DE202020005573U1 - Laserstrahlvorrichtung mit einer Einkopplung eines Beleuchtungslaserstrahls in einen Wirklaserstrahl - Google Patents

Laserstrahlvorrichtung mit einer Einkopplung eines Beleuchtungslaserstrahls in einen Wirklaserstrahl Download PDF

Info

Publication number
DE202020005573U1
DE202020005573U1 DE202020005573.5U DE202020005573U DE202020005573U1 DE 202020005573 U1 DE202020005573 U1 DE 202020005573U1 DE 202020005573 U DE202020005573 U DE 202020005573U DE 202020005573 U1 DE202020005573 U1 DE 202020005573U1
Authority
DE
Germany
Prior art keywords
laser beam
illuminating
area
effective
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE202020005573.5U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Waffe Munition GmbH
Original Assignee
Rheinmetall Waffe Munition GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall Waffe Munition GmbH filed Critical Rheinmetall Waffe Munition GmbH
Priority to DE202020005573.5U priority Critical patent/DE202020005573U1/de
Priority to DE102021106492.9A priority patent/DE102021106492A1/de
Publication of DE202020005573U1 publication Critical patent/DE202020005573U1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/005Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/143Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat

Abstract

Laserstrahlvorrichtung (10) mit Mitteln zum Erzeugen eines von der Laserstrahlvorrichtung (10) ausgehenden Wirklaserstrahls (20), Mitteln zum Erzeugen eines Beleuchtungslaserstrahls (18), und mit einem Einkoppelelement (30) zum Einkoppeln des Beleuchtungslaserstrahls (18) in einen Strahlengang des von der Laserstrahlvorrichtung (10) abzustrahlenden Wirklaserstrahls (20), dadurch gekennzeichnet, dass das Einkoppelelement (30) einen ersten Teilbereich (54) und einen zweiten Teilbereich (56) aufweist, der von dem ersten Teilbereich (54) verschieden ist, und dass die Mittel zum Erzeugen des Wirklaserstrahls (20), die Mittel zum Erzeugen des Beleuchtungslaserstrahls (18) und das Einkoppelelement (30) relativ zueinander so angeordnet sind, dass der Wirklaserstrahl (20) auf den ersten Teilbereich (54) gerichtet ist und der Beleuchtungslaserstrahl (18) auf den zweiten Teilbereich (56) gerichtet ist, wobei der erste Teilbereich (54) für den Wirklaserstrahl (20) transparent ist und wobei der zweite Teilbereich (56) dazu eingerichtet ist, den Beleuchtungslaserstrahl (18) parallel zum Wirklaserstrahl (20) zu reflektieren.

Description

  • Die vorliegende Erfindung betrifft eine Laserstrahlvorrichtung nach dem Oberbegriff des Anspruchs 1. Eine solche Laserstrahlvorrichtung wird als per se bekannt vorausgesetzt und weist Mittel zum Erzeugen eines von der Laserstrahlvorrichtung ausgehenden Wirklaserstrahls, Mittel zum Erzeugen eines Beleuchtungslaserstrahls und ein Einkoppelelement zum Einkoppeln des Beleuchtungslaserstrahls in einen Strahlengang des von der Laserstrahlvorrichtung abzustrahlenden Wirklaserstrahls auf.
  • Der Wirklaserstrahl dient zur Bekämpfung von Zielen durch thermische oder nicht-thermische Störung (Blenden), Beschädigung oder Zerstörung. Beispiele solcher Ziele sind statische Ziele wie Minen und dynamische Ziele wie Flugkörper, oder Artilleriegeschosse (UAV's, etc.). Das Ausrichten der Laserstrahlvorrichtung erfolgt in der Regel zweistufig. In einer ersten Stufe wird das Ziel zum Beispiel durch ein elektrooptisches System, z.B. ein Radarsystem detektiert, und die Laserstrahlvorrichtung wird mechanisch vergleichsweise grob auf das Ziel ausgerichtet (Grobtracking). Das Ausrichten erfolgt zum Beispiel durch azimutales Drehen einer die Laserstrahlvorrichtung tragenden Plattform (Turm) und auf der Plattform erfolgendes Schwenken der gegenüber der Plattform schwenkbaren Laserstrahlvorrichtung in der Elevationsrichtung. In einer zweiten Stufe wird das Ziel mit einem Beleuchtungslaserstrahl beleuchtet (Feintracking). Von dem beleuchteten Ziel reflektierte Beleuchtungsstrahlung wird durch einen für die Beleuchtungsstrahlung empfindlichen Sensor erfasst, ausgewertet und zur Feinausrichtung des Wirklaserstrahl durch Verstellung eines die Richtung des Wirklaserstrahls beeinflussenden Spiegels verwendet.
  • Das Mittel zum Erzeugen des Beleuchtungslaserstrahls kann grundsätzlich in drei unterschiedlichen Anordnungen verwirklicht werden, die mit jeweils unterschiedlichen Problemen behaftet sind.
  • In einer als abgesetzter Beleuchtungslaser bezeichneten ersten Anordnung ist eine zweite drehbare Plattform erforderlich, die mit hoher mechanischer Genauigkeit mit der Plattform des Mittels zur Erzeugung des Wirklaserstrahls elektrisch gekoppelt sein muss und die das Mittel zum Erzeugen des Beleuchtungslaserstrahls trägt. Nachteilig ist auch die Existenz von Abdeckungsbereichen, bei denen das Ziel durch das Mittel zum Erzeugen des Wirklaserstrahls verdeckt, bzw. umgekehrt das Ziel für den Wirklaserstrahl durch das Mittel zur Erzeugung des Beleuchtungslaserstrahls verdeckt wird.
  • In einer als achsparalleler Beleuchtungslaser bezeichneten zweiten Anordnung wird der ein Teleskop aufweisende Beleuchtungslaser mit Teilen seines Teleskops parallel zum Strahlengang des Wirklaserstrahls mit dem Mittel zur Erzeugung des Wirklaserstrahls mechanisch gekoppelt. Dies führt zu einem seitlichen Versatz beider Laserstrahlen, so dass der Beleuchtungslaserstrahl im Fernfeld nicht mit dem Wirklaserstrahl zusammenfällt, was den Feintrackingbereich, d.h. den sich senkrecht zum Beleuchtungslaserstrahl erstreckende Bereich, der mit dem Beleuchtungslaserstrahl beleuchtbar ist, einschränkt. Dieser seitliche Versatz kann zwar durch einen größeren Öffnungswinkel des Beleuchtungslaserstrahls kompensiert werden, dies erfordert aber eine nachteilig größere Sendeleistung des Beleuchtungslaserstrahls und/oder kleine Achsabstände.
  • In einer dritten Anordnung wird der Beleuchtungslaserstrahl in den Strahlengang des Wirklaserstrahls eingekoppelt. Dazu wird ein Einkoppelelement verwendet, dass erstens eine hohe Transmission für die Wellenlänge des Wirklaserstrahls, zweitens eine für die hohe Leistung des Wirklaserstrahls ausreichend hohe Temperaturbeständigkeit, drittens eine hohe Reflexion für den Beleuchtungslaserstrahl in Transmissionsrichtung (zum Ziel hin) und viertens eine hohe Transmission für den Beleuchtungslaserstrahl in Reflexionsrichtung (vom Ziel zu einem für die Beleuchtungsstrahlung empfindlichen Sensor) aufweist.
  • Die vierte Forderung kann durch Verwendung eines optischen Elements mit polarisationsabhängiger Reflexion für die Wellenlänge des Beleuchtungslaserstrahls und Verwendung polarisierter Beleuchtungslaserstrahlung erfüllt werden. In der Transmissionsrichtung ist die Reflexion in der Polarisationsrichtung der Beleuchtungslaserstrahlung maximiert. In der Reflexionsrichtung (vom Ziel aus zum Sensor) wird nur die senkrecht zur Polarisation der Beleuchtungslaserstrahlung reflektierte Strahlung des Ziels transmittiert. Damit wird ein großer Teil der reflektierten Strahlung nicht verwendet. Dies kann nachteiliger Weise nur durch eine höhere Leistung des Beleuchtungslaserstrahls kompensiert werden.
  • Alternativ kann die vierte Forderung durch Verwendung eines Einkoppelelements mit 50% Reflexion und 50% Transmission für die Wellenlänge des Beleuchtungslaserstrahls erfüllt werden. Damit kommt am Ziel nur etwa 50% der Leistung des Beleuchtungslaserstrahls an. In der Reflexionsrichtung werden vom Einkoppelelement nur 50% zum Sensor transmittiert. Damit empfängt der Sensor im Vergleich zu dem abgesetzten, bzw. im Vergleich zu dem seitlich versetzten Mittel zur Erzeugung des Beleuchtungslaserstrahls weniger als 25% der Leistung. Dies kann nachteiliger Weise nur durch eine höhere Leistung des Beleuchtungslaserstrahls kompensiert werden.
  • Die vorliegende Erfindung basiert auf der dritten Anordnung und zeichnet sich dadurch aus, dass das Einkoppelelement einen ersten Teilbereich und einen zweiten Teilbereich aufweist, der von dem ersten Teilbereich verschieden ist, und dass die Mittel zum Erzeugen des Wirklaserstrahls, die Mittel zum Erzeugen des Beleuchtungslaserstrahls und das Einkoppelelement relativ zueinander in einer bestimmten Weise angeordnet sind. Gemäß dieser bestimmten Weise ist der Wirklaserstrahl auf den ersten Teilbereich gerichtet, und der Beleuchtungslaserstrahl ist auf den zweiten Teilbereich gerichtet. Dabei ist der erste Teilbereich für den Wirklaserstrahl transparent, und der zweite Teilbereich ist dazu eingerichtet, den Beleuchtungslaserstrahl parallel zum Wirklaserstrahl zu reflektieren.
  • Durch diese Merkmale wird der Vorteil einer hohen Genauigkeit der Ausrichtung, der sich bei der dritten Anordnung ergibt, erreicht, ohne dabei die oben beschriebenen Leistungsverluste in Kauf nehmen zu müssen.
  • Ein weiterer Vorteil besteht darin, dass die oben genannten Leistungsverluste bei der vorliegenden Erfindung nicht oder allenfalls in einem deutlich kleineren Ausmaß auftreten.
  • Vorteilhaft ist auch, dass damit keine Reduzierung des Aperturdurchmessers des Wirklaserstrahls im Verhältnis zum Aperturdurchmesser des Richtsystems verbunden ist.
  • Die Erfindung erlaubt auch eine Verwendung von mehr als einem Beleuchtungslaserstrahl, wobei voneinander verschiedene Beleuchtungslaserstrahlen voneinander verschiedene Wellenlängen und Strahldurchmesser in der Zielebene aufweisen können.
  • Eine bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass sich die Wellenlänge des Wirklaserstrahls von der Wellenlänge des Beleuchtungslaserstrahls unterscheidet. Dadurch kann zum Beispiel der Teilbereich, der für den Beleuchtungslaserstrahl reflektierend sei soll, für den Wirklaserstrahl transparent ausgestaltet werden (z.B. durch entsprechende Reflexionsschichten AR/AR für den Wirklaser gesamt, AR/R nur für den Bereich des Sendezweiges Beleuchtungslaser AR/AR Beleuchtungslaser für Empfangsbereich, wobei R für reflektierend und AR für antireflektierend steht). Dadurch kann z.B. verhindert werden, dass Wirklaserstrahlung unerwünscht reflektiert wird und in der Laserstrahlvorrichtung vagabundiert.
  • Bevorzugt ist auch, dass der erste Teilbereich in Bezug auf den Strahlquerschnitt des Wirklaserstrahls ein zentraler Teilbereich ist. Der erste Teilbereich fällt also mit dem zentralen Bereich des Strahlquerschnitts, in dem die höchste Leistungsdichte des Wirklaserstrahls herrscht, zusammen. Dadurch wird erreicht, dass ein möglichst großer Teil der erzeugten Wirklaserstrahlung auch abgestrahlt werden kann.
  • Weiter ist bevorzugt, dass der zweite Teilbereich in Bezug auf den Strahlquerschnitt des Wirklaserstrahls ein peripherer, außerhalb des zentralen Teilbereichs lokalisierter Teilbereich ist. In diesem Teilbereich ist bei einem Laserstrahl mit einem z.B. gaußförmigen Intensitätsprofil die Leistungsdichte sehr niedrig und damit der Einfluss auf die Feldverteilung des Beleuchtungslaserstrahls sehr gering.
  • Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass das Einkoppelelement eine planparallele Platte ist.
  • Eine planparallele Platte erlaubt eine Umlenkung des bevorzugt rechtwinklig zum Strahlengang des Wirklaserstrahls einfallenden Beleuchtungslaserstrahls in den Strahlengang des Wirklaserstrahls mit nur minimaler Beeinflussung des Wirklaserstrahls, der beim Durchgang durch die planparallele Platte nur einen kleinen lateralen Versatz erfährt.
  • Bevorzugt ist auch, dass der zweite Teilbereich des Einkoppelelements mit einer Reflexionsschicht für den Beleuchtungslaserstrahl versehen ist. Die auf die Wellenlänge des Reflexionslaserstrahls abgestimmte Reflexionsschicht erlaubt eine erwünschte Umlenkung des Beleuchtungslaserstrahls durch Reflexion.
  • Weiter ist bevorzugt, dass die Reflexionsschicht für den Wirklaserstrahl transparent ist. Dadurch wird erreicht, dass auch die Bereiche niedriger Leistungsdichte des Wirklaserstrahls noch zur Bestrahlung des Ziels beitragen, und gleichzeitig wird verhindert, dass Wirklaserstrahlung dort reflektiert wird und anschließend unerwünscht in der Laserstrahlvorrichtung vagabundieren kann.
  • Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass wenigstens der erste Teilbereich mit einer Antireflexionsschicht für den Wirklaserstrahl versehen ist. Auch diese Ausgestaltung trägt zu den im vorstehenden Absatz genannten Vorteilen bei.
  • Als Option können die Mittel zum Erzeugen des Beleuchtungslaserstrahls eine Axicon Linse aufweisen, die dazu eingerichtet und angeordnet ist, ein kohärentes Beleuchtungslaserstrahlbündel, das einen kreisförmigen Strahlquerschnitt aufweist, zu einem Beleuchtungslaserstrahlbündel, das einen kreisringförmigen Laserstrahlbündelquerschnitt aufweist, zu erzeugen.
  • Mit einem kreisringförmigen Beleuchtungslaserstrahl wird nur der äußere Teilbereich des Einkoppelelementes ausgeleuchtet. Damit wird der Beleuchtungslaserstrahl auf den Teilbereich konzentriert, an dem die umlenkende Reflexion stattfindet. Im Fernfeld ergibt sich daraus eine Intensitätsverteilung mit einem Maximum auf der optischen Achse. Über die Intensitätsverteilung kann ein nahezu beugungsbegrenzter zentraler Intensitätsfleck erzeugt werden. Bei geeigneter Wahl der Parameter kann dieser kleiner sein als der Wirklaserstrahl. Dadurch kann der Wirklaserstrahl sehr genau auf das Ziel oder einen Teil des Ziels feinausgerichtet werden.
  • Weiter ist bevorzugt, dass der Beleuchtungslaserstrahl als eine erste Alternative als Summe kohärent gekoppelter Beleuchtungslaserteilstrahlen erzeugt wird, die über das Einkoppelelement um die Strahlrichtung des Wirklaserstrahls herum verteilt angeordnet und parallel zum Wirklaserstrahl ausgerichtet sind.
  • Eine zweite alternative Ausgestaltung zeichnet sich dadurch aus, dass der Beleuchtungslaserstrahl als Summe nicht-kohärent gekoppelter Beleuchtungslaserteilstrahlen erzeugt wird. Die Reflexionsschichten sind dabei bevorzugt auf den Bereich der Beleuchtungsstrahlen beschränkt. Bei der Verwendung von nicht-kohärenten Beleuchtungslaserteilstrahlen kann der ringförmige zweite Teilbereich auch einzelne kleine Reflektoren ersetzt werden. Im Extremfall könnte man auch mit nur einem Beleuchtungslaserstrahl arbeiten.
  • Bevorzugt ist auch, dass die Beleuchtungslaserteilstrahlen konzentrisch und symmetrisch um den Wirklaserstrahl herum verteilt angeordnet sind.
  • Weiter ist bevorzugt, dass die Mittel zur Erzeugung des Beleuchtungslaserstrahls dazu eingerichtet sind, im Fernfeld der von der Laserstrahlvorrichtung abgestrahlten Beleuchtungslaserstrahlung eine Intensitätsverteilung mit einem Maximum auf einer optischen Achse der Laserstrahlvorrichtung zu erzeugen.
  • Als Folge reflektiert das Ziel einen Teil der Beleuchtungslaserstrahlung auf der optischen Achse zurück, so dass die reflektierte Beleuchtungslaserstrahlung vom Einkoppelelement entlang der optischen Achse des Einkoppelelements transmittiert wird. Die am Rand des Einkoppelelements auftretenden Transmissionsverluste sind gering, da der größte Teil der reflektierten Beleuchtungslaserstrahlung in der Nähe der optischen Achse konzentriert ist.
  • Eine weitere bevorzugte Ausgestaltung zeichnet sich dadurch aus, dass die Mittel zur Erzeugung des Beleuchtungslaserstrahls dazu eingerichtet sind, den Beleuchtungslaserstrahl als einen continuous wave Laserstrahl zu erzeugen.
  • Bevorzugt ist auch, dass die Mittel zur Erzeugung des Beleuchtungslaserstrahls dazu eingerichtet sind, den Beleuchtungslaserstrahl als einen gepulsten Laserstrahl zu erzeugen. Durch den alternierenden, bzw. gepulsten Betrieb kann bei gleiche mittlerer Leistung/ gleicher mittlerer Intensität und gleicher Spitzenintensität in der Zielebene die mittlere Leistung in den einzelnen Beleuchtungslasern reduziert werden. Dadurch kann vorteilhafterweise der NOHD (Nominal ocular hazard distance), also der Gefahrenbereich, innerhalb dessen bei direktem Blick in den Laserstrahl Gesundheitsschäden an den Augen auftreten können, reduziert werden, so wie es auch bei der Verwendung von mehreren nicht-kohärenten Mitteln zum Erzeugen von Beleuchtungslaserstrahlung der Fall ist. Solange die Strahlen sich noch nicht überlagern, gilt dies auch für kohärente Strahlung.
    Weitere Vorteile ergeben sich aus den abhängigen Ansprüchen, der Beschreibung und den beigefügten Figuren.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Dabei bezeichnen gleiche Bezugszeichen in verschiedenen Figuren jeweils gleiche oder zumindest ihrer Funktion nach vergleichbare Elemente. Es zeigen, jeweils in schematischer Form:
    • 1 eine Laserstrahlvorrichtung zusammen mit einer mechanischen Richtvorrichtung;
    • 2 ein Einkoppelelement aus der 1 zusammen mit ausgehender und reflektierter Beleuchtungslaserstrahlung in einer Seitenansicht;
    • 3 das Einkoppelelement aus den 1 und 2 in einer Vordersicht;
    • 4 einen seitlichen Querschnitt des Einkoppelelements zusammen mit Intensitätsverläufen eines Wirklaserstrahls und eines Beleuchtungslaserstrahls;
    • 5 eine Vorderansicht einer Anordnung von vier Beleuchtungslaserteilstrahlen zusammen mit den beiden Teilbereichen des Einkoppelelements;
    • 6 ein Beispiel einer Intensitätsverteilung;
    • 7 eine Überlappung eines ersten Beleuchtungslaserteilstrahls und eines zweiten Beleuchtungslaserteilstrahls;
    • 8 eine Ausrichtung eines ersten Beleuchtungslaserteilstrahls und eines zweiten Beleuchtungslaserteilstrahls;
    • 9 eine mögliche Anordnung zur Erzeugung eines Beleuchtungslaserstrahls aus einer Beleuchtungslaserstrahlquelle und einem Teleskop;
    • 10 eine mögliche Anordnung zur Erzeugung von zwei Beleuchtungslaserstrahlen aus einer Beleuchtungslaserstrahlquelle und einer Strahlweiche;
    • 11 Strahlengänge einer Laserstrahlvorrichtung 10 mit einer solchen Anordnung;
    • 12 blockbildartig einen groben Aufbau eines Hochlasers bzw. einer Laserwaffe;
    • 13 eine Darstellung der Richteinheit aus 12; und
    • 14 eine Teildarstellung der Laserwaffe mit einer Richteinheit.
  • Im Einzelnen zeigt die 1 eine Laserstrahlvorrichtung 10 zusammen mit einer mechanischen Richtvorrichtung 12. Die Laserstrahlvorrichtung 10 ist im Inneren eines Gehäuses 14 angeordnet. Das Gehäuse weist eine Apertur 16 auf, durch die hindurch ein Beleuchtungslaserstrahl und ein Wirklaserstrahl 20 aus dem Gehäuse 14 heraustreten kann. Die mechanische Richtvorrichtung 12 weist in dieser Ausgestaltung eine Drehplattform 22 und eine Schwenkachse 24 auf, die starr mit dem Gehäuse 14 verbunden ist und in der Drehplattform 22 schwenkbar gelagert ist. Die Drehplattform 22 ist um eine Drehachse 26 drehbar. Durch um die Drehachse 26 herum erfolgendes Drehen der Drehplattform 22 und um die Schwenkachse 24 herum erfolgendes Schwenken des Gehäuses 14 kann die aus der Apertur 16 austretende Laserstrahlung grob auf ein Ziel 28 ausgerichtet werden. Die grobe Ausrichtung wird zu Beispiel durch ein Radarsystem gesteuert. Die Einkoppelung kann zwischen den Elementen 34 und 16 liegen und liegt besonders bevorzugt zwischen den Elementen 38 und 16.
  • Die Laserstrahlvorrichtung 10 weist Mittel zum Erzeugen eines von der Laserstrahlvorrichtung 10 ausgehenden Wirklaserstrahls 20, Mittel zum Erzeugen eines Beleuchtungslaserstrahls 18 und ein Einkoppelelement 30 zum Einkoppeln des Beleuchtungslaserstrahls 18 in einen Strahlengang des von der Laserstrahlvorrichtung 10 abzustrahlenden Wirklaserstrahls 20 auf. Die Mittel zum Erzeugen des Wirklaserstrahls 20 umfassen einen Hochenergielaser 32, einen Umlenkspiegel 34, der für die Wellenlänge des Wirklaserstrahls 20 reflektierend und für die Wellenlänge des Beleuchtungslaserstrahls 18 durchlässig ist, einen hinsichtlich seiner Orientierung steuerbaren Tip Tilt Spiegel 36, ein Wirklaserteleskop 38 und das Einkoppelelement 30.
  • Die Mittel zum Erzeugen eines Beleuchtungslaserstrahls 18 umfassen einen Beleuchtungslaser 40 und das Einkoppelelement 30. Der Beleuchtungslaserstrahl 18 wird vom Einkoppelelement 30 in den Strahlengang des Wirklaserstrahls 20 eingekoppelt. Die Beleuchtungslaserstrahlung besitzt bevorzugt eine andere Wellenlänge als die Wirklaserstrahlung.
  • Die Mittel zur Erzeugung des Beleuchtungslaserstrahls 18 sind in einer Ausgestaltung dazu eingerichtet, den Beleuchtungslaserstrahl 18 als einen continuous wave Laserstrahl zu erzeugen. Alternativ sind die Mittel zur Erzeugung des Beleuchtungslaserstrahls 18 dazu eingerichtet, den Beleuchtungslaserstrahl 18 als einen gepulsten Laserstrahl (repetierend) zu erzeugen.
  • Die Mittel zum Erzeugen des Beleuchtungslaserstrahls 18 weisen zum Beispiel eine Axicon Linse auf, die dazu eingerichtet und angeordnet ist, ein Beleuchtungslaserstrahlbündel, das einen kreisförmigen Strahlquerschnitt aufweist, zu einem Beleuchtungslaserstrahlbündel, das einen kreisringförmigen Laserstrahlbündelquerschnitt aufweist, umzuformen. Alternativ dazu kann eine kohärente ringförmige Leistungsverteilung im Beleuchtungslaserstrahl 18 auch mit einer instabilen Resonatoranordnung erzeugt werden.
  • Der in den Strahlengang des Wirklaserstrahls 20 eingekoppelte Beleuchtungslaserstrahl 18 tritt durch die Apertur 16 aus dem Gehäuse 14 aus und erfasst bei korrekter Grobausrichtung das Ziel 28. Die vom Ziel 28 reflektierte Beleuchtungslaserstrahlung 42 propagiert nah an der optischen Achse 44 des Einkoppelelements 30 entlang durch das Einkoppelelement 30 und das Wirklaserstrahlungsteleskop 38 hindurch und über den Tip-Tilt-Spiegel 36 zu dem Umlenkspiegel 34, der für die Wellenlänge des Wirklaserstrahls 20 reflektierend und für die Wellenlänge des Beleuchtungslaserstrahls und der reflektierten Beleuchtungslaserstrahlung 42 durchlässig ist. Die reflektierte Beleuchtungslaserstrahlung 42 tritt durch den Umlenkspiegel 34 hindurch und wird von dem optischen Sensor 46 erfasst. Das dadurch erzeugte Signal des optischen Sensors 46 wird durch Auswertungssoftware 48 eines Steuergeräts 50 ausgewertet, und das Ergebnis der Auswertung wird von einer Ansteuereinheit 52 des Steuergeräts 50 zu einer Ansteuerung des Tip Tilt Spiegels 36 verwendet. Die Ansteuerung erfolgt so, dass der Tip Tilt Spiegel 36 einen ggf. ausgelösten Wirklaserstrahl 20 auf das Ziel 28 ausrichtet. Diese Ausrichtung stellt ein Feintracking dar.
  • 2 zeigt das Einkoppelelement 30 aus der 1 zusammen mit ausgehender 18 und reflektierter Beleuchtungslaserstrahlung 42 in einer Seitenansicht. 3 zeigt das Einkoppelelement 30 aus den 1 und 2 in einer Vordersicht, d.h. wie es für einen auf der optischen Achse 44 zielseitig lokalisierten Betrachter sichtbar sein könnte. Das Einkoppelelement ist bevorzugt kreisrund und erscheint in der der 3 aufgrund einer zur optischen Achse 44 geneigten Orientierung als elliptische Form.
  • Das Einkoppelelement 30 ist in den in den Figuren dargestellten Ausführungsbeispielen jeweils eine kreisrunde planparallele Platte. Bei einem unter 45° erfolgenden Einbau ist die Platte bevorzugt so elliptisch, dass ihre Projektion in die Einfallsrichtung und Ausfallsrichtung kreisrund ist. Das Einkoppelelement 30 weist einen ersten Teilbereich 54 und einen zweiten Teilbereich 56 auf, der von dem ersten Teilbereich 54 verschieden ist. Die Mittel zum Erzeugen des Wirklaserstrahls 20, die Mittel zum Erzeugen des Beleuchtungslaserstrahls 18 und das Einkoppelelement 30 sind relativ zueinander so angeordnet, dass der Wirklaserstrahl 20 auf den ersten Teilbereich 54 gerichtet ist und der Beleuchtungslaserstrahl 18 auf den zweiten Teilbereich 56 gerichtet ist. Die in der 1 dargestellte Anordnung entspricht dieser Forderung.
    4 zeigt einen seitlichen Querschnitt des Einkoppelelements 30 zusammen mit Intensitätsverläufen eines Wirklaserstrahls und eines Beleuchtungslaserstrahls. Die optische Achse des Einkoppelelements liegt in dieser Darstellung innerhalb der Zeichnungsebene.
  • Der erste Teilbereich 54 ist in Bezug auf den Strahlquerschnitt des Wirklaserstrahls 20 ein zentraler Teilbereich 54. Der erste Teilbereich 54 ist für den Wirklaserstrahl 20 und den Beleuchtungslaserstrahl 42 transparent, und der zweite Teilbereich 56 ist dazu eingerichtet, den Beleuchtungslaserstrahl 18 parallel zum Wirklaserstrahl 20 zu reflektieren.
  • Wenigstens der erste Teilbereich 54 ist mit einer Antireflexionsschicht 58 für den Wirklaserstrahl 20 versehen. Die Antireflexionsschicht 58 kann auf der Vorderseite und/oder auf der Rückseite des Einkoppelelements 30 angeordnet sein. Bevorzugt ist auch der erste Teilbereich 54 mit der Antireflexionsschicht 58 beschichtet. Als Option weist der Teilbereich 54 beidseitig eine AR Schicht für den Beleuchtungslaserstrahl auf.
  • Der zweite Teilbereich 56 ist in Bezug auf den Strahlquerschnitt des Wirklaserstrahls 20 ein peripherer, außerhalb des zentralen (ersten) Teilbereichs 54 lokalisierter Teilbereich.
  • Der zweite Teilbereich 56 des Einkoppelelements 30 ist mit einer Reflexionsschicht 60 für den Beleuchtungslaserstrahl 18 versehen. Die Reflexionsschicht 60 ist bevorzugt für den Wirklaserstrahl 20 transparent. Dielektrische Beschichtungen, die entsprechend den Wellenlängen und dem gewünschten Reflexionsverhalten und Transmissionsverhalten auszuwählen sind, gehören zum Stand der Technik. Die Kurve 62 gibt schematisch-beispielhaft den Gauß-Kurven-förmigen Intensitätsverlauf des Wirklaserstrahls 20 nach dem Einkoppelelement 30 an, der im zentralen Teilbereich 54 maximal ist und auch in den peripheren Teilbereichen 56 noch nicht gleich Null ist. Die Kurven 64 repräsentieren Intensitätsverläufe des im peripheren Bereich 56 reflektierten Beleuchtungslaserstrahls 18.
  • 5 zeigt eine Vorderansicht einer Anordnung von vier Beleuchtungslaserteilstrahlen zusammen mit den beiden Teilbereichen des Einkoppelelements. Die Beleuchtungslaserteilstrahlen sind konzentrisch und symmetrisch um den (hier ausgeschalteten) Wirklaserstrahl herum verteilt angeordnet.
  • Die Summe dieser Beleuchtungslaserteilstrahlen 66 erzeugt dann, wenn es sich um zueinander kohärent gekoppelte Beleuchtungslaserteilstrahlen 66 handelt, im Fernfeld eine Intensitätsverteilung mit einem auf der optischen Achse der Laserstrahlvorrichtung 10 liegenden Intensitätsmaximum. Die optische Achse der Laserstrahlvorrichtung 10 fällt im Allgemeinen zumindest außerhalb der Laserstrahlvorrichtung 10 mit der optischen Achse des Einkoppelmoduls 30 zusammen. 6 zeigt ein Beispiel einer solchen Intensitätsverteilung.
  • Bei einer Verwendung von nicht-kohärent gekoppelten Beleuchtungslaserteilstrahlen kann das kreis-, bzw. kreisringförmige Teilbereiche aufweisende Einkoppelelement auch durch einzelne, kleinere Einkoppelelemente in Form von Reflektoren ersetzt werden. Die nicht-kohärent gekoppelten Beleuchtungslaserteilstrahlen können so ausgerichtet werden, dass sie sie sich im Zielbereich überlappend überlagern, um die Beleuchtungsintensität im Zielbereich zu erhöhen. 7 zeigt eine solche Überlappung eines ersten Beleuchtungslaserteilstrahls 68, bzw. Beleuchtungslaserteilstrahlbündels und eines zweiten Beleuchtungslaserteilstrahls 70, bzw. Beleuchtungslaserteilstrahlbündels.
  • Alternativ dazu können die nicht-kohärent gekoppelten Beleuchtungslaserteilstrahlen so ausgerichtet werden, dass sie im Zielbereich einander berührend nebeneinanderliegende Bereiche beleuchten und so insgesamt eine größere Fläche beleuchten.
  • 8 zeigt eine solche Ausrichtung eines ersten Beleuchtungslaserteilstrahls 68, bzw. Beleuchtungslaserteilstrahlbündels und eines zweiten Beleuchtungslaserteilstrahls 70, bzw. Beleuchtungslaserteilstrahlbündels.
  • Durch die Verteilung der mit dem Beleuchtungslaserstrahl 18 transportierten Leistung auf wenigstens zwei Beleuchtungslaserteilstrahlen 68, 70 wird die sonst bei Verwendung eines einzigen Beleuchtungslaserstrahls 18 erforderliche Sendeleistung nahezu halbiert. Im Fall einer Vergrößerung des Öffnungswinkels (8) werden die Anforderungen an die Mittel zur Erzeugung des Beleuchtungslaserstrahls bezüglich Leistung und Strahlqualität bei gegebenem Aperturdurchmesser reduziert. Die Reduzierung der Leistung und die Vergrößerung des Öffnungswinkels reduzieren erwünschter Maßen den NOHD für den einzelnen Beleuchtungslaserteilstrahl bei der Verwendung mehrerer Beleuchtungslaserteilstrahlen. Sollte der Bereich der Überlappung oberhalb des NOHD für den einzelnen Beleuchtungslaserteilstrahl liegen, dann reduziert sich auch der NOHD für die gesamte Laserstrahlvorrichtung.
  • An Stelle von Mitteln, die einen continuous wave Beleuchtungslaserstrahl erzeugen, können auch Mittel verwendet werden, die einen gepulsten Beleuchtungslaserstrahl erzeugen. Durch den alternierenden, bzw. gepulsten Betrieb kann bei gleicher mittlerer Leistung/ gleicher mittlerer Intensität und gleicher Spitzenintensität in der Zielebene die mittlere Leistung in den einzelnen Beleuchtungslaserteilstrahlen reduziert werden. Dadurch kann vorteilhafterweise der NOHD reduziert werden, so wie es auch bei der Verwendung von mehreren nicht-kohärenten Mitteln zum Erzeugen von Beleuchtungslaserstrahlung der Fall ist.
  • 9 zeigt eine mögliche Anordnung zur Erzeugung eines Beleuchtungslaserstrahls 18 aus einem Beleuchtungslaser 40 und einem Beleuchtungslaserteleskop 72. Hier ist der Öffnungswinkel des Beleuchtungslaserstrahls 18 relativ klein und der NOHD entsprechend relativ groß. Analog ist der NOHD in der Leistungsspitze relativ klein und im Mittel relativ groß.
  • 10 zeigt eine mögliche Anordnung zur Erzeugung von zwei Beleuchtungslaserstrahlen 18 aus einem Beleuchtungslaser 40, einer Strahlweiche 74 und zwei Beleuchtungslaserteleskopen 72. Ein Vorteil dieser Anordnung besteht darin, dass nur ein Laser erforderlich ist, was die Kosten, die Masse und den benötigten Bauraum reduziert.
  • Man kann das die Anordnung von Wirklaserstrahl und Beleuchtungslaserstrahl auch komplett umdrehen vertauschen. In diesem Fall wird der Wirklaserstrahl reflektiert, und der Beleuchtungslaserstrahl wird transmittiert. Diese Ausgestaltung kann Vorteile bei den Verlusten haben.
  • 11 zeigt Strahlengänge einer Laserstrahlvorrichtung 10 mit einer solchen Anordnung. Eine solche Laserstrahlvorrichtung 10 weist Mittel zum Erzeugen eines von der Laserstrahlvorrichtung 10 ausgehenden Wirklaserstrahls 20, Mittel zum Erzeugen eines Beleuchtungslaserstrahls 18, und ein Einkoppelelement 30 zum Einkoppeln des Beleuchtungslaserstrahls 18 in einen Strahlengang des von der Laserstrahlvorrichtung 10 abzustrahlenden Wirklaserstrahls 20 auf. Diese Laserstrahlvorrichtung zeichnet sich dadurch aus, dass das Einkoppelelement einen ersten Teilbereich und einen zweiten Teilbereich 56 aufweist, der von dem ersten Teilbereich 54 verschieden ist, und dass die Mittel zum Erzeugen des Wirklaserstrahls 20, die Mittel zum Erzeugen des Beleuchtungslaserstrahls 18 und das Einkoppelelement 30 relativ zueinander so angeordnet sind, dass der Wirklaserstrahl 20 auf den ersten Teilbereich 54 gerichtet ist und der Beleuchtungslaserstrahl 18 auf den zweiten Teilbereich 56 gerichtet ist, wobei der zweite Teilbereich 56 für den Beleuchtungslaserstrahl 18 transparent ist und wobei der erste Teilbereich 54 dazu eingerichtet ist, den Wirklaserstrahl 20 parallel zum Beleuchtungslaserstrahl 18 zu reflektieren. 12 zeigt in einer skizzenhaften Blockbilddarstellung wenigstens eine mit 100 gekennzeichnete Wirklaserquelle sowie wenigstens ein Strahlführungsmodul 102 und zumindest eine Steuerung 104 . Diese Baugruppen sind Bestandteil beispielsweise eines Hochleistungslasers, hier einer Laserwaffe (bzw. eines Laserwaffensystems).
  • Die Wirklaserquelle 100, das Strahlführungsmodul 102 sowie die Steuerung 104 können gemeinsam in einem stationären bzw. teilbeweglichen Anteil 106 des Hochleistungslasers untergebracht sein. Der stationäre/teilbewegliche Anteil 106 kann durch einen Raum gebildet werden, beispielsweise durch einen Container etc.
  • Außerhalb des Containers ist eine Richteinheit 108 (hier ein Strahlablenksystem), ein sogenannter Scanner, angeordnet.
  • In einer bevorzugten Ausführung ist eine mit 110 gekennzeichnete Beleuchtungslaserquelle gleichfalls in diesem Container untergebracht. Dieses hat den Charme, dass ein Laserstrahl 112 der Beleuchtungslaserquelle 110 in das Strahlführungsmodul 102 eingekoppelt werden kann, so dass der Beleuchtungslaser auf ein derartiges Strahlführungsmodul verzichten kann. Das Einkoppeln kann beispielsweise über einen dichroitischen Spiegel realisiert werden (nicht näher dargestellt). Der Beleuchtungslaser kann des Weiteren ein Teleskop des Strahlführungsmoduls 102 nutzen.
  • Alternativ kann der Beleuchtungslaser 110 auch an der Richteinheit 108 montiert werden. Hierbei kann der Beleuchtungslaserstrahl 112 in Richtung des Laserstrahls 114 der Wirklaserquelle ausgerichtet sein, d.h. in diese Richtung zeigen.
  • Die wenigstens eine Wirklaserquelle sowie die wenigstens eine Beleuchtungslaserquelle 110 sind mit dem wenigstens einen Strahlführungsmodul 102 funktional verbunden, beispielsweise über wenigstens eine optische Faser 116 (Transportfaser) und / oder zumindest einen Freistrahl 118.
  • Die elektrische Steuerung 104 kann je nach Vorgabe und / oder in Reaktion einer Auswertung zur Funktion der Laserwaffe zumindest auf das Strahlführungsmodul 102 sowie die Richteinheit 108 einwirken (nicht weiter ausgeführt).
  • In 13 ist die Richteinheit 108 in einer leicht vergrößerten Darstellung abgebildet. Die Richteinheit 108 umfasst zwei Ablenkspiegel 120, 122 auf Rotationsachsen (Azimut, Elevation). Die beiden Drehachsen sind so eingerichtet, dass der volle Ablenkwinkelbereich (0 -360°) in Azimut eingestellt werden kann, bei beliebig vielen Drehungen. Mit den Rotationsachsen verbunden ist jeweils ein kleiner elektrischer Motor (nicht näher dargestellt), mittels denen die Ablenkspiegel 120, 122 drehbar sind. Das Drehen erfolgt derart, dass der Ablenkspiegel 122 mit dem Ablenkspiegel 120 mit gedreht wird, sodass ein Laserstrahl 124 zentriert (mittig) auf dem Ablenkspiegel 122 bleibt. Mit 126 ist ein Gehäuse der Richteinheit 108 gekennzeichnet.
  • Die Richteinheit 108 weist einen Signalausgang 128 und einen Signaleingang 130 auf. Der Signalausgang 128 ist durch ein Abschlussfenster verwirklichz. Der Signaleingang 130 kann ebenfalls durch ein Abschlussfenster verwirklicht sein. Der Signalausgang 128 der Richteinheit 108 weist hierbei in Richtung eines Ziels 132 (3), der Signaleingang 130 hingegen in Richtung der Wirklaserquelle bzw. des Strahlführungsmoduls 102.
  • Die Ablenkspiegel 14, 15 werden bevorzugt so in die Richteinheit 5 eingebaut, dass unter der Gewichtsbelastung oder Bewegung (Eigenbewegung) keine Verformung der Spiegel 14, 15 auftritt. Dieses kann z.B. durch eine isostatische Spiegelmontierung (Bipods) erreicht werden.
  • Die Ablenkspiegel 120, 122 sollten hochreflektierend für die Wellenlänge des Laserstrahls 124 der Wirklaserquelle und der Wellenlänge des Laserstrahls der Beleuchtungslaserquelle und den Beobachtungswellenlängen sein. Diese Anforderung ist durch eine optische Politur oder eine Spiegelbeschichtung erreichbar. Die Ablenkspiegel 120, 122 können z.B. auch einfache Planspiegel sein.
  • 3 zeigt die funktionswesentlichen Baugruppen im stationären/teilbeweglichen Anteil 106 im Zusammenspiel mit der Richteinheit 108. Das sind eine Ansteuereinheit 3.1 und eine Auswertesoftware 3.2 der Steuerung, ein optischer Sensor 2.1 des Beleuchtungslasersystems sowie eine optische Komponente 4.1 und das Teleskop 4.2 des Strahlenführungsmoduls 102 . Die optische Komponente 4.1 des Strahlführungsmoduls 4 ermöglicht eine genaue Strahlablenkung zur genauen Positionierung des Laserstrahls 124 auf das Ziel 132 . Die optische Komponente 4.1 kann ein Tip/Tilt-Spiegel sein, ein in zwei Achsen steuerbarer beweglicher Spiegel (Feintracking).
  • In dieser Ausführung ist der Beleuchtungslaser selbst nicht im Container untergebracht. Mit 2.2 ist daher ein Teleskop des Beleuchtungslasersystems bezeichnet, das in dieser Darstellung zusammen mit der Laserquelle 110 nicht im stationären/teilbeweglichen Anteil (Container) untergebracht ist. In der Funktionsweise ergibt sich jedoch kein Unterschied.
  • Das Strahlführungsmodul 102 umfasst des Weiteren wenigstens eine Kamera (nicht näher dargestellt). Die Beobachtungsrichtung der wenigstens einen Kamera ist dabei gleich der Laserstrahlrichtung. Die Kamera bzw. die Kameras sollten in unterschiedlichen spektralen Bereichen (Beobachtungswellenlängen) arbeiten können.
  • Die wenigstens eine Kamera dient zumindest zur Beobachtung des Ziels 132 bzw. des Raums um das Ziel 132 herum. Mit der wenigstens einen Kamera kann zudem die Bestimmung der Position des Ziels 132 erfolgen. Deren Bildauswertung kann ein Regelsignal für die Strahlablenkung liefern.
  • Weiterhin können Elemente zur Kompensation atmosphärischer Störungen innerhalb des Strahlführungsmoduls vorgesehen werden (Optional). Dabei handelt es sich um Detektoren zur Messung atmosphärischer Störungen, wie z.B. Shack-Hartmann Sensoren (Wellenfrontsensor), sowie steuerbare optische Elemente zur Regelung der Phasenfront des Laserstrahls, wie z.B. deformierbare Spiegel.

Claims (16)

  1. Laserstrahlvorrichtung (10) mit Mitteln zum Erzeugen eines von der Laserstrahlvorrichtung (10) ausgehenden Wirklaserstrahls (20), Mitteln zum Erzeugen eines Beleuchtungslaserstrahls (18), und mit einem Einkoppelelement (30) zum Einkoppeln des Beleuchtungslaserstrahls (18) in einen Strahlengang des von der Laserstrahlvorrichtung (10) abzustrahlenden Wirklaserstrahls (20), dadurch gekennzeichnet, dass das Einkoppelelement (30) einen ersten Teilbereich (54) und einen zweiten Teilbereich (56) aufweist, der von dem ersten Teilbereich (54) verschieden ist, und dass die Mittel zum Erzeugen des Wirklaserstrahls (20), die Mittel zum Erzeugen des Beleuchtungslaserstrahls (18) und das Einkoppelelement (30) relativ zueinander so angeordnet sind, dass der Wirklaserstrahl (20) auf den ersten Teilbereich (54) gerichtet ist und der Beleuchtungslaserstrahl (18) auf den zweiten Teilbereich (56) gerichtet ist, wobei der erste Teilbereich (54) für den Wirklaserstrahl (20) transparent ist und wobei der zweite Teilbereich (56) dazu eingerichtet ist, den Beleuchtungslaserstrahl (18) parallel zum Wirklaserstrahl (20) zu reflektieren.
  2. Laserstrahlvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass sich die Wellenlänge des Wirklaserstrahls (20) von der Wellenlänge des Beleuchtungslaserstrahls (18) unterscheidet.
  3. Laserstrahlvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass der erste Teilbereich (54) in Bezug auf den Strahlquerschnitt des Wirklaserstrahls (20) ein zentraler Teilbereich ist.
  4. Laserstrahlvorrichtung (10) nach Anspruch 2, dadurch gekennzeichnet, dass der zweite Teilbereich (56) in Bezug auf den Strahlquerschnitt des Wirklaserstrahls (20) ein peripherer, außerhalb des zentralen Teilbereichs (54) lokalisierter Teilbereich ist.
  5. Laserstrahlvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Einkoppelelement (30) eine planparallele Platte ist.
  6. Laserstrahlvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Teilbereich (56) des Einkoppelelements (30) mit einer Reflexionsschicht (60) für den Beleuchtungslaserstrahl (18) versehen ist.
  7. Laserstrahlvorrichtung (10) nach Anspruch 6, dadurch gekennzeichnet, dass die Reflexionsschicht (60) für den Wirklaserstrahl (20) transparent ist.
  8. Laserstrahlvorrichtung (10) nach Anspruch 5, dadurch gekennzeichnet, dass wenigstens der erste Teilbereich (54) mit einer Antireflexionsschicht (58) für den Wirklaserstrahl (20) versehen ist.
  9. Laserstrahlvorrichtung (10) nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die Mittel zum Erzeugen des Beleuchtungslaserstrahls (18) eine Axicon Linse aufweisen, die dazu eingerichtet und angeordnet ist, ein Beleuchtungslaserstrahlbündel, das einen kreisförmigen Strahlquerschnitt aufweist, zu einem Beleuchtungslaserstrahlbündel, das einen kreisringförmigen Laserstrahlbündelquerschnitt aufweist, umzuformen.
  10. Laserstrahlvorrichtung (10) nach einem der Ansprüche 1-7, dadurch gekennzeichnet, dass der Beleuchtungslaserstrahl (18) als Summe kohärent gekoppelter Beleuchtungslaserteilstrahlen (66) erzeugt wird.
  11. Laserstrahlvorrichtung (10) nach einem der Ansprüche 1-7, dadurch gekennzeichnet, dass der Beleuchtungslaserstrahl (18) als Summe nicht-kohärent gekoppelter Beleuchtungslaserteilstrahlen (68, 70) erzeugt wird.
  12. Laserstrahlvorrichtung (10) nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Beleuchtungslaserteilstrahlen (66) konzentrisch und symmetrisch um den Wirklaserstrahl und insbesondere um den ersten Teilbereich (54) herum verteilt angeordnet sind.
  13. Laserstrahlvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel zur Erzeugung des Beleuchtungslaserstrahls (18) dazu eingerichtet sind, im Fernfeld der von der Laserstrahlvorrichtung (10) abgestrahlten Beleuchtungslaserstrahlung eine Intensitätsverteilung mit einem Maximum auf einer optischen Achse (44) der Laserstrahlvorrichtung (10) zu erzeugen.
  14. Laserstrahlvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel zur Erzeugung des Beleuchtungslaserstrahls (18) dazu eingerichtet sind, den Beleuchtungslaserstrahl (18) als einen continuous wave Laserstrahl zu erzeugen.
  15. Laserstrahlvorrichtung (10) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Mittel zur Erzeugung des Beleuchtungslaserstrahls (18) dazu eingerichtet sind, den Beleuchtungslaserstrahl (18) als einen gepulsten Laserstrahl zu erzeugen.
  16. Laserstrahlvorrichtung (10) mit Mitteln zum Erzeugen eines von der Laserstrahlvorrichtung (10) ausgehenden Wirklaserstrahls (20), Mitteln zum Erzeugen eines Beleuchtungslaserstrahls (18), und einem Einkoppelelement (30) zum Einkoppeln des Beleuchtungslaserstrahls (18) in einen Strahlengang des von der Laserstrahlvorrichtung (10) abzustrahlenden Wirklaserstrahls (20), dadurch gekennzeichnet, dass das Einkoppelelement (30) einen ersten Teilbereich (54) und einen zweiten Teilbereich (56) aufweist, der von dem ersten Teilbereich (54) verschieden ist, und dass die Mittel zum Erzeugen des Wirklaserstrahls (20), die Mittel zum Erzeugen des Beleuchtungslaserstrahls (18) und das Einkoppelelement (30) relativ zueinander so angeordnet sind, dass der Wirklaserstrahl (20) auf den ersten Teilbereich (54) gerichtet ist und der Beleuchtungslaserstrahl (18) auf den zweiten Teilbereich (56) gerichtet ist, wobei der zweite Teilbereich (56) für den Beleuchtungslaserstrahl (18) transparent ist und wobei der erste Teilbereich (54) dazu eingerichtet ist, den Wirklaserstrahl (20) parallel zum Beleuchtungslaserstrahl (18) zu reflektieren.
DE202020005573.5U 2020-06-26 2020-06-26 Laserstrahlvorrichtung mit einer Einkopplung eines Beleuchtungslaserstrahls in einen Wirklaserstrahl Active DE202020005573U1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE202020005573.5U DE202020005573U1 (de) 2020-06-26 2020-06-26 Laserstrahlvorrichtung mit einer Einkopplung eines Beleuchtungslaserstrahls in einen Wirklaserstrahl
DE102021106492.9A DE102021106492A1 (de) 2020-06-26 2021-03-17 Laserstrahlvorrichtung mit einer Einkopplung eines Beleuchtungslaserstrahls in einen Wirklaserstrahl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202020005573.5U DE202020005573U1 (de) 2020-06-26 2020-06-26 Laserstrahlvorrichtung mit einer Einkopplung eines Beleuchtungslaserstrahls in einen Wirklaserstrahl

Publications (1)

Publication Number Publication Date
DE202020005573U1 true DE202020005573U1 (de) 2021-10-18

Family

ID=78408938

Family Applications (2)

Application Number Title Priority Date Filing Date
DE202020005573.5U Active DE202020005573U1 (de) 2020-06-26 2020-06-26 Laserstrahlvorrichtung mit einer Einkopplung eines Beleuchtungslaserstrahls in einen Wirklaserstrahl
DE102021106492.9A Pending DE102021106492A1 (de) 2020-06-26 2021-03-17 Laserstrahlvorrichtung mit einer Einkopplung eines Beleuchtungslaserstrahls in einen Wirklaserstrahl

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE102021106492.9A Pending DE102021106492A1 (de) 2020-06-26 2021-03-17 Laserstrahlvorrichtung mit einer Einkopplung eines Beleuchtungslaserstrahls in einen Wirklaserstrahl

Country Status (1)

Country Link
DE (2) DE202020005573U1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69232640T2 (de) 1991-11-06 2003-02-06 Shui T Lai Vorrichtung für hornhautchirurgie
DE102006023321B4 (de) 2006-05-18 2011-08-18 Coherent Lambda Physik GmbH, 37079 System zur Fokusüberwachung bei der Bearbeitung eines reflektierenden Substrates mittels eines Laserstrahls
US8983259B2 (en) 2012-05-04 2015-03-17 Raytheon Company Multi-function beam delivery fibers and related system and method

Also Published As

Publication number Publication date
DE102021106492A1 (de) 2021-12-30

Similar Documents

Publication Publication Date Title
EP3350615B1 (de) Lidarsensor
EP2917681B1 (de) Modulare laserbestrahlungseinheit
DE102011104023B4 (de) Optische Vorrichtung für einen Suchkopf für einen Lenkflugkörper und Suchkopf für einen Lenkflugkörper
DE2208838C1 (de) Fernrohranordnung
EP2638356B1 (de) Lasersystem, zur erzeugung von hohen bzw. kompakten leistungsdichten am objekt
EP0665445A1 (de) Einrichtung zur Abwehr eines angreifenden Flugkörpers
DE102020003944B3 (de) Laserstrahlvorrichtung mit einer Einkopplung eines Beleuchtungslaserstrahls in einen Wirklaserstrahl
EP1688761B1 (de) Verfahren und Vorrichtung zum Entdecken von optischen Systemen in einem Geländebereich
DE2746518B2 (de) Verfahren zum Korrigieren der Ausrichtung einer optischen Strahlungsquelle auf einen mittels einer Visieroder Zieleinrichtung beobachteten Zielgegenstand und Vorrichtung zum Durchführen des Verfahrens
DE3202432A1 (de) Hochenergielaser-feintracker
DE19724080A1 (de) Infrarot-Suchkopf für zielsuchende Flugkörper
EP2694911B1 (de) Strahler für gerichtete energie
EP2906983A1 (de) Laserstrahlrichtsystem und verfahren zur ausrichtung von optikkomponenten des laserstrahlrichtsystems
DE2533214A1 (de) Vorrichtung zur erfassung der einfallsrichtung elektromagnetischer strahlung
WO2019141390A1 (de) Hochleistungslaser, insbesondere laserwaffe
WO2005114987A1 (de) Vorrichtung zur erfassung einer objektszene
DE202020005573U1 (de) Laserstrahlvorrichtung mit einer Einkopplung eines Beleuchtungslaserstrahls in einen Wirklaserstrahl
DE102017210683B4 (de) Optische Anordnung einer Empfängeroptik eines abtastenden Lidar-Systems, Lidar-System sowie Arbeitsvorrichtung
DE2817237B2 (de) Rundsicht-Periskop mit Laser-Entfernungsmesser
DE2806204A1 (de) Bildaufnahmevorrichtung zur gewinnung elektronischer bilder insbesondere bei geringer helligkeit
WO2023072629A2 (de) Optische vorrichtung zur erfassung einer objektszene
WO2019137643A1 (de) Verfahren und vorrichtung zur optischen zielverfolgung von mit einem hochenergielaser bestrahlbarem zielobjekt
DE202017102836U1 (de) Laser-Raster-Mikroskop
DE3827829A1 (de) Ausblickoptik fuer gepanzerte fahrzeuge, wie rundblickperiskop oder zielfernrohr
CH651401A5 (en) Optical device having two viewing systems

Legal Events

Date Code Title Description
R207 Utility model specification
R150 Utility model maintained after payment of first maintenance fee after three years