DE202019004821U1 - Reactor system for the production of a formulation - Google Patents

Reactor system for the production of a formulation Download PDF

Info

Publication number
DE202019004821U1
DE202019004821U1 DE202019004821.9U DE202019004821U DE202019004821U1 DE 202019004821 U1 DE202019004821 U1 DE 202019004821U1 DE 202019004821 U DE202019004821 U DE 202019004821U DE 202019004821 U1 DE202019004821 U1 DE 202019004821U1
Authority
DE
Germany
Prior art keywords
opening
mixing chamber
reactor
fluid
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE202019004821.9U
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smartdyelivery GmbH
Original Assignee
Smartdyelivery GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smartdyelivery GmbH filed Critical Smartdyelivery GmbH
Priority to DE202019004821.9U priority Critical patent/DE202019004821U1/en
Publication of DE202019004821U1 publication Critical patent/DE202019004821U1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/08Flasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00171Controlling or regulating processes controlling the density

Abstract

Reaktor zum Herstellen einer Formulierung,wobei der Reaktor mindestens zwei Öffnungen, eine Basis und mindestens eine sich von dieser aus bündig erstreckenden Seitenwand umfasst, wobei die Basis und die Seitenwand zusammen eine Mischkammer mit einer Höhe hund mindestens einer weitgehend senkrecht zur Basis und in mindestens einem Abstand r von der Seitenwand angeordneten Symmetrieachse definieren,wobei eine erste Öffnung in der Basis oder in einer Höhe him Bereich von 0,6 bis 0,0 hbenachbart zur Basis in der Seitenwand der Mischkammer angeordnet ist, um fließfähige Stoffe und/oder Stoffgemische in die Mischkammer einzutragen, undwobei die erste Öffnung mit einer darin oder daran angrenzend angeordneten Rückflusssperre ausgebildet ist, wobei die Rückflusssperre das Eintragen von fließfähigen Stoffen in die Mischkammer durch die Öffnung hindurch ermöglicht, das Ausfließen von fließfähigen Stoffen aus der Mischkammer durch die Öffnung hindurch jedoch verhindert,und wobei die erste Öffnung mit einer sich in einem Bereich zwischen einem Minimum und einem Maximum erstreckenden Öffnungsfläche ausgebildet ist, wobei die Minimalfläche bei 0,05 mmund die Maximalfläche bei einem Wert liegt, der sich aus V[cm]/FlächeÖffnung [cm] ≈ 5500 bestimmt.Reactor for producing a formulation, the reactor comprising at least two openings, a base and at least one side wall which extends flush therefrom, the base and the side wall together a mixing chamber with a height of at least one substantially perpendicular to the base and in at least one Define the distance r from the side wall arranged axis of symmetry, a first opening being arranged in the base or at a height in the range of 0.6 to 0.0 h adjacent to the base in the side wall of the mixing chamber in order to introduce flowable substances and / or substance mixtures into the To enter the mixing chamber, and wherein the first opening is formed with a non-return valve arranged therein or adjacent thereto, the non-return valve permitting the introduction of flowable substances into the mixing chamber through the opening, but preventing flowable substances from flowing out of the mixing chamber through the opening, and where the first opening is formed with an opening area extending in a range between a minimum and a maximum, the minimum area being 0.05 mm and the maximum area being a value which is determined from V [cm] / area opening [cm] ≈ 5500 ,

Description

Gebiet der ErfindungField of the Invention

Die Erfindung betrifft einen Reaktor zur Herstellung einer Formulierung gemäß dem Gegenstand von Anspruch 1 und ein Reaktorsystem gemäß dem Gegenstand von Anspruch 12.The invention relates to a reactor for producing a formulation according to the subject matter of claim 1 and a reactor system according to the subject matter of claim 12.

Technischer HintergrundTechnical background

Industrielle Prozesse, die ein wirksames Rühren und Mischen von Fluiden oder von fließfähigen Stoffen erfordern, sind aus den unterschiedlichsten industriellen Sektoren bekannt. Diese reichen vom Bergbau über die Hydrometallurgie, Erdölindustrie, Lebensmittel-, Zellstoff- und Papierindustrie, bis hin zur pharmazeutischen und chemischen Industrie. Im Allgemeinen bezieht sich der Begriff „Rühren“ dabei auf einen Vorgang, bei dem mechanische Mittel die Bewegung eines Fluids in einem Gefäß bewirken. „Mischen“ bezeichnet demgegenüber einen Vorgang, bei dem zwei oder mehrere separate Phasen oder Fluide durch den Mischvorgang zufällig ineinander verteilt werden. Fluide können gerührt werden, um beispielsweise die Vermischung zweier miteinander mischbarer Fluide zu beschleunigen, um Feststoffe in Flüssigkeiten zu lösen, um Gas in einer Flüssigkeit in Form kleiner Gasbläschen zu verteilen, usw.. Das Mischen von Flüssigkeiten in Reaktionsgefäßen oder Reaktoren kann beispielsweise zum Erhalten optimaler Operationsbedingungen für chemische Systeme wichtig sein, wenn derartige Systeme beispielsweise eine einheitliche Temperatur oder eine einheitliche Substanzkonzentration innerhalb des Reaktors erfordern.Industrial processes which require an effective stirring and mixing of fluids or of flowable substances are known from a wide variety of industrial sectors. These range from mining to hydrometallurgy, the petroleum industry, the food, pulp and paper industry to the pharmaceutical and chemical industry. In general, the term "stirring" refers to a process in which mechanical means cause the movement of a fluid in a vessel. “Mixing”, on the other hand, refers to a process in which two or more separate phases or fluids are randomly distributed in one another by the mixing process. Fluids can be stirred, for example, to accelerate the mixing of two miscible fluids, to dissolve solids in liquids, to distribute gas in a liquid in the form of small gas bubbles, etc. Mixing liquids in reaction vessels or reactors can be used, for example, to obtain optimal operating conditions for chemical systems may be important if such systems require, for example, a uniform temperature or a uniform substance concentration within the reactor.

Für die verschiedenen Prozesse gibt es keine einheitlichen Vorgaben hinsichtlich der Gestaltung des Reaktionsgefäßes, da oftmals unterschiedlich gestaltete Gefäße die Spezifikationen des Prozesses erfüllen. Üblicherweise werden Standardreaktoren verwendet, um das Design zu vereinfachen und Kosten zu minimieren. Schwierig gestaltet sich dabei oftmals die Maßstabsübertragung, wenn Versuchsergebnisse im Labormaßstab auf großtechnische Anlagen übertragen werden sollen („Upscaling“). Ausgehend von kleintechnischen Versuchsanlagen werden dabei schrittweise vergrößerte Anlagen gebaut und getestet, über Pilotanlagen bis hin zu den erwähnten großtechnischen Anlagen. Während diese Vorgehensweise eine Möglichkeit der Verfahrensentwicklung darstellt, die eine relativ hohe Übertragungssicherheit hinsichtlich geeigneter Apparatedimensionierung und Prozessbedingungen bietet, ist sie nachteilig mit einem hohen Zeit- und Kostenaufwand verbunden. Im Bereich der pharmazeutischen Nanotechnologie ist das Upscaling bei der Herstellung komplexer Partikel, wie beispielsweise von aus mehreren Komponenten bestehenden, nanostrukturierten Trägersystemen, mit erheblichen Problemen verbunden, insbesondere, wenn Vorgaben bezüglich einer definierten Partikelzusammensetzung und/oder einer definierten Partikelgröße bestehen.There are no uniform specifications for the design of the reaction vessel for the various processes, since vessels of different designs often meet the specifications of the process. Standard reactors are commonly used to simplify design and minimize costs. It is often difficult to transfer the scale if test results on a laboratory scale are to be transferred to large-scale plants ("upscaling"). Starting from small-scale test plants, gradually enlarged plants are built and tested, through pilot plants to the large-scale plants mentioned. While this procedure represents a possibility of process development that offers a relatively high level of transmission security with regard to suitable apparatus dimensions and process conditions, it is disadvantageously associated with a high expenditure of time and money. In the field of pharmaceutical nanotechnology, upscaling in the production of complex particles, such as, for example, nanostructured carrier systems consisting of several components, is associated with considerable problems, in particular if there are requirements with regard to a defined particle composition and / or a defined particle size.

Die vorliegende Erfindung stellt vorteilhaft einen Reaktor zur Herstellung von Formulierungen bereit, welcher in diskontinuierlichen Produktionsverfahren eingesetzt werden („Batch-Verfahren“) kann. In einem diskontinuierlichen Verfahren wird eine durch das Fassungsvermögen eines Produktionsgefäßes (z. B. Reaktor, Mischer) begrenzte Materialmenge als Ganzes dem Arbeitssystem zugeführt und ihm als Ganzes nach Abschluss des Produktionsprozesses entnommen. Der erfindungsgemäße Reaktor zur Herstellung von Formulierungen, insbesondere von Formulierungen aus dem Bereich der Nanotechnologie, bietet gegenüber dem Stand der Technik vorteilhaft die Möglichkeit eines kostengünstigen und schnellen Upscalings. Der erfindungsgemäße Reaktor kann darüber hinaus für die Herstellung einer Vielzahl von unterschiedlichsten Formulierungen eingesetzt werden.The present invention advantageously provides a reactor for the production of formulations which can be used in batch production processes (“batch process”). In a discontinuous process, a material quantity limited by the capacity of a production vessel (e.g. reactor, mixer) is fed as a whole to the work system and removed as a whole after the production process has ended. The reactor according to the invention for producing formulations, in particular formulations from the field of nanotechnology, advantageously offers the possibility of inexpensive and fast upscaling compared to the prior art. The reactor according to the invention can also be used for the production of a wide variety of different formulations.

Darstellung der Erfindung, Aufgabe, Lösung, VorteilePresentation of the invention, task, solution, advantages

In einem ersten Aspekt bezieht sich die Erfindung auf einen Reaktor zum Herstellen einer Formulierung, wobei der Reaktor mindestens zwei Öffnungen, eine Basis und mindestens eine sich von dieser aus bündig erstreckenden Seitenwand umfasst. Die Basis und die Seitenwand definieren zusammen eine Mischkammer mit einer Höhe hM und mindestens einer weitgehend senkrecht zur Basis und in mindestens einem Abstand r von der Seitenwand angeordneten Symmetrieachse, wobei eine erste Öffnung in der Basis oder in einer Höhe hö im Bereich von 0,6 bis 0,0 hM benachbart zur Basis in der Seitenwand der Mischkammer angeordnet ist, um fließfähige Stoffe und/oder Stoffgemische in die Mischkammer einzutragen. Die erste Öffnung ist mit einer darin oder daran angrenzend angeordneten Rückflusssperre ausgebildet, wobei die Rückflusssperre das Eintragen von fließfähigen Stoffen in die Mischkammer durch die Öffnung hindurch ermöglicht, das Ausfließen von fließfähigen Stoffen aus der Mischkammer durch die Öffnung hindurch jedoch verhindert. Die erste Öffnung ist mit einer sich in einem Bereich zwischen einem Minimum und einem Maximum erstreckenden Öffnungsfläche ausgebildet, wobei die Minimalfläche bei 0,05 mm2 und die Maximalfläche bei einem Wert liegt, der sich aus VMischkammer[cm3] / Flächeerste Öffnung [cm2] ≈ 5500 bestimmt.In a first aspect, the invention relates to a reactor for producing a formulation, wherein the reactor comprises at least two openings, a base and at least one side wall which extends flush therefrom. The base and the side wall together define a mixing chamber with a height h M and at least one axis of symmetry arranged substantially perpendicular to the base and at least at a distance r from the side wall, a first opening in the base or at a height height in the range of 0, 6 to 0.0 h M is arranged adjacent to the base in the side wall of the mixing chamber in order to introduce flowable substances and / or mixtures of substances into the mixing chamber. The first opening is formed with a non-return valve arranged therein or adjacent thereto, the non-return valve permitting the introduction of flowable substances into the mixing chamber through the opening, but preventing flowable substances from flowing out of the mixing chamber through the opening. The first opening is formed with an opening area which extends in a range between a minimum and a maximum, the minimum area being 0.05 mm 2 and the maximum area being a value which results from V mixing chamber [cm 3 ] / area of the first opening [cm 2 ] ≈ 5500.

Im technischen Sinn ist eine Formulierung ein Gemisch, welches aus einer oder mehreren Wirksubstanz/en sowie Hilfsstoffen besteht, und welches nach einer Rezeptur durch Zusammenmischen definierter Mengen von Ingredienzien hergestellt wird. Die Formulierung kann beispielsweise ein Arzneistoff sein, umfassend niedermolekulare Substanzen, insbesondere Inhibitoren, Induktoren oder Kontrastmittel, oder auch höhermolekulare Substanzen, insbesondere potentiell therapeutisch nutzbare Nukleinsäuren (z.B. short interfering RNA, short hairpin RNA, micro RNA, plasmid DNA) und/oder Proteine (z.B. Antikörper, Interferone, Zytokine), die Formulierung kann auch ein Lack, eine Dispersionsfarbe oder ein Kunststoff sein. Die Mischkammer zur Herstellung dieser Formulierung ist durch eine Basis und die daran bündig anschließende Seitenwand definiert. Die Basis unterliegt dabei hinsichtlich ihrer Formgebung keinen besonderen Einschränkungen, sie kann z. B. den Innenraum der Mischkammer eben abschließen (Ausbildung in Form einer Platte), in Bezug auf den Innenraum konvex oder konkav gewölbt (Ausbildung als Kugelsegment), oder kegelförmig ausgebildet sein. Dementsprechend kann die mit der Basis bündig abschließende, mindestens eine Seitenwand gegenüber der Basis abgegrenzt sein oder fließend in die Basis übergehen; dies kann beispielsweise bei einer weitgehend rund ausgebildeten Mischkammer der Fall sein. Die Höhe hM der Mischkammer berechnet sich vorzugsweise ausgehend vom geometrischen Schwerpunkt der Basis. Unter dem Begriff „geometrischer Schwerpunkt“ wird dabei ein besonders ausgezeichneter Punkt verstanden, welcher sich mathematisch aus der Mittelung aller Punkte innerhalb der Figur berechnet. Die Symmetrieachse der Mischkammer, welche in mindestens einem Abstand r von der Seitenwand angeordnet ist, befindet sich im Betriebszustand vorzugsweise in vertikaler Position in Bezug auf ein entsprechendes Umgebungskoordinatensystem. Unter einer „Rückflusssperre“ wird ein Rücklaufverhinderer verstanden, welcher den Durchfluss nur in einer Richtung erlaubt. Ein herkömmlicher Rücklaufverhinderer schließt bei Umkehr der definierten Strömungsrichtung selbsttätig und öffnet bei erlaubter Durchflussrichtung ebenfalls selbsttätig. In der einfachsten Bauart kann es sich bei der Rückflusssperre um ein Septum oder eine geschlitzte Membran handeln, z. B. um eine Silikonmembran, oder um eine Durchstichmembran, welche zum Beispiel nach einer Punktion verschließt. In einer alternativen Ausführungsform kann es sich bei der Rückflusssperre um ein Ventil im engeren Sinne handeln, in welchem ein Verschlussteil (z. B. Teller, Kegel, Kugel oder Nadel) ungefähr parallel zur Strömungsrichtung eines Fluids bewegt wird und in welchem eine Unterbrechung der Strömung erfolgt, wenn das Verschlussteil mit der Dichtfläche an eine passend geformte Öffnung, den Ventil- oder Dichtungssitz, gepresst wird. Die in der Basis oder benachbart zur Basis in der Seitenwand in der Höhe hö angeordnete erste Öffnung ist hinsichtlich ihrer Formgebung ebenfalls nicht eingeschränkt, vorzugsweise ist die Öffnung weitgehend rund ausgebildet, wobei die erste Öffnung mit einer sich in einem Bereich zwischen einem Minimum und einem Maximum erstreckenden Fläche ausgebildet ist, wobei das Minimum bei 0,05 mm2 liegt. Diese Fläche entspricht der Fläche einer Kanüle mit einem Außendurchmesser von >30 G (Außendurchmesser ≤ 0,3mm, bei 0,05 mm2 Fläche, Außendurchmesser = 0,25 mm). Die Einheit G (für „Gauge“) ist der US-amerikanischen Einheit für die Klassifikation von Drähten entlehnt; die entsprechenden Außendurchmesser der Kanülen in Millimeter sind ebenfalls in der EN ISO 6009 genormt. Je höher der Gauge-Wert, desto geringer ist der Außendurchmesser der Kanüle. Die Fläche der ersten Öffnung ist also im Minimalbereich so dimensioniert, dass sie eine Kanüle mit einem Außendurchmesser von 0,25 mm aufnehmen kann. Mit zunehmendem Volumen der Mischkammer wird die Fläche der ersten Öffnung entsprechend angepasst, so dass die Maximalfläche bei einem Wert liegt, der sich aus VMischkammer[cm3] / Flächeerste Öffnung [cm2] ≈ 5500 bestimmt. Im Falle großtechnischer Umsetzungen mit Mischkammern von mehreren hundert oder tausend Litern Volumen kann es zweckmäßig sein, die Fläche der ersten Öffnung auf mehrere Öffnungen zu verteilen, wobei diese weiteren Öffnungen zweckmäßig auch in der Basis oder in einer Höhe hö im Bereich von 0,6 bis 0,0 hM benachbart zur Basis in der Seitenwand der Mischkammer angeordnet sind. Vorteilhaft ist der so ausgebildete Reaktor zum Herstellen einer Formulierung einfach skalierbar und ermöglicht den zielgerichteten Eintrag von fließfähigen Stoffen über die mindestens 2 Öffnungen.In the technical sense, a formulation is a mixture that consists of one or more active substance (s) and auxiliary substances and that is produced according to a recipe by mixing defined amounts of ingredients together. The formulation can be, for example, a pharmaceutical substance, comprising low-molecular substances, in particular inhibitors, inducers or contrast agents, or also higher-molecular substances, in particular nucleic acids which can be used therapeutically (e.g. short interfering RNA, short hairpin RNA, micro RNA, plasmid DNA) and / or proteins ( eg antibodies, interferons, cytokines), the formulation can also be a lacquer, an emulsion paint or a plastic. The mixing chamber for the production of this formulation is defined by a base and the side wall which is flush with it. The base is not subject to any particular restrictions with regard to its shape. B. just complete the interior of the mixing chamber (training in the form of a plate), convex or concave in relation to the interior (training as a spherical segment), or be conical. Accordingly, the at least one side wall that is flush with the base can be delimited from the base or can flow smoothly into the base; this can be the case, for example, with a largely round mixing chamber. The height h M of the mixing chamber is preferably calculated from the geometric center of gravity of the base. The term “geometric center of gravity” is understood to mean a particularly excellent point, which is calculated mathematically from the averaging of all points within the figure. The axis of symmetry of the mixing chamber, which is arranged at least a distance r from the side wall, is preferably in the operating state in a vertical position with respect to a corresponding environmental coordinate system. A “non-return valve” is understood to mean a non-return valve that only allows flow in one direction. A conventional backflow preventer closes automatically when the defined flow direction is reversed and also opens automatically when the flow direction is permitted. In the simplest design, the non-return valve can be a septum or a slotted membrane, e.g. B. a silicone membrane, or a puncture membrane, which closes, for example, after a puncture. In an alternative embodiment, the non-return valve can be a valve in the narrower sense, in which a closure part (e.g. plate, cone, ball or needle) is moved approximately parallel to the direction of flow of a fluid and in which an interruption of the flow takes place when the sealing part with the sealing surface is pressed against a suitably shaped opening, the valve or sealing seat. The shape of the first opening arranged in the base or adjacent to the base in the side wall at a height is likewise not restricted; the opening is preferably largely circular, the first opening having a range between a minimum and a maximum extending surface is formed, the minimum being 0.05 mm 2 . This area corresponds to the area of a cannula with an outside diameter of> 30 G (outside diameter ≤ 0.3 mm, with 0.05 mm 2 area, outside diameter = 0.25 mm). The unit G (for “gauge”) is borrowed from the US unit for the classification of wires; the corresponding outer diameters of the cannulas in millimeters are also standardized in EN ISO 6009. The higher the gauge value, the smaller the outer diameter of the cannula. The area of the first opening is therefore dimensioned in the minimum area so that it can accommodate a cannula with an outer diameter of 0.25 mm. With increasing volume of the mixing chamber, the area of the first opening is adjusted accordingly, so that the maximum area is at a value which is determined from V mixing chamber [cm 3 ] / area of first opening [cm 2 ] ≈ 5500. In the case of large-scale technical implementations with mixing chambers of several hundred or thousand liters in volume, it may be expedient to distribute the area of the first opening over several openings, these further openings also expediently in the base or at a height in the range from 0.6 to 0.0 h M are arranged adjacent to the base in the side wall of the mixing chamber. The reactor designed in this way is advantageously scalable for producing a formulation and enables the targeted introduction of flowable substances through the at least 2 openings.

In einer bevorzugten Ausführungsform des Reaktors kann die erste Öffnung in einer Höhe hö im Bereich von 0,4 bis 0,1 hM, vorzugsweise im Bereich von 0,25 bis 0,15 hM benachbart zur Basis in der Seitenwand der Mischkammer angeordnet sein.In a preferred embodiment of the reactor, the first opening can be arranged at a height higher in the range from 0.4 to 0.1 h M , preferably in the range from 0.25 to 0.15 h M, adjacent to the base in the side wall of the mixing chamber ,

In einer weiteren Implementierung des erfindungsgemäßen Reaktors kann die Seitenwand zylindrisch ausgebildet sein. Der so ausgestaltete Reaktor entspricht weitgehend den in vielen industriellen Verfahren verwendeten Reaktoren („Standardreaktor“). Diese Form zeichnet sich vorteilhaft durch einfaches Design aus, wodurch Kosten minimiert werden können. Ferner können herkömmliche Software-Anwendungen zur Berechnung von Mischvorgängen für gering viskose Fluide verwendet werden, ohne die geometrischen Parameter entsprechend anzupassen.In a further implementation of the reactor according to the invention, the side wall can be cylindrical. The reactor designed in this way largely corresponds to the reactors used in many industrial processes (“standard reactor”). This shape is advantageously characterized by a simple design, which can minimize costs. Conventional software applications can also be used to calculate mixing processes for low-viscosity fluids without adapting the geometric parameters accordingly.

In einer vorteilhaften Weiterbildung kann auf der von der Mischkammer abgewandten Seite der Seitenwand um die erste Öffnung ein Zuführrohr ausgebildet sein, wobei das Zuführrohr als aufnehmender Verbinder mit einem endständigen Gewinde zur Aufnahme der Rückflusssperre ausgebildet ist. Besonders vorteilhaft kann das Zuführrohr als Gewindeverschluss mit einem Innengewinde ausgebildet sein. Das Zuführrohr kann hinsichtlich seiner Grundfläche weitgehend der Öffnungsfläche der ersten Öffnung angepasst sein. Auf diese Art und Weise entsteht im Bereich der Öffnungsfläche der ersten Öffnung ein lediglich geringes Totraumvolumen. Die Dimensionierung des Zuführrohrs, welches zur Aufnahme der Rückflusssperre ausgebildet ist, richtet sich nach der Art der aufzunehmenden Rückflusssperre (zum Beispiel aufschraubarer Deckel mit Durchstichmembran/Septum). Bei Verwendung im großtechnischen Maßstab ist es vorteilhaft, die Rückflusssperre gegen ein unbeabsichtigtes Lösen von der Öffnung zu sichern. Ein mit einem Innengewinde ausgebildetes Zuführrohr kann beispielsweise als herkömmliches Luer-System ausgeführt sein. Ein herkömmliches Luer-System ist ein genormtes Verbindungssystem für eine kombinierte Anwendung von Spritzen und Infusionsbesteck im medizinischen Bereich. In den aufnehmenden Verbinder mit dem Luer Innengewinde kann beispielsweise eine herkömmliche Kanüle über ihren Rand eingeschraubt, mit dem Zuführrohr verriegelt und damit gegen versehentliches Lösen gesichert werden.In an advantageous development, a feed pipe can be formed around the first opening on the side of the side wall facing away from the mixing chamber, the feed pipe being designed as a female connector with a terminal thread for receiving the non-return valve. The feed pipe can particularly advantageously be designed as a thread closure with an internal thread. With regard to its base area, the feed tube can largely be adapted to the opening area of the first opening. In this way it is created only a small dead space volume in the area of the opening area of the first opening. The dimensioning of the feed pipe, which is designed to accommodate the non-return valve, depends on the type of non-return valve to be accommodated (for example a screw-on cover with a puncture membrane / septum). When used on an industrial scale, it is advantageous to secure the non-return valve against unintentional detachment from the opening. A feed tube formed with an internal thread can be designed, for example, as a conventional Luer system. A conventional Luer system is a standardized connection system for the combined use of syringes and infusion sets in the medical field. A conventional cannula can, for example, be screwed over the edge into the female connector with the Luer internal thread, locked with the feed tube and thus secured against accidental loosening.

In einer vorteilhaften Implementierung können die erste Öffnung und das Zuführrohr in Bezug auf die Mischkammer so dimensioniert sein, dass eine Rückvermischung des fließfähigen Stoffes aus der Mischkammer in das Zuführrohr verhindert wird. Dies wird insbesondere dann erreicht, wenn das Zuführrohr ein möglichst geringes Volumen aufweist und hinsichtlich seiner Grundfläche an die Fläche der ersten Öffnung weitgehend angepasst ist. Vorteilhaft entsteht in dieser Anordnung ein geringes Totraumvolumen (Schadraumvolumen), wodurch die Effizienz des Mischprozesses erhöht wird (geringer Anteil an gering bis überhaupt nicht durchmischten Bereichen). Außerdem wirkt sich ein lediglich geringes Totraumvolumen hinsichtlich des Materialeinsatzes vorteilhaft aus.In an advantageous implementation, the first opening and the feed pipe can be dimensioned in relation to the mixing chamber in such a way that backmixing of the flowable material from the mixing chamber into the feed pipe is prevented. This is achieved in particular if the feed tube has the smallest possible volume and its base area is largely adapted to the area of the first opening. This arrangement advantageously results in a small dead space volume (dead space volume), as a result of which the efficiency of the mixing process is increased (small proportion of areas which are mixed to a small extent or not at all). In addition, only a small dead space volume has an advantageous effect with regard to the use of material.

In einer weiteren Ausführungsform des erfindungsgemäßen Reaktors kann die zweite Öffnung als ein verschließbares Rohr zum Eintragen und/oder Austragen von fließfähigen Stoffen und/oder Stoffgemischen in die/aus der Mischkammer des Reaktors ausgebildet sein. In einer besonders bevorzugten Implementierung kann die zweite Öffnung als weitgehend entlang der mindestens einen Symmetrieachse der Mischkammer in der Basis angeordnetes Rohr ausgebildet sein. Ein derart in der Basis angeordnetes Rohr ermöglicht im herkömmlichen Betrieb des Reaktors das einfache Austragen fließfähiger Stoffe und/oder Stoffgemische aus der Mischkammer gemäß ihrer Schwerkraft. Ein derartiges Rohr kann auch zum Eintragen von fließfähigen Stoffen und/oder Stoffgemischen verwendet werden; vorteilhaft wird dadurch die Herstellung des Reaktors durch Reduktion der einzubringenden Öffnungen und der gegebenenfalls daran anzuschließenden Zu- und Abführungen vereinfacht.In a further embodiment of the reactor according to the invention, the second opening can be designed as a closable tube for the introduction and / or discharge of flowable substances and / or substance mixtures into / from the mixing chamber of the reactor. In a particularly preferred implementation, the second opening can be designed as a tube arranged in the base largely along the at least one axis of symmetry of the mixing chamber. A tube arranged in this way in the base enables the simple discharge of flowable substances and / or mixtures of substances from the mixing chamber according to their gravity during conventional operation of the reactor. Such a tube can also be used for the introduction of flowable substances and / or substance mixtures; This advantageously simplifies the manufacture of the reactor by reducing the openings to be introduced and, if appropriate, the inlets and outlets to be connected to them.

In einer weiteren Ausführungsform des Reaktors kann eine weitere Öffnung des Reaktors gegenüber der Basis angeordnet sein. Diese Ausführungsform ist besonders vorteilhaft, wenn die zweite Öffnung als Rohr zum Austragen fließfähiger Stoffe und/oder Stoffgemische in der Basis ausgebildet ist, und wenn einzutragende fließfähige Stoffe und/oder Stoffgemische über die weitere, entgegengesetzt angeordnete (= „gegenüberliegende“) Öffnung eingebracht werden.In a further embodiment of the reactor, a further opening of the reactor can be arranged opposite the base. This embodiment is particularly advantageous if the second opening is designed as a tube for discharging flowable substances and / or substance mixtures in the base, and if flowable substances and / or substance mixtures to be introduced are introduced via the further, oppositely arranged (= “opposite”) opening ,

In einer bevorzugten Weiterbildung kann die Mischkammer mit mindestens einer an der Seitenwand angeordneten Ablenkplatte ausgebildet sein. Unter einer Ablenkplatte wird eine Platte verstanden, die in der Mischkammer beim Mischen durch Rühren eine Unterbrechung eines Fluidstroms entlang der Seitenwand bewirkt. Ohne entsprechende Ablenkplatte werden insbesondere bei niedriger Rührgeschwindigkeit fließfähige Stoffe lediglich bewegt, ohne sich zu vermischen. Ein zylinderförmiger „Standardreaktor“, wie er in industriellen Prozessen und in vielen mathematischen Modellierungs- und Simulationsverfahren (computational fluid dynamics) eingesetzt wird, ist normalerweise mit vier Ablenkplatten im Abstand von 90° ausgebildet.In a preferred development, the mixing chamber can be formed with at least one baffle plate arranged on the side wall. A deflection plate is understood to mean a plate which, in the mixing chamber, causes an interruption of a fluid flow along the side wall by stirring. Without a suitable baffle plate, flowable materials are only moved without mixing, especially at low stirring speeds. A cylindrical “standard reactor”, as used in industrial processes and in many mathematical modeling and simulation processes (computational fluid dynamics), is usually designed with four baffle plates at a distance of 90 °.

In einer weiteren Implementierung des erfindungsgemäßen Reaktors kann die herzustellende Formulierung ausgewählt sein aus der Gruppe umfassend nanostrukturiertes Trägersystem, Polyxplex, Nanopartikel, Liposom, Mizelle, Mikropartikel. Dabei bezeichnet ein „nanostrukturiertes Trägersystem“ eine nanoskalige Struktur, die kleiner als 1 µm ist und aus mehreren Molekülen aufgebaut sein kann. Vorteilhaft lassen sich im erfindungsgemäßen Reaktor auch Formulierungen im µm-Bereich herstellen, beispielsweise Mikropartikel. Sofern das nanostrukturierte Trägersystem Polymere umfasst, kann es auch als „Nanopartikel“ bezeichnet werden, sofern es Lipide umfasst, als „Liposom“ (eine „Mizelle“ verfügt im Gegensatz zum Liposom nur über eine einfache Lipidschicht). Das erfindungsgemäße nanostrukturierte Trägersystem umfasst Polymere und Lipide und dient dem Transport („Träger“) von Wirkstoffen und/oder anderen Molekülen, wie z. B. Antikörper oder Farbstoffe. Ein Polyplex ist als ein nanopartikuläres Trägersystem definiert, welches aus einem kationischen Polymer (z.B. Polyethylenimin, PEI) und negativ geladenem genetischen Material, z.B. DNS oder RNS, besteht, wobei die positiven Ladungen des kationischen Polymers (z. B. protonierte Aminogruppen) mit den Phosphatgruppen des genetischen Materials während der Assemblierung des Partikels derart wechselwirken, dass das genetische Material geschützt wird. Mit dem erfindungsgemäßen Reaktor lassen sich vorteilhaft partikuläre Formulierungen mit einer Partikelgröße im nm bis µm Bereich herstellen. Beispielsweise können mittels des erfindungsgemäßen Reaktors, unabhängig von der Größe des Reaktors bzw. der Mischkammer des Reaktors, innerhalb eines gewählten Größenbereichs Partikel von definierter Größe mit nur geringer Varianzbreite (ca.+/- 5 nm) reproduzierbar hergestellt werden.In a further implementation of the reactor according to the invention, the formulation to be produced can be selected from the group comprising nanostructured carrier system, polyxplex, nanoparticles, liposome, micelle, microparticles. A “nanostructured support system” refers to a nanoscale structure that is smaller than 1 µm and can be made up of several molecules. Formulations in the μm range, for example microparticles, can also advantageously be prepared in the reactor according to the invention. If the nanostructured carrier system comprises polymers, it can also be referred to as a “nanoparticle”, if it comprises lipids, as a “liposome” (in contrast to the liposome, a “micelle” only has a simple lipid layer). The nanostructured carrier system according to the invention comprises polymers and lipids and is used for the transport (“carrier”) of active substances and / or other molecules, such as. B. antibodies or dyes. A polyplex is defined as a nanoparticulate carrier system, which consists of a cationic polymer (e.g. polyethyleneimine, PEI) and negatively charged genetic material, e.g. DNA or RNA, whereby the positive charges of the cationic polymer (e.g. protonated amino groups) with the Phosphate groups of the genetic material interact during the assembly of the particle in such a way that the genetic material is protected. The reactor according to the invention can advantageously be used to produce particulate formulations with a particle size in the nm to μm range. For example, regardless of the size of the Reactor or the mixing chamber of the reactor, within a selected size range, particles of a defined size with only a small range of variance (approx. +/- 5 nm) can be produced reproducibly.

In einem zweiten Aspekt bezieht sich die vorliegende Erfindung auf ein Reaktorsystem zum Herstellen einer Formulierung, umfassend einen Reaktor wie vorstehend beschrieben und ein Rührwerkzeug, wobei das Rührwerkzeug so in der Mischkammer des Reaktors angeordnet ist, dass es im Betrieb im fließfähigen Stoff und/oder Stoffgemisch eine Rotationsachse erzeugt, welche weitgehend mit der Symmetrieachse der Mischkammer kongruent ist. Ein Rührwerkzeug bezeichnet ein Werkzeug zum Vermischen von fließfähigen Stoffen oder Stoffgemischen. Herkömmliche Rührwerkzeuge umfassen im Allgemeinen eine von einem Motor in Drehung versetzbare Welle, an welcher oftmals Rührflügel befestigt sind, so dass die Drehung der Welle direkt die Bewegung der Rührflügel bewirkt. Alternativ kann ein Rührwerkzeug aber auch aus einem Rührer und einem Rührantrieb bestehen, welche nicht direkt miteinander verbunden sind, z.B. ein Magnet-Rührwerkzeug. In einer weiteren Alternative kann die Vermischung über ein Ultraschall-Rührwerkzeug erfolgen, wobei das Ultraschall-Rührwerkzeug direkt innerhalb der Mischkammer oder von außerhalb der Mischkammer auf den fließfähigen Stoff und/oder das Stoffgemisch einwirken kann. Derartige Rührwerkzeuge sind aus dem Stand der Technik bekannt. Mittels des Rührwerkzeugs wird im Betrieb in dem fließfähigen Stoff und/oder Stoffgemisch eine Rotationsachse erzeugt (z. B. dreht sich eine gerührte Flüssigkeit um eine Rotationsachse), wobei eine Rotationsachse eine Gerade ist, die eine Rotation oder Drehung definiert oder beschreibt.In a second aspect, the present invention relates to a reactor system for producing a formulation, comprising a reactor as described above and a stirring tool, the stirring tool being arranged in the mixing chamber of the reactor such that it is in operation in the flowable substance and / or substance mixture generates an axis of rotation which is largely congruent with the axis of symmetry of the mixing chamber. A stirring tool refers to a tool for mixing flowable substances or mixtures of substances. Conventional agitating tools generally include a motor rotatable shaft to which agitator blades are often attached so that rotation of the shaft directly causes the agitator blades to move. Alternatively, a stirring tool can also consist of a stirrer and a stirring drive, which are not directly connected to each other, e.g. a magnetic stirring tool. In a further alternative, the mixing can be carried out using an ultrasonic stirring tool, the ultrasonic stirring tool being able to act on the flowable substance and / or the substance mixture directly inside the mixing chamber or from outside the mixing chamber. Such stirring tools are known from the prior art. Using the stirring tool, an axis of rotation is generated in the flowable substance and / or substance mixture during operation (e.g. a stirred liquid rotates about an axis of rotation), an axis of rotation being a straight line that defines or describes a rotation or rotation.

In einer bevorzugten Weiterbildung des Reaktorsystems kann das Rührwerkzeug ausgewählt sein aus der Gruppe umfassend Axialflow-Mischer, Radialflow-Mischer, Magnetmischer, Dispergierer. In der Praxis wird dabei zwischen „laminaren“ und „turbulenten“ Rühr- und Mischsystemen unterschieden. Das erfindungsgemäße Rührwerkzeug gehört zu den turbulenten Rühr- und Mischsystemen, welche beispielsweise Propeller-, Turbinen-, Scheiben-, Korb- (oder Zyklon-), Balken- und/oder Kreuzbalkenrührer umfassen. Unter den verschiedenen Bauformen von Mischern, welche einen turbulenten flow erzeugen, unterscheidet man wiederum Axialflow-Mischer und Radialflow-Mischer. Bei einem Radialflow-Mischer wird der fließfähige Stoff (im Folgenden: Fluid) radial von dem/den Rührflügel/n gegen die Seitenwand bewegt, wobei sich der Fluidstrom entlang der Wand aufspaltet und ca. 50 % des Fluidstroms in eine Richtung (zur Oberfläche) und der Rest in die entgegengesetzte Richtung (zum Boden) zirkuliert. Die Geschwindigkeit des Fluids ist dabei am höchsten in unmittelbarer Nähe zum Rührflügel entlang einer horizontalen Linie, welche durch das Zentrum des Rührflügels verläuft. Zur Gruppe der Radialflow-Mischer gehören beispielsweise die Rushton-Turbine mit geraden Rührflügeln und Turbinen mit gekrümmten Rührflügeln. Beim Axialflow-Mischer wird das Fluid in axialer Richtung bewegt, d. h. parallel zur Rührer-Welle; insgesamt wird das Fluid durch den Rührer gepumpt. Der Fluidstrom wird durch die Rührflügel in Richtung Boden geleitet, spaltet sich dort in radialer Richtung auf, um in der Nähe der Seitenwand aufzusteigen. Zur Gruppe der Axialflow-Mischer gehören beispielsweise Propeller vom Schiffsschraubentyp. Magnetmischer bewirken in gering viskosen Fluiden sowohl eine radiale als auch eine axiale Bewegung des Fluids in Abhängigkeit von der Gefäßgeometrie. Erfindungsgemäß wird der Magnetmischer so betrieben, dass er im Betrieb eine Rotationsachse erzeugt, welche weitgehend mit der Symmetrieachse der Mischkammer kongruent ist. Unter dem Begriff „Dispergieren“ versteht man das Mischen von mindestens zwei Stoffen, die sich nicht oder kaum ineinander lösen oder chemisch miteinander verbinden. Der Dispergierer verteilt beim Vorgang des Dispergierens einen Stoff (disperse Phase) in einem anderen Stoff (kontinuierliche Phase); der erfindungsgemäße Dispergierer basiert vorzugsweise auf der Rotor-Stator-Anordnung. Dabei bewirkt der Rotor, dass das Fluid axial in den Kopf des Dispergierers gesaugt, darin umgelenkt und radial durch die Schlitze der Rotor-Stator-Anordnung gepresst wird. Die Beschleunigungskräfte wirken dabei mit sehr starken Scher- und Schubkräften auf das Material. Zusätzlich durchmischt die Turbulenz im Scherspalt zwischen Rotor und Stator die Suspension oder Emulsion. Erfindungsgemäß wird der Dispergierer so betrieben, dass er im Betrieb eine Rotationsachse erzeugt, welche weitgehend mit der Symmetrieachse der Mischkammer kongruent ist.In a preferred development of the reactor system, the stirring tool can be selected from the group comprising axial flow mixers, radial flow mixers, magnetic mixers, dispersers. In practice, a distinction is made between "laminar" and "turbulent" stirring and mixing systems. The stirring tool according to the invention belongs to the turbulent stirring and mixing systems, which include, for example, propeller, turbine, disc, basket (or cyclone), bar and / or cross bar stirrers. A distinction is made among the different types of mixers that produce a turbulent flow, axial flow mixers and radial flow mixers. In the case of a radial flow mixer, the flowable material (hereinafter: fluid) is moved radially by the agitator blade (s) against the side wall, the fluid flow splitting along the wall and approximately 50% of the fluid flow in one direction (to the surface) and the rest circulates in the opposite direction (to the ground). The speed of the fluid is highest in the immediate vicinity of the impeller along a horizontal line that runs through the center of the impeller. The group of radial flow mixers includes, for example, the Rushton turbine with straight impellers and turbines with curved impellers. In the axial flow mixer, the fluid is moved in the axial direction, i. H. parallel to the stirrer shaft; overall, the fluid is pumped through the stirrer. The fluid flow is directed through the agitator blades towards the floor, where it splits in a radial direction in order to rise near the side wall. The group of axial flow mixers includes, for example, propellers of the propeller type. Magnetic mixers cause both radial and axial movement of the fluid, depending on the vessel geometry, in low-viscosity fluids. According to the invention, the magnetic mixer is operated such that it generates an axis of rotation during operation which is largely congruent with the axis of symmetry of the mixing chamber. The term "dispersing" is understood to mean the mixing of at least two substances that do not or hardly dissolve or chemically bond with each other. During the dispersing process, the disperser distributes one substance (disperse phase) in another substance (continuous phase); the disperser according to the invention is preferably based on the rotor-stator arrangement. The rotor causes the fluid to be sucked axially into the head of the disperser, deflected therein and pressed radially through the slots in the rotor-stator arrangement. The acceleration forces act on the material with very strong shear and shear forces. In addition, the turbulence in the shear gap between the rotor and stator mixes the suspension or emulsion. According to the invention, the disperser is operated such that it generates an axis of rotation during operation which is largely congruent with the axis of symmetry of the mixing chamber.

In einer bevorzugten Weiterbildung des Reaktorsystems kann dieses weiterhin eine mit der ersten Öffnung und/oder dem Zuführrohr verbundene Einführhilfe und/oder Pumpvorrichtung umfassen. Die Einführhilfe dient der Zuführung von fließfähigen Stoffen in die Mischkammer und kann beispielsweise als Injektionsspritze ausgebildet sein. Über eine Pumpvorrichtung kann die Zuführung von fließfähigen Stoffen hinsichtlich Zeit und Menge präzise reguliert werden. Derartige Einführhilfen und/oder Pumpvorrichtungen (auch: Spritzenpumpe, Dosierpumpe, Perfusor) sind aus dem Stand der Technik bekannt.In a preferred development of the reactor system, this can further comprise an insertion aid and / or pump device connected to the first opening and / or the feed pipe. The insertion aid is used to supply flowable substances into the mixing chamber and can be designed, for example, as an injection syringe. The supply of flowable substances can be precisely regulated in terms of time and quantity by means of a pump device. Such insertion aids and / or pumping devices (also: syringe pump, metering pump, perfusor) are known from the prior art.

In einer bevorzugten Weiterbildung ist das Reaktorsystem dazu ausgebildet ein erstes Fluid in die Mischkammer aufzunehmen. Vorzugsweise bedeckt das erste Fluid nach der Zugabe vollständig die Öffnungsfläche der ersten Öffnung. Das Reaktorsystem ist weiterhin dazu ausgebildet, das Vermischen des ersten Fluids mittels des Rührwerkzeugs zur Erzeugung eines Wirbels zu ermöglichen. Als Wirbel oder Vortex bezeichnet man dabei in der Strömungslehre eine drehende Bewegung von Fluidelementen um eine gerade oder geschwungene Drehachse. Erfindungsgemäß kann ein Wirbel oder Vortex durch eine Vielzahl verfügbarer Techniken erzeugt werden. Weiterhin ist das Reaktorsystem zum Zuführen eines zweites Fluids aus einem Reservoir dem ersten Fluid. Dabei ist in dem zweiten Fluid eine Substanz oder ein Substanzgemisch gelöst, welche/s in dem ersten Fluid weitgehend unlöslich ist, während sich das zweite Fluid vollständig in dem ersten Fluid löst. Das Reaktorsystem ist dabei so zum Zuführen des zweiten Fluids über die erste Öffnung der Mischkammer ausgebildet, dass das zweite Fluid in dem Bereich des Wirbels in das erste Fluid eintritt, in dem die Geschwindigkeit der Fluidelemente am höchsten ist.In a preferred development, the reactor system is designed to receive a first fluid in the mixing chamber. Preferably, the first fluid completely covers the opening area of the first opening after the addition. The reactor system is also designed to enable the mixing of the first fluid by means of the stirring tool to produce a vortex. As a vortex or vortex is referred to in fluid mechanics as a rotating movement of fluid elements around a straight or curved axis of rotation. According to the invention, a vortex or vortex can be created by a variety of available techniques. Furthermore, the reactor system for supplying a second fluid from a reservoir to the first fluid. A substance or a mixture of substances is dissolved in the second fluid, which is largely insoluble in the first fluid, while the second fluid completely dissolves in the first fluid. The reactor system is designed to supply the second fluid through the first opening of the mixing chamber such that the second fluid enters the first fluid in the region of the vortex in which the speed of the fluid elements is highest.

Dabei werden als Fluid solche Substanzen bezeichnet, die sich unter dem Einfluss von Scherkräften kontinuierlich verformen; in der Physik werden unter diesem Begriff Gase und Flüssigkeiten zusammengefasst. Im Zusammenhang mit der Erfindung ist das erste Fluid eine Flüssigkeit, vorzugsweise eine wässrige Lösung; erfindungsgemäß ist auch das zweite Fluid vorzugsweise eine Flüssigkeit, in welcher eine Substanz oder ein Substanzgemisch homogen verteilt ist, welche/s in dem ersten Fluid weitgehend unlöslich ist. Vorzugsweise handelt es bei dem Verfahren zum Herstellen einer Formulierung um eine Fällungsreaktion (Präzipitation), wobei bei einer Fällungsreaktion die Reaktanten im Lösungsmittel gelöst vorliegen und mindestens ein Produkt der Reaktion in diesem Lösungsmittel un- oder schwerlöslich ist und als Niederschlag ausfällt. Besonders bevorzugt ist die Fällungsreaktion eine sogenannte Nanopräzipitation, d.h. die ausgefällten Strukturen sind so klein, dass man von mikro- oder sogar nanopartikulären Strukturen sprechen kann. Für das Auge können diese Strukturen in Form einer Trübung zu erkennen oder sogar unsichtbar sein. Dieser Vorgang wird als Nanopräzipitation bezeichnet.Such substances are referred to as fluids that continuously deform under the influence of shear forces; in physics, this term summarizes gases and liquids. In the context of the invention, the first fluid is a liquid, preferably an aqueous solution; According to the invention, the second fluid is also preferably a liquid in which a substance or a mixture of substances is homogeneously distributed, which is largely insoluble in the first fluid. The method for producing a formulation is preferably a precipitation reaction (precipitation), in the case of a precipitation reaction the reactants being dissolved in the solvent and at least one product of the reaction being insoluble or poorly soluble in this solvent and precipitating out. The precipitation reaction is particularly preferably a so-called nanoprecipitation, i.e. the precipitated structures are so small that one can speak of micro- or even nanoparticulate structures. These structures can be recognized by the eye in the form of a cloudiness or even invisible. This process is called nanoprecipitation.

Bei dem erfindungsgemäßen Reservoir kann es sich um eine Einführhilfe (zum Beispiel eine mit einer Kanüle verbundene Injektionsspritze) handeln, die wiederum mit einer Pumpvorrichtung verbunden sein kann.The reservoir according to the invention can be an insertion aid (for example an injection syringe connected to a cannula), which in turn can be connected to a pump device.

Das erfindungsgemäße Reaktorsystem erlaubt die effiziente Herstellung einer Formulierung im diskontinuierlichen „Batch“-Verfahren, wobei das Verfahren entsprechend dem ausgewählten Reaktorsystem auf einfache Art und Weise skalierbar ist und die Herstellung im kleinen sowie im großtechnischen Maßstab ermöglicht.The reactor system according to the invention enables the efficient production of a formulation in a batch process, the process being easily scalable in accordance with the selected reactor system and enabling production on a small and on an industrial scale.

In einer vorteilhaften Weiterbildung des erfindungsgemäßen Reaktorsystems ein Rührwerkzeug mit Rührflügeln zur Erzeugung des Wirbels im ersten Fluid verwendet werden.In an advantageous development of the reactor system according to the invention, a stirring tool with stirring blades is used to generate the vortex in the first fluid.

In einer weiteren Ausführungsform des Reaktorsystems kann das zweite Fluid in dem Bereich des Rührwerkzeugs in das erste Fluid eintreten, in welchem vtip am höchsten ist, wobei gilt: vtip ∝ πND, mit vtip= Geschwindigkeit an der Spitze des jeweiligen Rührflügels, N = Agitationsgeschwindigkeit in RPM (RPM= rounds per minute) und D = Propellerdurchmesser des Rührwerkzeugs. Durch die Zugabe im Bereich der höchsten Scherung (maximale Scherung tritt im Bereich der höchsten Geschwindigkeit auf, also an der Rührflügelspitze) wird auf die zugegebenen Stoffe bzw. Stoffgemische eine hohe initiale Scherbelastung aufgebracht. Insbesondere für die Herstellung von nanostrukturierten Trägersystemen kann vorteilhaft durch Festlegung der Anzahl der Passagen durch die Region hoher Scherbelastung in der Nähe der Rührflügelspitze die Partikelgröße der nanostrukturierten Trägersysteme präzise eingestellt werden.In a further embodiment of the reactor system, the second fluid can enter the first fluid in the region of the stirring tool in which v tip is highest, where: v tip ∝ πND, with v tip = speed at the tip of the respective stirring blade, N = Agitation speed in RPM (RPM = rounds per minute) and D = propeller diameter of the stirring tool. By adding in the area of the highest shear (maximum shear occurs in the area of the highest speed, i.e. at the agitator blade tip), a high initial shear stress is applied to the added substances or mixtures of substances. In particular for the production of nanostructured carrier systems, the particle size of the nanostructured carrier systems can advantageously be set precisely by specifying the number of passages through the region of high shear stress in the vicinity of the impeller tip.

In einer bevorzugten Implementierung des erfindungsgemäßen Reaktorsystems kann das zweite Fluid über eine Pumpvorrichtung zugeführt werden. Diese Zuführungsart ermöglicht vorteilhaft eine präzise Steuerung hinsichtlich des Zeitpunkts und der Menge des zugeführten Fluid.In a preferred implementation of the reactor system according to the invention, the second fluid can be supplied via a pump device. This type of supply advantageously enables precise control with regard to the time and the amount of the fluid supplied.

Figurenlistelist of figures

Im Folgenden werden beispielhaft und nicht abschließend einige besondere Ausführungsformen der Erfindung unter Bezugnahme auf die beiliegenden Figuren beschrieben.Some special embodiments of the invention are described below by way of example and not in conclusion, with reference to the attached figures.

Die besonderen Ausführungsformen dienen nur zur Erläuterung des allgemeinen erfinderischen Gedankens, jedoch beschränken sie die Erfindung nicht.

  • 1 zeigt eine schematische Ansicht des erfindungsgemäßen Reaktors.
  • 2 zeigt eine Detailansicht des erfindungsgemäßen Reaktors im Bereich der ersten Öffnung.
  • 3 zeigt eine alternative Ausführungsform des Reaktors mit einem eingebrachten Rührwerkzeug.
  • 4 zeigt in Tabellenform die Eigenschaften verschiedener Formulierungen (hier: nanostrukturierte Trägersysteme), die mit dem erfindungsgemäßen Reaktor in unterschiedlichen Größen hergestellt wurden.
The particular embodiments serve only to explain the general inventive concept, but they do not limit the invention.
  • 1 shows a schematic view of the reactor according to the invention.
  • 2 shows a detailed view of the reactor according to the invention in the region of the first opening.
  • 3 shows an alternative embodiment of the reactor with an inserted stirring tool.
  • 4 shows in table form the properties of various formulations (here: nanostructured carrier systems), which were produced with the reactor according to the invention in different sizes.

Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

In 1 ist der Reaktor (1) zum Herstellen einer Formulierung dargestellt. Der Reaktor (1) umfasst eine Mischkammer (2), welche durch eine Basis (3) und mindestens eine sich von dieser aus bündig erstreckenden Seitenwand (4) definiert wird. Die Mischkammer (2) ist gekennzeichnet durch eine Höhe hM (vertikale gepunktete Linie) und eine in der vorliegenden Ausführungsform senkrecht zur Basis (3) im Abstand r (horizontale gepunktete Linie) von der Seitenwand (4) angeordnete Symmetrieachse (5, Strichpunkt-Linie). Vorliegend ist die Mischkammer (2) weitgehend als Zylinder ausgeführt (grundsätzlich entsprechend einem „Standardreaktor“), wobei die Basis (3) als hinsichtlich des Innenraums der Mischkammer (2) als konvex gewölbtes Kugelsegment mit einer zentral angeordneten Abflachung (6) ausgebildet ist. In der Seitenwand (4) ist in einer Höhe hö von 0,18 hM benachbart zur Basis (3) eine erste Öffnung (7) ausgebildet, die dazu dient, fließfähige Stoffe und/oder Stoffgemische in die Mischkammer (2) einzutragen. Die erste Öffnung (7) ist mit einer sich in einem Bereich zwischen einem Minimum und einem Maximum erstreckenden Öffnungsfläche ausgebildet. Die Minimalfläche der ersten Öffnung (7) liegt dabei bei 0,05 mm2, entsprechend der Fläche einer herkömmlichen Kanüle mit einem Außendurchmesser von 0,25 mm. Im Rahmen eines Scaling Prozesses kann die Öffnungsfläche dem Volumen der Mischkammer entsprechend angepasst werden, wobei die Maximalfläche bei einem Wert liegt, der sich aus VMischkammer[cm3] / Flächeerste Öffnung [cm2] = 5500 bestimmt. Die erste Öffnung (7) ist mit einem Zuführrohr (8) ausgebildet. Der Reaktor (1) weist weiterhin eine zweite Öffnung (9) auf, welche in der zentral angeordneten Abflachung (6) der Basis (3) entlang der Symmetrieachse (5) der Mischkammer (2) angeordnet und als verschließbares Rohr ausgebildet ist. Über das Rohr kann im herkömmlichen Betrieb des Reaktors das einfache Austragen fließfähiger Stoffe und/oder Stoffgemische aus der Mischkammer (2) gemäß ihrer Schwerkraft erfolgen, über das Rohr kann aber auch der Eintrag von fließfähigen Stoffen und/oder Stoffgemischen vorgenommen werden. Vorliegend weist das an die zweite Öffnung (9) anschließende Rohr eine Abzweigung (10) auf, über welche separat Reaktionsprodukte abgeführt werden können. Der Reaktor (1) ist mit einer dritten Öffnung (11) gegenüber der Basis (3) ausgebildet, die in der vorliegenden Ausführungsform mit einem Deckel (12) verschlossen ist. Über die dritte Öffnung (11) können beispielsweise weitere fließfähige Stoffe und/oder Stoffgemische und/oder Werkzeuge wie z.B. Ein Rührwerkzeug (13) in die Mischkammer (2) eingeführt werden. Als Rührwerkzeuge kommen herkömmliche Stabmischer aus der Gruppe der Axialflow-Mischer, Radialflow-Mischer, Dispergierer in Betracht, alternativ kann die Vermischung aber auch durch einen Magnetrührer (13, hier gezeigt) oder andere Rührer erfolgen, welche ohne Rührwelle betrieben werden können. Bei einem Magnetrührer ist zum Beispiel keine Welle erforderlich, da ein von außen auf den in der Mischkammer befindlichen Rührstab einwirkendes, rotierendes Magnetfeld den Rührer antreibt. Der über der dritten Öffnung (11) angeordnete Deckel (12) ermöglicht das Herstellen einer Formulierung unter definierten Umgebungsbedingungen, wobei durch zusätzliche Öffnungen (14, 15, 16) Messgeräte wie zum Beispiel ein Thermometer oder ein pH-Meter in die Mischkammer (2) eingeführt werden können.In 1 is the reactor ( 1 ) to produce a formulation. The reactor ( 1 ) includes a mixing chamber ( 2 ), which by a base ( 3 ) and at least one side wall that extends flush from it ( 4 ) is defined. The Mixing chamber ( 2 ) is characterized by a height h M (vertical dotted line) and one perpendicular to the base in the present embodiment ( 3 ) at a distance r (horizontal dotted line) from the side wall ( 4 ) arranged axis of symmetry ( 5 , Semicolon line). The mixing chamber ( 2 ) largely designed as a cylinder (basically according to a "standard reactor"), whereby the base ( 3 ) than with regard to the interior of the mixing chamber ( 2 ) as a convex spherical segment with a central flattening ( 6 ) is trained. In the side wall ( 4 ) is adjacent to the base at a height h ö of 0.18 h M ( 3 ) a first opening ( 7 ) designed to flow fluid and / or mixtures of substances into the mixing chamber ( 2 ) to be entered. The first opening ( 7 ) is formed with an opening area extending in a range between a minimum and a maximum. The minimum area of the first opening ( 7 ) is 0.05 mm 2 , corresponding to the area of a conventional cannula with an outer diameter of 0.25 mm. As part of a scaling process, the opening area can be adapted to the volume of the mixing chamber, the maximum area being at a value which is determined from V mixing chamber [cm 3 ] / first opening area [cm 2 ] = 5500. The first opening ( 7 ) is with a feed pipe ( 8th ) educated. The reactor ( 1 ) also has a second opening ( 9 ), which in the centrally arranged flattening ( 6 ) the base ( 3 ) along the axis of symmetry ( 5 ) the mixing chamber ( 2 ) arranged and designed as a closable tube. In conventional operation of the reactor, the simple discharge of flowable substances and / or substance mixtures from the mixing chamber ( 2 ) are carried out according to their gravity, but flowable substances and / or mixtures of substances can also be introduced via the tube. This indicates the second opening ( 9 ) connecting pipe a branch ( 10 ), via which reaction products can be removed separately. The reactor ( 1 ) has a third opening ( 11 ) compared to the base ( 3 ) which, in the present embodiment, have a cover ( 12 ) is closed. Via the third opening ( 11 ) can, for example, further flowable substances and / or substance mixtures and / or tools such as a stirring tool ( 13 ) into the mixing chamber ( 2 ) are introduced. Conventional rod mixers from the group of axial flow mixers, radial flow mixers and dispersers come into consideration as stirring tools, but alternatively mixing can also be carried out using a magnetic stirrer ( 13 , shown here) or other stirrers that can be operated without a stirrer shaft. In the case of a magnetic stirrer, for example, no shaft is required, since a rotating magnetic field which acts on the stirring rod located in the mixing chamber from the outside drives the stirrer. The one above the third opening ( 11 ) arranged lid ( 12 ) enables a formulation to be prepared under defined environmental conditions, with additional openings ( 14 . 15 . 16 ) Measuring devices such as a thermometer or a pH meter in the mixing chamber ( 2 ) can be introduced.

Die in 2 gezeigte Detailansicht beschränkt sich auf den Bereich der ersten Öffnung (7) des in 1 gezeigten Reaktors, welche mit einem im zur Öffnung benachbarten Bereich angeordneten Zuführrohr (8) ausgebildet ist. Die erste Öffnung (7) ist dabei mit einem Durchmesser z. B. entsprechend einem Kanülendurchmesser ausgebildet, zum Beispiel 11 G (3,0 mm); das um die erste Öffnung (7) angeordnete Zuführrohr (8) ist in Bezug auf die Mischkammer (2) so dimensioniert, dass eine Rückvermischung der Flüssigkeit aus der Mischkammer (2) in das Zuführrohr (8) verhindert wird. Durch diese Anordnung wird das Totraumvolumen (Schadraumvolumen) so gering wie möglich gehalten, wodurch die Effizienz des Mischprozesses erhöht wird. Ebenso wird die Menge des dem Mischvorgang zur Verfügung stehenden Materials, welches über die erste Öffnung zugeführt wird, so gering wie möglich gehalten, wodurch die Formulierung kostengünstig hergestellt werden kann. Das Zuführrohr (8) ist mit einem endständigen Außengewinde (in 2 nicht gezeigt) ausgebildet. Über das Außengewinde kann die erfindungsgemäße Rückflusssperre die erste Öffnung (7) und damit die Mischkammer (2) gegenüber der Umgebung abdichtend verschließen. In der gezeigten Ausführungsform ist die Rückflusssperre als Schraubdeckel (18) ausgebildet, welcher über sein Innengewinde mit dem Außengewinde (17) des Zuführrohrs (8) verschraubt werden kann. Die Rückflusssperre umfasst weiterhin eine Durchstichmembran (19), welche vorzugsweise aus einem elastischen Material (z. B. aus Brombutylkautschuk) besteht, sodass eine Selbstabdichtung nach dem Durchstechen mit einer Nadel gewährleistet ist.In the 2 The detailed view shown is limited to the area of the first opening ( 7 ) of the in 1 shown reactor, which is connected to a feed pipe ( 8th ) is trained. The first opening ( 7 ) is with a diameter z. B. designed according to a cannula diameter, for example 11 G (3.0 mm); that around the first opening ( 7 ) arranged feed pipe ( 8th ) is in relation to the mixing chamber ( 2 ) dimensioned so that backmixing of the liquid from the mixing chamber ( 2 ) into the feed pipe ( 8th ) is prevented. This arrangement keeps the dead space volume (dead space volume) as low as possible, which increases the efficiency of the mixing process. Likewise, the amount of material available for the mixing process, which is fed in via the first opening, is kept as low as possible, as a result of which the formulation can be produced inexpensively. The feed pipe ( 8th ) is with a terminal external thread (in 2 not shown) trained. The non-return valve according to the invention can open the first opening ( 7 ) and thus the mixing chamber ( 2 ) seal against the environment. In the embodiment shown, the non-return valve is a screw cap ( 18 ) which is connected via its internal thread to the external thread ( 17 ) of the feed pipe ( 8th ) can be screwed. The non-return valve also includes a puncture membrane ( 19 ), which is preferably made of an elastic material (e.g. bromobutyl rubber), so that self-sealing is ensured after piercing with a needle.

3 zeigt eine alternative Ausführungsform des Reaktors mit einem eingebrachten Rührwerkzeug. Bei dem abgebildeten Rührwerkzeug (13) handelt es sich um einen über die Öffnung 15 eingebrachten Stabrührer mit einer Rührwerkswelle (13a), welche vorteilhaft entlang der Symmetrieachse (5) der Mischkammer (2) des Reaktors (1) angeordnet ist. Am Betriebsende der Rührwerkswelle (13a) befinden sich Rührflügel (13b); beispielsweise kann es sich um einen Radialflow-Mischer oder um einen Axialflow-Mischer handeln. Über einen Schraubdeckel (18) mit Durchstichmembran (nicht gezeigt) wird ein zweites Fluid (nicht gezeigt) durch die erste Öffnung (7) mittels einer Einführhilfe (20) dem in der Mischkammer (2) befindlichen ersten Fluid (nicht gezeigt) zugegeben. Die Zugabe findet dabei im Bereich der Rührflügel (13b) des Rührwerkzeugs (13) statt. In dem Bereich des durch das Rührwerkzeug (13) im ersten Fluid erzeugten Wirbels ist die Geschwindigkeit der Fluidelemente am höchsten. Über die weiteren Öffnungen (14, 16) des Deckels (12) können weitere Messinstrumente oder Sonden (zum Beispiel Temperatur- / pH-Sonden) eingeführt werden, beispielhaft ist hier eine in Öffnung (14) eingeführte Temperatursonde gezeigt. 3 shows an alternative embodiment of the reactor with an inserted stirring tool. With the mixing tool shown ( 13 ) it is about the opening 15 introduced bar stirrer with an agitator shaft ( 13a) , which advantageously along the axis of symmetry ( 5 ) the mixing chamber ( 2 ) of the reactor ( 1 ) is arranged. At the end of operation of the agitator shaft ( 13a) there are agitator blades ( 13b) ; for example, it can be a radial flow mixer or an axial flow mixer. Via a screw cap ( 18 ) with puncture membrane (not shown), a second fluid (not shown) is passed through the first opening ( 7 ) using an insertion aid ( 20 ) in the mixing chamber ( 2 ) located first fluid (not shown) added. The addition takes place in the area of the impeller ( 13b) the mixing tool ( 13 ) instead of. In the area of the 13 ) The velocity of the fluid elements is highest in the vortex generated in the first fluid. Over the other openings ( 14 . 16 ) of the lid ( 12 ) additional measuring instruments or probes (e.g. temperature / pH probes) can be introduced, for example one in the opening ( 14 ) introduced temperature probe shown.

4 zeigt in Tabellenform Eigenschaften verschiedener Formulierungen (hier: nanostrukturierte Trägersysteme), die mit erfindungsgemäßen Reaktoren in unterschiedlichen Größen (500 ml, 2 I) hergestellt wurden. Die nanostrukturierten Trägersysteme wurden hinsichtlich Partikelgröße und Polydispersitätsindex (PDI) untersucht. Der Z-Average gibt dabei den mittleren Partikeldurchmesser an, der auf der Intensitätsverteilung des Streulichtsignals basiert; die Polydispersität bewertet die Breite der Verteilung. Statistisch ist der z-Durchschnitt (z-average) eine intensitätsbasierte durchschnittliche Gesamtgröße, die auf einer spezifischen Anpassung an die Daten der Rohkorrelationsfunktion basiert. Die Anpassung wird auch als kumulative Methode bezeichnet und kann als erzwungene Anpassung des Ergebnisses an eine einfache Gauß-Verteilung angesehen werden, bei welcher der z-Durchschnitt der Mittelwert ist und der PDI mit der Breite dieser einfachen Verteilung in Beziehung steht (unter der Annahme eines einzelnen Mittelwerts). Partikelgrößen variierten im Bereich von 78 bis 160 nm, wobei sowohl im 500 ml als auch im 2 I Reaktor zum Beispiel gewünschte Partikelgrößen von ca. 160 nm erzielt werden konnten. Hinsichtlich der Breite lagen alle erzeugten nanostrukturierten Trägersysteme wie gewünscht bei einem Polydispersitätsindex von <0,2. Dementsprechend waren alle Formulierungen durch eine ausgezeichnete Homogenität der hergestellten Partikel gekennzeichnet, unabhängig von der Größe des verwendeten Reaktors. 4 shows in tabular form properties of various formulations (here: nanostructured carrier systems), which are used with reactors according to the invention in different sizes ( 500 ml, 2 I) were prepared. The nanostructured carrier systems were examined with regard to particle size and polydispersity index (PDI). The Z average indicates the mean particle diameter, which is based on the intensity distribution of the scattered light signal; the polydispersity assesses the breadth of the distribution. Statistically, the z-average is an intensity-based average total size, which is based on a specific adaptation to the data of the raw correlation function. The adjustment is also called the cumulative method and can be seen as a forced adjustment of the result to a simple Gaussian distribution in which the z-average is the mean and the PDI is related to the breadth of this simple distribution (assuming a individual mean). Particle sizes varied in the range from 78 to 160 nm, it being possible, for example, to achieve desired particle sizes of approximately 160 nm both in the 500 ml and in the 2 l reactor. In terms of width, all of the nanostructured carrier systems produced had a polydispersity index of <0.2 as desired. Accordingly, all formulations were characterized by an excellent homogeneity of the particles produced, regardless of the size of the reactor used.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Reaktorreactor
22
Mischkammer (mit Höhe hM)Mixing chamber (with height h M )
33
BasisBase
44
SeitenwandSide wall
55
Symmetrieachseaxis of symmetry
66
zentral angeordnete Abflachung der Basiscentrally arranged flattening of the base
77
erste Öffnung (mit Höhe hö)first opening (with height h ö )
88th
Zuführrohrfeed
99
zweite Öffnungsecond opening
1010
Abzweigungdiversion
1111
dritte Öffnungthird opening
1212
Deckelcover
1313
Rührwerkzeugagitator
13a13a
Rührwerkswelleagitator shaft
13b13b
Rührflügelimpellers
1414
Deckelöffnunglid opening
1515
Deckelöffnunglid opening
1616
Deckelöffnunglid opening
1717
Außengewinde des ZuführrohrsExternal thread of the feed pipe
1818
Schraubdeckelscrew
1919
DurchstichmembranPuncture membrane
2020
Einführhilfeinsertion

Claims (18)

Reaktor zum Herstellen einer Formulierung, wobei der Reaktor mindestens zwei Öffnungen, eine Basis und mindestens eine sich von dieser aus bündig erstreckenden Seitenwand umfasst, wobei die Basis und die Seitenwand zusammen eine Mischkammer mit einer Höhe hM und mindestens einer weitgehend senkrecht zur Basis und in mindestens einem Abstand r von der Seitenwand angeordneten Symmetrieachse definieren, wobei eine erste Öffnung in der Basis oder in einer Höhe hö im Bereich von 0,6 bis 0,0 hM benachbart zur Basis in der Seitenwand der Mischkammer angeordnet ist, um fließfähige Stoffe und/oder Stoffgemische in die Mischkammer einzutragen, und wobei die erste Öffnung mit einer darin oder daran angrenzend angeordneten Rückflusssperre ausgebildet ist, wobei die Rückflusssperre das Eintragen von fließfähigen Stoffen in die Mischkammer durch die Öffnung hindurch ermöglicht, das Ausfließen von fließfähigen Stoffen aus der Mischkammer durch die Öffnung hindurch jedoch verhindert, und wobei die erste Öffnung mit einer sich in einem Bereich zwischen einem Minimum und einem Maximum erstreckenden Öffnungsfläche ausgebildet ist, wobei die Minimalfläche bei 0,05 mm2 und die Maximalfläche bei einem Wert liegt, der sich aus VMischkammer[cm3]/Flächeerste Öffnung [cm2] ≈ 5500 bestimmt.Reactor for producing a formulation, the reactor comprising at least two openings, a base and at least one side wall which extends flush from this, the base and the side wall together a mixing chamber with a height h M and at least one substantially perpendicular to the base and in Define at least a distance r from the side wall arranged axis of symmetry, with a first opening in the base or at a height h ö in the range of 0.6 to 0.0 h M adjacent to the base in the side wall of the mixing chamber to flowable materials and / or to introduce mixtures of substances into the mixing chamber, and wherein the first opening is formed with a non-return valve arranged therein or adjacent thereto, the non-return valve allowing the introduction of flowable substances into the mixing chamber through the opening, the flow of flowable substances out of the mixing chamber prevent through the opening ert, and wherein the first opening is formed with an opening area extending in a range between a minimum and a maximum, wherein the minimum area is 0.05 mm 2 and the maximum area is a value which is derived from V mixing chamber [cm 3 ] / Area of first opening [cm 2 ] ≈ 5500 determined. Reaktor gemäß Anspruch 1, wobei die erste Öffnung in einer Höhe hö in Bereich von 0,4 bis 0,1 hM, vorzugsweise im Bereich von 0,25 bis 0,15 hM benachbart zur Basis in der Seitenwand der Mischkammer angeordnet ist.Reactor according to Claim 1 , wherein the first opening is arranged at a height h ö in the range from 0.4 to 0.1 h M , preferably in the range from 0.25 to 0.15 h M, adjacent to the base in the side wall of the mixing chamber. Reaktor gemäß einem der Ansprüche 1 oder 2, wobei die Seitenwand zylindrisch ausgebildet ist.Reactor according to one of the Claims 1 or 2 , wherein the side wall is cylindrical. Reaktor gemäß einem der vorhergehenden Ansprüche, wobei auf der von der Mischkammer abgewandten Seite der Seitenwand um die erste Öffnung ein Zuführrohr ausgebildet ist, wobei das Zuführrohr als aufnehmender Verbinder mit einem endständigen Gewinde zur Aufnahme der Rückflusssperre ausgebildet ist.Reactor according to one of the preceding claims, wherein a feed tube is formed on the side of the side wall facing away from the mixing chamber around the first opening, the feed tube as a female connector with a terminal Thread for receiving the non-return valve is formed. Reaktor gemäß Anspruch 4, wobei das Zuführrohr als Gewindeverschluss mit einem Innengewinde ausgebildet ist.Reactor according to Claim 4 , wherein the feed tube is designed as a threaded closure with an internal thread. Reaktor gemäß einem der Ansprüche 4 oder 5, wobei die erste Öffnung und das Zuführrohr in Bezug auf die Mischkammer so dimensioniert sind, dass eine Rückvermischung des fließfähigen Stoffes aus der Mischkammer in das Zuführrohr verhindert wird.Reactor according to one of the Claims 4 or 5 , wherein the first opening and the feed pipe are dimensioned with respect to the mixing chamber so that backmixing of the flowable material from the mixing chamber into the feed pipe is prevented. Reaktor gemäß einem der vorhergehenden Ansprüche, wobei die zweite Öffnung als ein verschließbares Rohr zum Ein- und/oder Austragen von fließfähigen Stoffen und/oder Stoffgemischen in die/aus der Mischkammer ausgebildet ist.Reactor according to one of the preceding claims, wherein the second opening is designed as a closable tube for the introduction and / or discharge of flowable substances and / or substance mixtures into / from the mixing chamber. Reaktor gemäß Anspruch 7, wobei die zweite Öffnung als weitgehend entlang der mindestens einen Symmetrieachse der Mischkammer in der Basis angeordnetes Rohr ausgebildet ist.Reactor according to Claim 7 , wherein the second opening is designed as a tube arranged largely along the at least one axis of symmetry of the mixing chamber in the base. Reaktor gemäß einem der vorhergehenden Ansprüche, wobei eine weitere Öffnung des Reaktors gegenüber der Basis angeordnet ist.Reactor according to one of the preceding claims, wherein a further opening of the reactor is arranged opposite the base. Reaktor gemäß einem der vorhergehenden Ansprüche, wobei die Mischkammer mit mindestens einer an der Seitenwand angeordneten Ablenkplatte ausgebildet ist.Reactor according to one of the preceding claims, wherein the mixing chamber is formed with at least one baffle plate arranged on the side wall. Reaktor gemäß einem der vorhergehenden Ansprüche, wobei die herzustellende Formulierung ausgewählt ist aus der Gruppe umfassend nanostrukturiertes Trägersystem, Polyplex, Nanopartikel, Liposom, Mizelle, Mikropartikel.Reactor according to one of the preceding claims, wherein the formulation to be produced is selected from the group comprising nanostructured carrier system, polyplex, nanoparticles, liposome, micelle, microparticles. Reaktorsystem zum Herstellen einer Formulierung, umfassend einen Reaktor. gemäß einem der Ansprüche 1 bis 11, und ein Rührwerkzeug, wobei das Rührwerkzeug so in dem Reaktor angeordnet ist, dass es im Betrieb im fließfähigen Stoff und/oder Stoffgemisch eine Rotationsachse erzeugt, welche weitgehend mit der Symmetrieachse der Mischkammer kongruent ist.A reactor system for making a formulation comprising a reactor. according to one of the Claims 1 to 11 , and a stirring tool, the stirring tool being arranged in the reactor in such a way that, in operation, it generates an axis of rotation in the flowable substance and / or substance mixture which is largely congruent with the axis of symmetry of the mixing chamber. Reaktorsystem gemäß Anspruch 12, wobei das Rührwerkzeug ausgewählt ist aus der Gruppe umfassend Axialflow-Mischer, Radialflow-Mischer, Magnetmischer, Dispergierer.Reactor system according to Claim 12 , wherein the stirring tool is selected from the group comprising axial flow mixer, radial flow mixer, magnetic mixer, disperser. Reaktorsystem gemäß Anspruch 12 oder 13, weiterhin umfassend eine mit der ersten Öffnung und/oder dem Zuführrohr verbundene Einführhilfe und/oder Pumpvorrichtung.Reactor system according to Claim 12 or 13 , further comprising an insertion aid and / or pump device connected to the first opening and / or the feed pipe. Reaktorsystem gemäß einem der Ansprüche 12 bis 14, ausgebildet zur Aufnahme eines ersten Fluids in die Mischkammer, zum darauffolgenden Vermischen des ersten Fluids mittels des Rührwerkzeugs zur Erzeugung eines Wirbels und zum darauffolgenden Zuführen eines zweiten Fluids aus einem Reservoir zum ersten Fluid, wobei in dem zweiten Fluid eine Substanz oder ein Substanzgemisch gelöst ist, welche/s in dem ersten Fluid weitgehend unlöslich ist, während sich das zweite Fluid vollständig in dem ersten Fluid löst, wobei das Reaktorsystem so zum Zuführen des zweiten Fluids über die erste Öffnung der Mischkammer ausgebildet ist, dass das zweite Fluid in dem Bereich des Wirbels in das erste Fluid eintritt, in dem die Geschwindigkeit der Fluidelemente am höchsten ist.Reactor system according to one of the Claims 12 to 14 , designed to receive a first fluid in the mixing chamber, to subsequently mix the first fluid by means of the stirring tool to generate a vortex and to subsequently supply a second fluid from a reservoir to the first fluid, a substance or a mixture of substances being dissolved in the second fluid which is largely insoluble in the first fluid while the second fluid completely dissolves in the first fluid, the reactor system being designed to supply the second fluid via the first opening of the mixing chamber such that the second fluid is in the region of the Vortex enters the first fluid in which the speed of the fluid elements is highest. Reaktorsystem gemäß Anspruch 15 wobei ein Rührwerkzeug mit Rührflügeln zur Erzeugung des Wirbels im ersten Fluid verwendet wird.Reactor system according to Claim 15 wherein a stirring tool with stirring blades is used to generate the vortex in the first fluid. Reaktorsystem gemäß einem der Ansprüche 14 bis 16, wobei das zweite Fluid in dem Bereich des Rührwerkzeugs in das erste Fluid eintritt, in dem gilt: vtip ∝ πND, wobei vtip= Geschwindigkeit an der Spitze des jeweiligen Rührflügels, N = Agitationsgeschwindigkeit, D = Propellerdurchmesser des Rührwerkzeugs.Reactor system according to one of the Claims 14 to 16 , the second fluid entering the first fluid in the region of the stirring tool, in which the following applies: v tip ∝ πND, where v tip = speed at the tip of the respective stirring blade, N = agitation speed, D = propeller diameter of the stirring tool. Reaktorsystem gemäß einem der Ansprüche 14 bis 17, wobei das zweite Fluid über eine Pumpvorrichtung zugeführt wird.Reactor system according to one of the Claims 14 to 17 , wherein the second fluid is supplied via a pump device.
DE202019004821.9U 2019-11-27 2019-11-27 Reactor system for the production of a formulation Active DE202019004821U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE202019004821.9U DE202019004821U1 (en) 2019-11-27 2019-11-27 Reactor system for the production of a formulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202019004821.9U DE202019004821U1 (en) 2019-11-27 2019-11-27 Reactor system for the production of a formulation

Publications (1)

Publication Number Publication Date
DE202019004821U1 true DE202019004821U1 (en) 2019-12-10

Family

ID=69226721

Family Applications (1)

Application Number Title Priority Date Filing Date
DE202019004821.9U Active DE202019004821U1 (en) 2019-11-27 2019-11-27 Reactor system for the production of a formulation

Country Status (1)

Country Link
DE (1) DE202019004821U1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731165A (en) * 2021-08-23 2021-12-03 刘栋 Efficient industry denitrification facility

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731165A (en) * 2021-08-23 2021-12-03 刘栋 Efficient industry denitrification facility

Similar Documents

Publication Publication Date Title
DE60210794T2 (en) ROTOR-STATOR APPARATUS AND METHOD FOR FORMING PARTICLES
EP0035243B1 (en) Method and device for flotation
EP2572777B1 (en) Outlet means of a rotor-stator-dispersion machine
WO2004026452A1 (en) Method and through-flow cell for continuous treatment of free-flowing compositions by means of ultrasound
WO2001062373A1 (en) Cavitation mixer
DE202010018640U1 (en) stirrer system
WO2007065572A2 (en) Large-scale reactor or thin-film evaporator with premixing unit
WO2010133465A2 (en) Method for producing nanoparticles using miniemulsions
Conner et al. Scalable Formation of Concentrated Monodisperse Lignin Nanoparticles by Recirculation‐Enhanced Flash Nanoprecipitation
EP0570335B1 (en) Device and process for mixing a pulverulent solid component to a liquid material
WO2007054323A1 (en) Device comprising a spray device, and method for spraying nanodispersions
DE202019004821U1 (en) Reactor system for the production of a formulation
DE10354888B4 (en) Colloidal mixer and process for the colloidal treatment of a mixture
DE102019218404A1 (en) Reactor for the production of a formulation
EP3294859A1 (en) Fermenter for producing a pseudoplastic medium
US20210154639A1 (en) Reactor for the preparation of a formulation
US20230219044A1 (en) Axisymmetric confined impinging jet mixer
WO2010112379A1 (en) Method and apparatus for the manufacture of a colloidal dispersion using controlled micro-channel flow
EP1933977A1 (en) Extensional flow layer separating reactor
DE102010049034B4 (en) Stirrer and agitator for mixing and / or homogenizing fluid media
JPH1142429A (en) Method and device for atomization
EP2203246B1 (en) Apparatus and method for the uniform distribution of microparticles in a liquid
DE102004062703A1 (en) Mixing container for mixing liquids with liquids, solids and/or gases comprises current breakers arranged on base of boiler or on lid to rotate about vertical axis
DE19957817A1 (en) Chemical liquid mixing tank has mixer baffle vanes positioned between surface of fluid at rest and crest of fluid under mixing conditions
EP2676725B1 (en) Method and device for mixing, in particular for dispersion

Legal Events

Date Code Title Description
R207 Utility model specification
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: B01F0013000000

Ipc: B01F0033000000

R150 Utility model maintained after payment of first maintenance fee after three years