiterhin beachtet sein: so sollte es zu keiner Taktzeiteinbuße an der Presshärteanlage kommen, die Gesamtanlage sollte uneingeschränkt allgemein verwendet und schnell produktspezifisch umgerüstet werden können. Der Prozess sollte robust und wirtschaftlich sein und die Produktionsanlage nur minimalen Platz benötigen. Die Form und Kantengenauigkeit des Bauteils sollte hoch sein.
  • Bei allen bekannten Verfahren erfolgt die gezielte Wärmebehandlung des Bauteils in einem zeitintensiven Behandlungsschritt, der wesentlichen Einfluss auf die Taktzeit der gesamten Wärmebehandlungsvorrichtung hat.
  • Aufgabe der Erfindung ist es, eine Vorrichtung zur gezielten bauteilzonenindividuellen Wärmebehandlung eines Stahlbauteils anzugeben, wobei Bereiche unterschiedlicher Härte und Duktilität erzielbar sind. Insbesondere soll der Einfluss auf die Taktzeit der gesamten Wärmebehandlungsvorrichtung minimiert werden.
  • Erfindungsgemäß wird diese Aufgabe durch eine Wärmebehandlungsvorrichtung mit den Merkmalen des unabhängigen Anspruches 1 gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.
  • Die Wärmebehandlungsvorrichtung umfasst eine Steuerungseinheit, die zur Durchführung eines Verfahrens eingerichtet ist. Die Steuerungseinheit ist vorzugsweise ein Computer. Soweit im Folgenden Verfahrensaspekte beschrieben werden, bezieht sich dies jeweils auf eine entsprechende Ausgestaltung der Steuerungseinheit.
  • Das Stahlbauteil wird zunächst bis oberhalb Austenitisierungstemperatur AC3 erwärmt. So kann sich das Gefüge vollständig in Austenit umwandeln. Bei einem nachfolgenden Härteprozess, beispielsweise dem Presshärteprozess wird dann derart schnell abgeschreckt, dass sich vorrangig martensitisches Gefüge ausbildet und Festigkeiten von rund 1.500MPa erreicht werden. Das Abschrecken erfolgt dabei vorteilhafterweise aus dem vollständig austenitisierten Gefüge. Dazu muss spätestens nach Unterschreiten der Gefügeumwandlungsstarttemperatur ϑ1 bei der Gefügeumwandlungen starten können, mit mindestens der unteren kritischen Abkühlgeschwindigkeit abgekühlt werden. Beispielsweise sollten bei dem üblicherweise zum Presshärten verwendeten Werkstoff 22MnB5 rund 660°C als Grenze ϑ1 angesehen werden. Ein zumindest teilweise martensitisches Gefüge kann zwar auch noch entstehen, wenn die Abschreckung bei tieferer Temperatur startet, es ist aber dann eine reduzierte Festigkeit des Bauteils in diesem Bereich zu erwarten.
  • Dieser Temperaturverlauf ist beim Presshärteverfahren insbesondere für vollständig gehärtete Bauteile üblich.
  • Ein zweiter Bereich oder mehrere zweite Bereiche werden zunächst ebenfalls bis oberhalb der Austenitisierungstemperatur AC3 erwärmt, damit sich das Gefüge vollständig in Austenit umwandeln kann. Anschließend wird innerhalb einer Behandlungszeit tB bis zu einer Abkühlstopptemperatur ϑ2 abgekühlt. Die Martensit-Starttemperatur liegt beispielsweise für 22MnB5 bei ca. 410 °C. Ein leichtes Einschwingen in Temperaturbereiche unterhalb der Martensit-Starttemperatur ist ebenfalls möglich. Anschließend kann sich ein von Austenit verschiedenes Gefüge bilden. Es hat sich herausgestellt, dass die beschriebene Wärmebehandlungsvorrichtung nicht nur dazu genutzt werden kann, ein mehrheitlich bainitisches Gefüge in dem einen oder den mehreren zweiten Bereichen zu erhalten. Vielmehr kann ein beliebiges Gefüge in dem einen oder den mehreren zweiten Bereichen eingestellt werden. Das in dem einen oder den mehreren zweiten Bereichen erhaltene Gefüge kann insbesondere Bainit, Ferrit und/oder Perlit in beliebiger Verteilung enthalten. Bevorzugt ist beispielsweise ein mehrheitlich ferritisch-perlitisches Gefüge. Die hierin beschriebene Lehre ist allerdings nicht auf diese Beispiele eingeschränkt.
  • Die Gefügeumwandlung in dem einen oder den mehreren zweiten Bereichen erfolgt nicht schlagartig, sondern bedarf einer Behandlungszeit. Die Umwandlung erfolgt exotherm. Lässt man diese Umwandlung in beheizter Umgebung mit ähnlicher Temperatur wie bei der am Abkühlende vorhandenen Bauteiltemperatur, der Abkühlstopptemperatur ϑ2, stattfinden, kann man die durch die Rekaleszenz verursachte Temperaturerhöhung im Bauteil deutlich erkennen. Durch Einstellung der Abkühlgeschwindigkeit und/oder der Temperatur, auf die abgekühlt wird, sowie der Verweilzeit bis zum Abpressen des Bauteils, lassen sich grundsätzlich die gewünschten Festigkeits- und Dehnungswerte einstellen, die zwischen der maximal erreichbaren Festigkeit des Gefüges im ersten Bereich und den Werten des unbehandelten Bauteils liegen. Untersuchungen haben gezeigt, dass ein Unterdrücken des Temperaturanstieges infolge der Rekaleszenz durch ein weiteres, erzwungenes Abkühlen eher nachteilig für die erreichbaren Dehnungswerte ist. Ein isothermes Halten auf der Abkühltemperatur scheint deshalb nicht vorteilhaft zu sein. Ein erneutes Erwärmen ist dagegen vorteilhaft.
  • Der zweite Bereich oder die zweiten Bereiche können in dieser Phase zusätzlich aktiv beheizt werden. Dies kann beispielsweise durch Wärmestrahlung erfolgen.
  • In einer Ausführungsform wird die Abkühlstopptemperatur ϑ2 oberhalb der Martensit-Starttemperatur Ms gewählt.
  • In einer alternativen Ausführungsform wird die Abkühlstopptemperatur ϑ2 unterhalb der Martensit-Starttemperatur Ms gewählt.
  • Die Wärmebehandlung der ersten und zweiten Bereiche ist prinzipiell unterschiedlich, wobei in erster Linie die Behandlung des zweiten Bereichs oder der zweiten Bereiche eine Abhängigkeit zur Behandlungsdauer hat. Erfindungsgemäß werden zweite Bereiche in einem ersten Ofen zur Erreichung der Austenitisierungstemperatur nachgeordneten Behandlungsstation innerhalb einer Behandlungszeit tB von wenigen Sekunden partiell bis zur Abkühlstopptemperatur ϑ2 abgekühlt. In dieser Behandlungsstation wird der erste Bereich beziehungsweise werden die ersten Bereiche nicht besonders behandelt.
  • Optional kann die Behandlungsstation zu diesem Zweck auch beheizt sein. Dazu kann beispielsweise die Wärmeeinbringung über Konvektion oder Wärmestrahlung verwendet werden.
  • Die Steuerungseinheit ist vorzugsweise so eingerichtet, dass die Bauteile nach wenigen Sekunden in der Behandlungsstation, die zudem über eine Positioniervorrichtung verfügen kann, um die genaue Positionierung der unterschiedlichen Bereiche zu gewährleisten, in einen zweiten Ofen befördert werden, der vorzugsweise keine speziellen Vorrichtungen zur unterschiedlichen Behandlung der verschiedenen Bereiche besitzt. Es wird lediglich eine Ofentemperatur ϑ4, d.h. eine im Wesentlichen homogene Temperatur ϑ4 im gesamten Ofenraum, eingestellt, die in der Regel zwischen der Austenitisierungstemperatur AC3 und der minimalen Abschrecktemperatur liegt. Eine vorteilhafte Größe liegt beispielsweise zwischen 660°C und 850°C. So nähern sich die verschiedenen Bereiche der Temperatur ϑ4 des zweiten Ofens an. Sofern die Temperaturverluste in den ersten Bereichen während des Aufenthaltes in der Behandlungsstation für die zweiten Bereiche so niedrig sind, dass die Temperatur nicht niedriger als die Temperatur ϑ4 des zweiten Ofens fällt, nähert sich das Temperaturprofil der ersten Bereiche Art der Temperatur ϑ4 des zweiten Ofens von oben her an. In einer vorteilhaften Ausführungsform ist die minimale Abkühltemperatur, d.h. die Abkühlstopptemperatur ϑ2 in den Bereichen zweiter Art tiefer als die gewählte Temperatur ϑ4 des zweiten Ofens. Insofern nähert sich das Temperaturprofil der zweiten Bereiche der Temperatur ϑ4 des zweiten Ofens von unten her an. Durch diese Verfahrensführung nähern sich die Temperaturen der unterschiedlich behandelten Bereiche gegenseitig an
  • Der erste oder die ersten Bereiche geben im zweiten Ofen Wärme ab, wenn sie mit höherer Temperatur als die Innentemperatur ϑ4 des zweiten Ofens in den zweiten Ofen gelangen. Der zweite oder die zweiten Bereiche nehmen im zweiten Ofen Wärme auf. Dies erfordert in der Summe nur einen relativ geringen Bedarf an Heizleistung im zweiten Ofen. Gegebenenfalls kann während des Produktionsprozesses gänzlich auf eine weitere Beheizung verzichtet werden. So ist dieser Behandlungsschritt besonders energieeffizient
  • Als erster Ofen kann beispielsweise ein Durchlaufofen oder ein Batchofen, wie beispielsweise ein Kammerofen, vorgesehen sein. Durchlauföfen weisen in der Regel eine große Kapazität auf und sind für die Massenproduktion besonders gut geeignet, da sie sich ohne großen Aufwand beschicken und betreiben lassen.
  • Erfindungsgemäß weist die die Behandlungsstation eine Vorrichtung zum schnelten Abkühlen eines oder mehrerer zweiter Bereiche des Stahlbauteils auf. In einer bevorzugten Ausführungsform weist die Vorrichtung eine Düse zum Anblasen des oder der zweiten Bereiche des Stahlbauteils mit einem gasförmigen Fluid, beispielsweise Luft oder ein Schutzgas, wie beispielsweise Stickstoff auf.
  • Vorzugsweise erfolgt das Anblasen des zweiten oder der zweiten Bereiche durch Anblasen mit einem gasförmigen Fluid, wobei dem gasförmigen Fluid Wasser, beispielsweise in vernebelter Form, beigefügt ist. Dazu weist die Vorrichtung in einer vorteilhaften Ausführungsform eine oder mehrere Vernebelungsdüsen auf. Durch das Anblasen mit dem mit Wasser versetzten gasförmigen Fluid wird die Wärmeabfuhr aus dem oder aus den zweiten Bereichen erhöht. Mit der Verdampfung des Wassers auf dem Stahlbauteil wird eine große Wärmeabfuhr und ein hoher Energietransport erreicht.
  • Auch als zweiter Ofen kann beispielsweise ein Durchlaufofen oder ein Batchofen, beispielsweise ein Kammerofen, vorgesehen sein.
  • Der zweite beziehungsweise die zweiten Bereiche können über Wärmeleitung, beispielsweise durch das Inkontaktbringen mit einem Stempel oder mehreren Stempeln gekühlt werden, der beziehungsweise die eine deutlich niedrigere Temperatur als das Stahlbauteil aufweist oder aufweisen. Dazu kann der Stempel aus einem gut wärmeleitenden Werkstoff hergestellt sein und / oder direkt oder indirekt gekühlt sein. Auch eine Kombination der Kühlungsarten ist denkbar.
  • Es hat sich als vorteilhaft erwiesen, wenn in der Behandlungsstation Maßnahmen für die Verringerung der Temperaturverluste des ersten beziehungsweise der ersten Bereiche getroffen sind. Solche Maßnahmen können beispielsweise das Anbringen eines Wärmestrahlungsreflektors und/oder das Isolieren von Oberflächen der Behandlungsstation im Bereich des ersten beziehungsweise der ersten Bereiche sein.
  • Mit der erfindungsgemäßen Wärmebehandlungsvorrichtung kann Stahlbauteilen mit jeweils einem oder mehreren ersten und/oder zweiten Bereichen, die auch komplex geformt sein können, wirtschaftlich ein entsprechendes Temperaturprofil aufgeprägt werden, da die unterschiedlichen Bereiche konturscharf sehr schnell auf die notwendigen Prozesstemperaturen gebracht werden können. Zwischen den beiden Bereichen sind klar konturierte Abgrenzungen der einzelnen Bereiche realisierbar und durch den geringen Temperaturunterschied wird der Verzug der Bauteile minimiert. Geringe Spreizungen im Temperaturniveau des Bauteils wirken sich vorteilhaft bei der weiteren Verarbeitung in der Presse aus. Die notwendigen Verweilzeiten für den zweiten Bereich beziehungsweise die zweiten Bereiche können beispielsweise in einem Durchlaufofen in Abhängigkeit von der Bauteillänge über die Einstellung der Fördergeschwindigkeit und der Auslegung der Ofenlänge realisiert werden. Eine Beeinflussung der Taktzeit der Wärmebehandlungsvorrichtung wird so minimiert, sie kann sogar gänzlich vermieden werden.
  • Erfindungsgemäß ist es mit der Wärmebehandlungsvorrichtung möglich, nahezu beliebig viele zweite Bereiche einzustellen, die innerhalb eines Stahlbauteils zudem jeweils untereinander noch unterschiedliche Festigkeits- und Dehnungswerte aufweisen können. Auch ist die gewählte Geometrie der Teilbereiche frei wählbar. Punkt- oder linienförmige Bereiche sind ebenso wie z.B. großflächige Bereiche darstellbar. Auch die Lage der Bereiche ist unerheblich. Die zweiten Bereiche können vollständig von ersten Bereichen umschlossen sein oder sich am Rand des Stahlbauteils befinden. Selbst eine vollflächige Behandlung ist denkbar. Eine besondere Orientierung des Stahlbauteils zur Durchlaufrichtung ist nicht erforderlich. Eine Begrenzung der Anzahl der gleichzeitig behandelten Stahlbauteile ist allenfalls durch das Presshärtewerkzeug oder die Fördertechnik der gesamten Wärmebehandlungsvorrichtung gegeben. Die Anwendung auf bereits vorgeformte Stahlbauteile ist ebenfalls möglich. Durch die dreidimensional ausgeformten Oberflächen bereits vorgeformter Stahlbauteile ergibt sich lediglich ein höherer konstruktiver Aufwand zur Darstellung der Gegenflächen.
  • Weiterhin ist es vorteilhaft, dass auch bereits vorhandene Wärmebehandlungsanlangen erfindungsgemäß adaptiert werden können. Hierzu muss bei einer konventionellen Wärmebehandlungsvorrichtung mit nur einem Ofen hinter diesem nur die Behandlungsstation und der zweite Ofen installiert werden. Je nach Ausgestaltung des vorhandenen Ofens ist es auch möglich, diesen zu teilen, so dass aus dem ursprünglichen einen Ofen der erste und der zweite Ofen entstehen.
  • Weitere Vorteile, Besonderheiten und zweckmäßige Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Darstellung bevorzugter Ausführungsbeispiele anhand der Abbildungen.
  • Von den Abbildungen zeigt:
    • 1 eine typische Temperaturkurve bei der Wärmebehandlung eines Stahlbauteils mit einem ersten und einem zweiten Bereich
    • 2 eine erfindungsgemäße thermische Wärmebehandlungsvorrichtung in einer Draufsicht als Schemazeichnung
    • 3 eine weitere erfindungsgemäße thermische Wärmebehandlungsvorrichtung in einer Draufsicht als Schemazeichnung
    • 4 eine weitere erfindungsgemäße thermische Wärmebehandlungsvorrichtung in einer Draufsicht als Schemazeichnung
    • 5 eine weitere erfindungsgemäße thermische Wärmebehandlungsvorrichtung in einer Draufsicht als Schemazeichnung
    • 6 eine weitere erfindungsgemäße thermische Wärmebehandlungsvorrichtung in einer Draufsicht als Schemazeichnung.
    • 7 eine weitere erfindungsgemäße thermische Wärmebehandlungsvorrichtung in einer Draufsicht als Schemazeichnung
  • In der 1 ist eine typische Temperaturkurve bei der Wärmebehandlung eines Stahlbauteils 200 mit einem ersten Bereich 210 und einem zweiten Bereich 220, welche mit der Steuerungseinheit der erfindungsgemäßen Wärmebehandlungsvorrichtung eingestellt werden kann. Das Stahlbauteil 200 wird im ersten Ofen 110 gemäß des schematisch eingezeichneten Temperaturlaufs ϑ200,110 während der Verweilzeit im ersten Ofen t110 aufgeheizt auf eine Temperatur oberhalb der AC3-Temperatur. Anschließend wird das Stahlbauteil 200 mit einer Transferzeit t120 in die Behandlungsstation 150 transferiert. Dabei verliert das Stahlbauteil Wärme. In der Behandlungsstation wird ein zweiter Bereich 220 des Stahlbauteils 200 schnell abgekühlt, wobei der zweite Bereich 220 schnell gemäß des eingezeichneten Verlaufs ϑ220,150 an Wärme verliert. Das Abkühlen endet nach Ablauf der Behandlungszeit tB, die in Abhängigkeit der Dicke des Stahlbauteils 200, den gewünschten Materialeigenschaften und der Größe des zweiten Bereichs 220 nur einige wenige Sekunden beträgt. In erster Näherung ist dabei die Behandlungszeit tB gleich der Verweilzeit t150 in der Behandlungsstation 150. Der zweite Bereich 220 hat nun die Abkühlstopptemperaturϑ2 oberhalb der Martensitstarttemperatur Ms erreicht. Zeitgleich ist auch die Temperatur des ersten Bereichs 210 in der Behandlungsstation 150 gemäß des eingezeichneten Temperaturverlaufs ϑ210,150 gefallen, wobei der erste Bereich 210 sich nicht im Bereich der Abkühleirichtung befindet. Nach Ablauf der Behandlungszeit tB wird das Stahlbauteil 200 während der Transferzeit t121 in den zweiten Ofen 130 transferiert, wobei es weiter an Wärme verliert, sofern seine Temperatur großer als die Innentemperatur ϑ4 des zweiten Ofens 130 ist. Im zweiten Ofen 130 verändert sich die Temperatur des ersten Bereichs 210 des Stahlbauteils 200 gemäß dem schematisch eingezeichneten Temperaturverlauf ϑ210,130 während der Verweilzeit t130, d.h. die Temperatur des ersten Bereichs 210 des Stahlbauteils 200 nimmt langsam weiter ab. Dabei kann die Temperatur des ersten Bereichs 210 des Stahlbauteils 200 unter die AC3-Temperaturfallen, was aber nicht zwingend erfolgen muss. Dahingegen steigt die Temperatur des zweiten Bereichs 220 des Stahlbauteils 200 gemäß dem eingezeichneten Temperaturverlauf ϑ220,130 während der Verweilzeit t130 wieder an, ohne die AC3-Temperatur zu erreichen. Der zweite Ofen 130 verfügt über keine speziellen Vorrichtungen zur unterschiedlichen Behandlung der verschiedenen Bereiche 210, 220. Es wird lediglich eine Ofentemperatur ϑ4, d.h. eine im Wesentlichen homogene Temperatur im gesamten Innenraum des zweiten Ofens 130, eingestellt, die zwischen der Austenitisierungstemperatur AC3 und der Abkühlstopptemperatur ϑ2, beispielsweise zwischen 660°C und 850°C liegt. So nähern sich die verschiedenen Bereiche 210, 220 der Innentemperatur ϑ4 des zweiten Ofens 130 an. Sofern die Temperaturverluste in dem ersten Bereich 210 während der Verweilzeit t150 in der Behandlungsstation 150 für den zweiten Bereich 220 so niedrig sind, dass die Temperatur nicht niedriger als die Temperatur ϑ4 des zweiten Ofens 130 fällt, nähert sich das Temperaturprofil ϑ210,130 des ersten Bereichs der Temperatur ϑ4 des zweiten Ofens 130 von oben her an. Die Abkühlstopptemperaturϑ2 ist in dieser Ausführungsform niedriger als die gewählte Temperatur ϑ4 des zweiten Ofens 130. Das Temperaturprofil ϑ220,130 des zweiten Bereichs nähert sich der Temperatur ϑ4 des zweiten Ofens 130 von unten her an. Die Temperatur des Bereichs 210 fällt nicht unter die Gefügeumwandlungsstarttemperatur ϑ1. Durch den geringen Temperaturunterschied zwischen den beiden Bereichen 210, 220 sind klar konturierte Abgrenzungen der einzelnen Bereiche 210, 220 realisierbar und der Verzug des Stahlbauteils 200 wird minimiert. Geringe Spreizungen im Temperaturniveau des Stahlbauteils 200 wirken sich vorteilhaft bei der weiteren Verarbeitung in dem Presshärtewerkzeug 160 aus. Die notwendige Verweilzeit t130 für den zweiten Bereich 220 kann in Abhängigkeit von der Länge des Stahlbauteils über die Einstellung der Fördergeschwindigkeit und der Auslegung der Länge des zweiten Ofens 130 realisiert werden. Eine Beeinflussung der Taktzeit der Wärmebehandlungsvorrichtung 100 wird so minimiert, sie kann sogar gänzlich vermieden werden. Der erste Bereich 210 des Stahlbauteils 200 gibt im zweiten Ofen 130 Wärme ab. Der zweite Bereich 220 des Stahlbauteils 200 nimmt im zweiten Ofen 130 Wärme auf, wobei die Wärmeaufnahme durch die bei der Rekaleszenz des Gefüges im zweiten Bereich 220 des Stahlbauteils 200 freiwerdende Wärme eingeschränkt ist. Dies erfordert in der Summe nur einen relativ geringen Bedarf an Heizleistung im zweiten Ofen 130. Gegebenenfalls kann gänzlich auf eine zusätzliche Beheizung des zweiten Ofens 130 verzichtet werden. So ist dieser Behandlungsschritt besonders energieeffizient.
  • Nach Beendigung der Verweilzeit t130 des Stahlbauteils 200 im zweiten Ofen 130 wird es während der Transferzeit t131 in ein Presshärtewerkzeug 160 transferiert, wo es während der Verweilzeit t160 umgeformt und gehärtet wird.
  • 2 zeigt eine erfindungsgemäße Wärmebehandlungsvorrichtung 100 in 90°-Anordnung. Die Wärmebehandlungsvorrichtung 100 weist eine Beladungsstation 101 auf, über die Stahlbauteile dem ersten Ofen 110 zugeführt werden. Weiterhin weist die Wärmebehandlungsvorrichtung 100 die Behandlungsstation 150 und in Hauptdurchflussrichtung D dahinter angeordnet den zweiten Ofen 130 auf. Weiter in Hauptdurchflussrichtung D dahinter angeordnet befindet sich eine Entnahmestation 131, die mit einer Positioniervorrichtung (nicht gezeigt) ausgerüstet ist. Die Hauptdurchflussrichtung knickt nun um im Wesentlichen 90° ab, um ein Presshärtewerkzeug 160 in einer Presse (nicht gezeigt) folgen zu lassen, in dem das Stahlbauteil 200 pressgehärtet wird. In Achsrichtung des ersten Ofens 110 und des zweiten Ofens 130 ist ein Behälter 161 angeordnet, in den Ausschussteile verbracht werden können. Der erste Ofen 110 und der zweite Ofen 130 sind bei dieser Anordnung bevorzugt als Durchlauföfen, beispielsweise Rollenherdöfen, ausgeführt.
  • 3 zeigt eine erfindungsgemäße Wärmebehandlungsvorrichtung 100 in gerader Anordnung. Die Wärmebehandlungsvorrichtung 100 weist eine Beladungsstation 101 auf, über die Stahlbauteile dem ersten Ofen 110 zugeführt werden. Weiterhin weist die Wärmebehandlungsvorrichtung 100 die Behandlungsstation 150 und in Hauptdurchflussrichtung D dahinter angeordnet den zweiten Ofen 130 auf. Weiter in Hauptdurchflussrichtung D dahinter angeordnet befindet sich eine Entnahmestation 131, die mit einer Positioniervorrichtung (nicht gezeigt) ausgerüstet ist. Weiter folgt in nun weiter gerader Hauptdurchflussrichtung ein Presshärtewerkzeug 160 in einer Presse (nicht gezeigt), in dem das Stahlbauteil 200 pressgehärtet wird. Im wesentlich in 90° zu der Entnahmestation 131 ist ein Behälter 161 angeordnet, in den Ausschussteile verbracht werden können. Der erste Ofen 110 und der zweite Ofen 130 sind bei dieser Anordnung ebenfalls bevorzugt als Durchlauföfen, beispielsweise Rollenherdöfen, ausgeführt.
  • 4 zeigt eine weitere Variante einer erfindungsgemäßen Wärmebehandlungsvorrichtung 100. Die Wärmebehandlungsvorrichtung 100 weist wieder eine Beladungsstation 101 auf, über die Stahlbauteile dem ersten Ofen 110 zugeführt werden. Der erste Ofen 110 ist bei dieser Ausführung wieder vorzugsweise als Durchlaufofen ausgebildet. Weiterhin weist die Wärmebehandlungsvorrichtung 100 die Behandlungsstation 150 auf, die in dieser Ausführungsform mit einer Entnahmestation 131 kombiniert ist. Die Entnahmevorrichtung 131 kann beispielsweise über eine Greifvorrichtung (nicht gezeigt) verfügen. Die Entnahmestation 131 entnimmt beispielsweise mittels der Greifvorrichtung die Stahlbauteile 200 aus dem ersten Ofen 110. Die Wärmebehandlung mit dem Abkühlen des zweiten beziehungsweise der zweiten Bereiche 220 wird durchgeführt und das Stahlbauteile beziehungsweise die Stahlbauteile 200 werden in einen im Wesentlichen um 90° zur Achse des ersten Ofens 110 angeordneten zweiten Ofen 130 einlegt. Dieser zweite Ofen 130 ist in dieser Ausführungsform vorzugsweise als Kammerofen, beispielsweise mit mehreren Kammern, vorgesehen. Nach Ablauf der Verweilzeit t130 der Stahlbauteile 200 im zweiten Ofen 130 werden die Stahlbauteile 200 über die Entnahmestation 131 aus dem zweiten Ofen 130 entnommen und in ein gegenüberliegendes, in eine Presse (nicht gezeigt) eingebautes Presshärtewerkzeug 160 eingelegt. Dazu kann die Entnahmestation 131 über eine Positioniereinrichtung (nicht gezeigt) verfügen. In Achsrichtung des ersten Ofens 110 ist hinter der Entnahmestation 131 ein Behälter 161 angeordnet, in den Ausschussteile verbracht werden können. Die Hauptdurchflussrichtung D beschreibt bei dieser Ausführungsform eine Umlenkung von im Wesentlichen 90°. In dieser Ausführungsform ist kein zweites Positioniersystem für die Behandlungsstation 150 erforderlich. Darüber hinaus ist diese Ausführungsform vorteilhaft, wenn in Achsrichtung des ersten Ofens 110 nicht ausreichend Platz beispielsweise in einer Produktionshalle zur Verfügung steht. Die Abkühlung der zweiten Bereiche 220 des Stahlbauteils 200 kann bei dieser Ausführungsform auch zwischen Entnahmestation 131 und zweiten Ofen 130 erfolgen, so dass es keiner ortsfesten Behandlungsstation 150 bedarf. Beispielsweise kann eine Abkühlvorrichtung, beispielsweise eine Blasdüse, in die Greifvorrichtung integriert sein. Die Entnahmevorrichtung 131 sorgt für den Transfer des Stahlbauteils 200 von dem ersten Ofen 110 in den zweiten Ofen 130 und in das Presshärtewerkzeug 160 beziehungsweise in den Behälter 161.
  • Auch bei dieser Ausführungsform kann die Position von Presshärtewerkzeug 160 und Behälter 161 vertauscht werden, wie in 5 zu sehen. Die Hauptdurchflussrichtung D beschreibt bei dieser Ausführungsform zwei Umlenkungen von im Wesentlichen 90°.
  • Ist der Platz für die Aufstellung der Wärmebehandlungsvorrichtung beschränkt, bietet sich eine Wärmebehandlungsvorrichtung gemäß 6 an: Im Vergleich zu der in 4 gezeigten Ausführungsform ist der zweite Ofen 130 in eine zweite Ebene oberhalb des ersten Ofens 110 versetzt. Auch bei dieser Ausführungsform kann die Abkühlung der zweiten Bereiche 220 des Stahlbauteils 200 ebenfalls zwischen Entnahmestation 131 und zweiten Ofen 130 erfolgen, so dass es keiner ortsfesten Behandlungsstation 150 bedarf. Erneut ist es vorteilhaft, den ersten Ofen 110 als Durchlaufofen und den zweiten Ofen 120 als Kammerofen, eventuell mit mehreren Kammern auszuführen.
  • In 7 schließlich ist eine letzte Ausführungsform der erfindungsgemäßen Wärmebehandlungsvorrichtung schematisch gezeigt. Im Vergleich zu der in 6 gezeigten Ausführungsform sind die Positionen von Presshärtewerkzeug 160 und Behälter 161 vertauscht.
  • Die hier gezeigten Ausführungsformen stellen nur Beispiele für die vorliegende Erfindung dar und dürfen daher nicht einschränkend verstanden werden. Alternative durch den Fachmann in Erwägung gezogene Ausführungsformen sind gleichermaßen vom Schutzbereich der vorliegenden Erfindung umfasst.
  • Bezugszeichenliste
  • 100
    Wärmebehandlungsvorrichtung
    110
    erster Ofen
    130
    zweiter Ofen
    131
    Entnahmestation
    150
    Behandlungsstation
    160
    Presshärtewerkzeug
    161
    Behälter
    200
    Stahlbauteil
    210
    erster Bereich
    220
    zweiter Bereich
    D
    Hauptdurchflussrichtung
    Ms
    Martensit-Starttemperatur
    tB
    Behandlungszeit
    t110
    Verweilzeit im ersten Ofen
    t120
    Transferzeit Stahlbauteil in Behandlungsstation
    t121
    Transferzeit Stahlbauteil in zweiten Ofen
    t130
    Verweilzeit im zweiten Ofen
    t131
    Transferzeit Stahlbauteil in Presshärtewerkzeug
    t150
    Verweilzeit in Behandlungsstation
    t160
    Verweilzeit im Presshärtewerkzeug
    ϑ1
    Gefügeumwandlungsstarttemperatur
    ϑ2
    Abkühlstopptemperatur
    ϑ3
    Innentemperatur erster Ofen
    ϑ4
    Innentemperatur zweiter Ofen
    ϑ200,110
    Temperaturverlauf des Stahlbauteils im ersten Ofen
    ϑ210,150
    Temperaturverlauf des ersten Bereichs des Stahlbauteils in der Behandlungsstation
    ϑ220,150
    Temperaturverlauf des zweiten Bereichs des Stahlbauteils in der Behandlungsstation
    ϑ210,130
    Temperaturverlauf des ersten Bereichs des Stahlbauteils im zweiten Ofen
    ϑ220,130
    Temperaturverlauf des zweiten Bereichs des Stahlbauteils im zweiten Ofen
    ϑ200,160
    Temperaturverlauf des Stahlbauteils in dem Presshärtewerkzeug
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2017/129603 [0002]

Claims (12)

  1. Wärmebehandlungsvorrichtung (100) aufweisend einen ersten Ofen (110), eine Behandlungsstation (150), einen zweiten Ofen und eine Steuerungseinheit, welche zur Durchführung eines Verfahrens mit folgenden Schritten eingerichtet ist: a) Erwärmen des gesamten Stahlbauteils (200) in dem ersten Ofen (110) auf eine Temperatur oberhalb der AC3-Temperatur des Stahlbauteils (200), b) Transferieren des Stahlbauteils (200) von dem ersten Ofen (110) in die Behandlungsstation, c) Kühlen eines oder mehrerer zweiter Bereiche des Stahlbauteils (200) in der Behandlungsstation auf eine Temperatur unterhalb der AC3-Temperatur des Stahlbauteils (200), d) Transferieren des Stahlbauteils (200) von der Behandlungsstation in den zweiten Ofen, e) Erwärmen des gesamten Stahlbauteils (200) in dem zweiten Ofen, wobei der eine oder die mehreren zweiten Bereiche auf eine Temperatur unterhalb der AC3-Temperatur des Stahlbauteils (200) erwärmt werden und wobei ein oder mehrere erste Bereiche auf eine auf eine Temperatur oberhalb der AC3-Temperatur des Stahlbauteils (200) erwärmt werden.
  2. Wärmebehandlungsvorrichtung (100) nach Anspruch 1, wobei die Steuerungseinheit dazu eingerichtet ist, in dem einem oder mehreren ersten Bereichen (210) ein vorrangig austenitisches Gefüge einzustellen, aus dem durch anschließendes Abschrecken ein mehrheitlich martensitisches Gefüge darstellbar ist
  3. Wärmebehandlungsvorrichtung (100) nach Anspruch 1 oder 2, wobei die Steuerungseinheit dazu eingerichtet ist, in dem einen oder mehreren zweiten Bereichen (220) ein beliebiges Gefüge einzustellen.
  4. Wärmebehandlungsvorrichtung (100) nach Anspruch 1 oder 2, wobei die Steuerungseinheit dazu eingerichtet ist, in dem einen oder mehreren zweiten Bereichen (220) ein mehrheitlich ferritisch-perlitisches Gefüge einzustellen.
  5. Wärmebehandlungsvorrichtung (100) nach einem der Ansprüche 1 bis 4, wobei die Behandlungsstation eine Vorrichtung zum Abkühlen eines oder mehrerer zweiter Bereiche (220) des Stahlbauteils (200) eine Düse zum Anblasen des oder der zweiten Bereiche (220) des Stahlbauteils (200) mit einem gasförmigen Fluid aufweist.
  6. Wärmebehandlungsvorrichtung (100) gemäß Anspruch 5, wobei die Vorrichtung zum Abkühlen eines oder mehrerer zweiter Bereiche (220) des Stahlbauteils (200) eine Düse zum Anblasen des oder der zweiten Bereiche (220) des Stahlbauteils (200) mit einem gasförmigen Fluid, dem Wasser beigemischt ist, aufweist.
  7. Wärmebehandlungsvorrichtung (100) gemäß einem der Ansprüche 5 oder 6, wobei die Vorrichtung zum Abkühlen eines oder mehrerer zweiter Bereiche (220) des Stahlbauteils (200) Stempel zum Kontaktieren des oder der zweiten Bereiche (220) des Stahlbauteils (200) aufweist.
  8. Wärmebehandlungsvorrichtung (100) gemäß Anspruch 7, wobei der Stempel zum Kontaktieren des oder der zweiten Bereiche (220) des Stahlbauteils (200) kühlbar ausgeführt ist.
  9. Wärmebehandlungsvorrichtung (100) gemäß einem der Ansprüche 1 bis 8, wobei die Behandlungsstation (150) eine Positioniereinrichtung aufweist.
  10. Wärmebehandlungsvorrichtung (100) gemäß einem der Ansprüche 1 bis 9, wobei die Steuerungseinheit dazu eingerichtet ist, eine im Wesentlichen homogene Temperatur ϑ4 im zweiten Ofen einzustellen.
  11. Wärmebehandlungsvorrichtung (100) gemäß einem der Ansprüche 1 bis 10, wobei die Behandlungsstation (150) Wärmereflektoren aufweist.
  12. Wärmebehandlungsvorrichtung (100) gemäß einem der Ansprüche 1 bis 11, wobei die Behandlungsstation (150) wärmeisolierte Wandungen aufweist.
DE202022100505.2U 2022-01-28 2022-01-28 Wärmebehandlungsvorrichtung Active DE202022100505U1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE202022100505.2U DE202022100505U1 (de) 2022-01-28 2022-01-28 Wärmebehandlungsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202022100505.2U DE202022100505U1 (de) 2022-01-28 2022-01-28 Wärmebehandlungsvorrichtung

Publications (1)

Publication Number Publication Date
DE202022100505U1 true DE202022100505U1 (de) 2022-02-03

Family

ID=80351793

Family Applications (1)

Application Number Title Priority Date Filing Date
DE202022100505.2U Active DE202022100505U1 (de) 2022-01-28 2022-01-28 Wärmebehandlungsvorrichtung

Country Status (1)

Country Link
DE (1) DE202022100505U1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017129603A1 (de) 2016-01-25 2017-08-03 Schwartz Gmbh Wärmebehandlungsverfahren und wärmebehandlungsvorrichtung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017129603A1 (de) 2016-01-25 2017-08-03 Schwartz Gmbh Wärmebehandlungsverfahren und wärmebehandlungsvorrichtung

Similar Documents

Publication Publication Date Title
EP3408417B1 (de) Wärmebehandlungsverfahren
EP2497840B2 (de) Ofensystem zum partiellen Erwärmen von Stahlblechteilen
EP3045551B1 (de) Verfahren zum partiellen wärmebehandeln einer warmgeformten und pressgehärteten kraftfahrzeugkomponente
EP3652352B1 (de) Verfahren und vorrichtung zur wärmebehandlung eines metallischen bauteils
DE102009026251A1 (de) Verfahren und Vorrichtung zum energieeffizienten Warmumformen
EP3160667A1 (de) Verfahren und umformwerkzeug zum warmumformen sowie entsprechendes werkstück
EP2791372A1 (de) Verfahren und vorrichtung zum partiellen härten von blechbauteilen
EP3408416B1 (de) Wärmebehandlungsverfahren und wärmebehandlungsvorrichtung
EP2864506A1 (de) Verfahren und vorrichtung zur herstellung eines pressgehärteten metallbauteils
WO2017129599A1 (de) Verfahren und vorrichtung zur wärmebehandlung eines metallischen bauteils
DE102011102167A1 (de) Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität und Erwärmungseinrichtung
DE102016118252A1 (de) Verfahren und Vorrichtung zur Wärmebehandlung eines metallischen Bauteils
DE102016124539B4 (de) Verfahren zum Herstellen lokal gehärteter Stahlblechbauteile
EP3408420A1 (de) Verfahren zur wärmebehandlung eines metallischen bauteils
EP3414350A1 (de) Wärmebehandlungsverfahren und wärmebehandlungsvorrichtung
EP3420111B1 (de) Verfahren zur gezielten bauteilzonenindividuellen wärmebehandlung
DE202022100505U1 (de) Wärmebehandlungsvorrichtung
DE102019124674A1 (de) Verfahren zur Herstellung eines Profilbauteils sowie Profilbauteil
DE102020111615A1 (de) Verfahren zum Nachrüsten einer Wärmebehandlungsanlage
WO2019120858A1 (de) Verfahren zur herstellung eines profilbauteils sowie profilbauteil
DE102016118253A1 (de) Verfahren zur Wärmebehandlung eines metallischen Bauteils

Legal Events

Date Code Title Description
R207 Utility model specification