DE202014101753U1 - Optoelektronischer Sensor zur Erfassung von Objekten in einem Überwachungsbereich - Google Patents

Optoelektronischer Sensor zur Erfassung von Objekten in einem Überwachungsbereich Download PDF

Info

Publication number
DE202014101753U1
DE202014101753U1 DE202014101753.4U DE202014101753U DE202014101753U1 DE 202014101753 U1 DE202014101753 U1 DE 202014101753U1 DE 202014101753 U DE202014101753 U DE 202014101753U DE 202014101753 U1 DE202014101753 U1 DE 202014101753U1
Authority
DE
Germany
Prior art keywords
unit
printed circuit
sensor
circuit board
scanning unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE202014101753.4U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sick AG
Original Assignee
Sick AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sick AG filed Critical Sick AG
Priority to DE202014101753.4U priority Critical patent/DE202014101753U1/de
Publication of DE202014101753U1 publication Critical patent/DE202014101753U1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters

Abstract

Optoelektronischer Sensor (10) zur Erfassung von Objekten in einem Überwachungsbereich (20), insbesondere Laserscanner, mit einem Lichtsender zum Aussenden eines Sendelichtstrahls (26), einem Lichtempfänger (34) zum Erzeugen eines Empfangssignals aus dem von Objekten in dem Überwachungsbereich (20) remittierten Licht (30), einer Sockeleinheit (14), einer gegenüber der Sockeleinheit (14) beweglichen Abtasteinheit (12) zur periodischen Abtastung des Überwachungsbereichs (20) sowie einer Auswertungseinheit (46) zur Erfassung von Informationen über Objekte in dem Überwachungsbereich (20) anhand des Empfangssignals, wobei die Sockeleinheit (14) eine erste Übertragungseinheit (44, 54, 56) und die Abtasteinheit (12) eine zweite Übertragungseinheit (44, 54, 58) zur kontaktlosen Übertragung von Energie zwischen der Sockeleinheit (14) und der Abtasteinheit (12) aufweisen, dadurch gekennzeichnet, dass die Sockeleinheit (14) eine erste Leiterkarte (50) mit der ersten Übertragungseinheit (44, 54, 58) und die Abtasteinheit (12) eine zweite Leiterkarte (52) mit der zweiten Übertragungseinheit (44, 54, 58) aufweist, dass die beiden Leiterkarten (50, 52) flächig übereinander angeordnet sind und die zweite Leiterkarte (52) mit der Abtasteinheit (12) gegenüber der ersten Leiterkarte (50) beweglich ist und dass die Übertragungseinheiten (44, 54, 56, 58) jeweils in die Leiterkarten (50, 52) integrierte Spulen (56, 58) zur Versorgung der Abtasteinheit (12) durch induktive Kopplung aufweisen.

Description

  • Die Erfindung betrifft einen optoelektronischen Sensor zur Erfassung von Objekten in einem Überwachungsbereich nach dem Oberbegriff von Anspruch 1.
  • Für Abstandsmessungen, die einen großen horizontalen Winkelbereich des Messsystems erforderlich machen, eignen sich optoelektronische Systeme und besonders Laserscanner. In einem Laserscanner überstreicht ein von einem Laser erzeugter Lichtstrahl mit Hilfe einer Ablenkeinheit periodisch einen Überwachungsbereich. Das Licht wird an Objekten in dem Überwachungsbereich remittiert und in dem Scanner ausgewertet. Aus der Winkelstellung der Ablenkeinheit wird auf die Winkellage des Objektes und aus der Lichtlaufzeit unter Verwendung der Lichtgeschwindigkeit zusätzlich auf die Entfernung des Objektes von dem Laserscanner geschlossen.
  • Mit den Winkel- und Entfernungsangaben ist der Ort eines Objektes in dem Überwachungsbereich in zweidimensionalen Polarkoordinaten erfasst. Damit lassen sich die Positionen von Objekten ermitteln oder durch mehrere Antastungen desselben Objekts an verschieden Stellen dessen Kontur bestimmen. Die dritte Raumkoordinate kann durch eine Relativbewegung in Querrichtung ebenfalls erfasst werden, beispielsweise durch einen weiteren Bewegungsfreiheitsgrad der Ablenkeinheit in dem Laserscanner oder indem das Objekt relativ zu dem Laserscanner befördert wird. So können auch dreidimensionale Konturen ausgemessen werden.
  • Neben solchen Messanwendungen werden Laserscanner auch in der Sicherheitstechnik zur Überwachung einer Gefahrenquelle eingesetzt, wie sie beispielsweise eine gefährliche Maschine darstellt. Ein derartiger Sicherheitslaserscanner ist aus der DE 43 40 756 A1 bekannt. Dabei wird ein Schutzfeld überwacht, das während des Betriebs der Maschine vom Bedienpersonal nicht betreten werden darf. Erkennt der Laserscanner einen unzulässigen Schutzfeldeingriff, etwa ein Bein einer Bedienperson, so löst er einen Nothalt der Maschine aus. In der Sicherheitstechnik eingesetzte Sensoren müssen besonders zuverlässig arbeiten und deshalb hohe Sicherheitsanforderungen erfüllen, beispielsweise die Norm EN13849 für Maschinensicherheit und die Gerätenorm EN61496 für berührungslos wirkende Schutzeinrichtungen (BWS).
  • Die Abtastung der Überwachungsebene in einem Laserscanner wird üblicherweise dadurch erreicht, dass der Sendestrahl auf einen rotierenden Drehspiegel trifft. Lichtsender, Lichtempfänger sowie zugehörige Elektronik und Optik sind im Gerät fest montiert und vollziehen die Drehbewegung nicht mit. Durch den Spiegel ergeben sich sehr hohe Anforderungen an die Ausrichtung der Lichtsender und Lichtempfänger zur Drehachse. Abweichungen davon führen zu einer verbogenen Überwachungsebene. Außerdem sind solche Optikeinheiten baugroß, weil sich immer ein Teil der Objektweite über den Spiegel bis zur Empfangsoptik in das Gerät erstreckt. Streulichteffekte an der Frontscheibe durch die Frontscheibe selbst oder deren Verunreinigung führen zu einer Beeinträchtigung der Sensorfunktion.
  • Es ist auch bekannt, den Drehspiegel durch eine mitbewegte Abtasteinheit zu ersetzten. Beispielsweise rotiert in der DE 197 57 849 B4 der gesamte Messkopf mit Lichtsender und Lichtempfänger. Die EP 2 388 619 A1 sieht ebenfalls eine drehbare Sende-/Empfangseinheit vor. Diese Abtasteinheit wird beispielsweise nach dem Transformationsprinzip von den drehfesten Bereichen des Sensors mit Energie versorgt, während die Datenübertragung drahtlos per Funk oder auf optischem Wege erfolgt. Solche drahtlosen Schnittstellen erfordern aber einen hohen Aufwand und verursachen Störstrahlung.
  • Daher ist Aufgabe der Erfindung, den Aufbau eines Sensors mit mitbewegter Abtasteinheit zu vereinfachen.
  • Diese Aufgabe wird durch einen optoelektronischen Sensor zur Erfassung von Objekten in einem Überwachungsbereich nach Anspruch 1 gelöst. Dabei geht die Erfindung von dem Grundgedanken aus, den Sensor zweiteilig mit einer Sockeleinheit und einer Abtasteinheit aufzubauen. Die Abtasteinheit wird relativ zu der Sockeleinheit bewegt, um den Überwachungsbereich periodisch abzutasten, insbesondere in Drehbewegung versetzt. Die Sockeleinheit bleibt stationär und umfasst alle weiteren ruhenden Elemente des Sensors, beispielsweise ein Gehäuse. Dabei bezieht sich stationär oder ruhend auf ein übliches Bezugssystem des Sensors, der dennoch insgesamt bewegt werden kann, beispielsweise in mobilen Anwendungen an einem Fahrzeug, welches dann das hier als stationär bezeichnete Bezugssystem bildet. Die Erfindung geht dann von dem Grundgedanken aus, die Schnittstellen zwischen Sockeleinheit und Abtasteinheit in zwei Leiterkarten zu integrieren, von denen eine Leiterkarte mit der Sockeleinheit ruht und die andere Leiterkarte sich mit der Abtasteinheit bewegt. Die Leiterkarten sind flächig übereinander angeordnet und stehen vorzugsweise senkrecht zu einer Antriebswelle, welche die Abtasteinheit bewegt. Eine erste Funktion der Schnittstellen oder Übertragungseinheiten ist, die Abtasteinheit mit Energie beziehungsweise Strom oder Spannung zu versorgen. Dazu sind Spulen, insbesondere Planarspulen, in Form von gewundenen Leitungsstrukturen auf den beiden Außenflächen sowie möglicherweise auch in inneren Schichten der Leiterkarten in die Leiterkarten integriert, um die Abtasteinheit kontaktlos induktiv zu versorgen.
  • Die Erfindung hat den Vorteil, dass ermöglicht wird, die herkömmlichen Umlenkspiegel oder Spiegelräder durch eine mitbewegte Abtasteinheit zu ersetzen, ohne dadurch mechanisch anfällige Schleifkontakte oder sehr aufwändige drahtlose Schnittstellen zu benötigen. Es entsteht ein sehr kompakter, kostengünstiger und robuster Sensor.
  • Vorteilhafterweise ist die erste Leiterkarte in der Sockeleinheit und die zweite Leiterkarte an einer Welle eines Antriebs für die Abtasteinheit befestigt. Damit sind die Leiterkarten sicher fixiert, und wie gewünscht ruht die erste Leiterkarte in der Sockeleinheit, während die zweite Leiterkarte mit der Abtasteinheit rotiert.
  • Der Lichtsender und der Lichtempfänger sind bevorzugt in der Abtasteinheit angeordnet. Damit wird die Abtasteinheit zu einem weitgehend autarken Messkopf. Mit Lichtsender und Lichtempfänger sind vorzugsweise auch zugehörige Sende- und Empangsoptiken sowie zumindest ein Teil der Sende- und Empfangselektronik in der Abtasteinheit untergebracht. Lichtsender, Lichtempfänger und/oder deren Elektronik können je nach optischem Aufbau innerhalb der Abtasteinheit auf der zweiten Leiterplatte angeordnet sein. Alternativ wird mindestens eine weitere Leiterplatte in der Abtasteinheit angeordnet, die mit der zweiten Leiterplatte verbunden ist.
  • Die erste Leiterkarte weist bevorzugt eine Royer-Oszillator-Schaltung auf. Dadurch kann eine stabile, weitgehend oberwellenfreie Schwingung im Resonanzbereich der Spulen erzeugt werden. Dies minimiert Schaltverluste und elektromagnetische Abstrahlung und sorgt für einen hohen Wirkungsgrad der Energieübertragung.
  • Die zweite Leiterkarte ist bevorzugt kreisförmig ausgebildet. Dadurch wird ein Rotieren ohne Unwucht erleichtert. Die ruhende erste Leiterkarte weist mindestens die kreisförmige Ausdehnung der zweiten Leiterkarte auf, damit sich die beiden Leiterkarten vollständig mit ihren zueinander gerichteten Außenseiten flächig gegenüberstehen. Die erste Leiterkarte kann aber über diese Ausdehnung hinausragen, um beispielsweise weitere Elektronikbauteile oder Befestigungselemente unterzubringen.
  • Die Spulen sind bevorzugt als zentral angeordnete Windungen um eine Drehachse der Abtasteinheit auf den Leiterkarten ausgebildet. Die Spulen winden sich also innen eng um die Drehachse, insbesondere die Welle des Antriebs. Durch die zentrale Lage können die Spulen besonders wirkungsvoll abgeschirmt werden.
  • Die Spulen weisen bevorzugt gegenläufige Windungen auf. Es verläuft also mindestens eine Windung mit dem Uhrzeigersinn und eine Windung gegen den Uhrzeigersinn. Soweit möglich, umfassen die Windungen dennoch nahezu 360°, sind also so vollständig, wie das ohne Kurzschluss möglich ist. Eine besonders bevorzugte Ausprägung ist eine selbstkompensierende Doppelwicklung mit einer inneren Windung in der einen und einer äußeren Windung in der anderen Richtung. Die gegenläufigen Windungen ermöglichen einen symmetrischen Aufbau mit optimiertem Feldverlauf, wenn sich im Inneren ein elektrisch leitendes Objekt befindet, wie hier beispielsweise die Motorachse.
  • Die Übertragungseinheiten weisen bevorzugt einen Resonanzübertrager ohne primärseitige Hilfswicklung und Mittelpunktanzapfung auf. Der Resonanzübertrager soll funktional einem Royer-Oszillator entsprechen, d.h. möglichst oberwellenfrei schwingen. Ein Royer-Oszillator benötigt aber Hilfwicklungen und eine mittige Anzapfung der Spule. Das ist insbesondere bei einem vorteilhaften Spulenaufbau gemäß dem vorigen Absatz schwer oder gar nicht möglich. Durch die angepasste Schaltung können die Vorteile des Royer-Oszillators und des besagten Spulenaufbaus miteinander kombiniert werden.
  • Die Übertragungseinheiten weisen bevorzugt jeweils einander gegenüberliegende Leiterstrukturen auf den Leiterkarten auf, die mindestens einen Kondensator zur kapazitiven kontaktlosen Datenübertragung bilden. Die Leiterstrukturen sind vorzugsweise paarweise und innerhalb eines Paares gleichartig auf den beiden Leiterkarten vorgesehen. Jedes Paar einander gegenüberstehender Leiterstrukturen bildet dann mit dem Luftspalt zwischen den Leiterplatten beziehungsweise eventuell eingeschlossenem Leiterplattenmaterial oder sonstigem Dielektrikum einen Kondensator. Die gleichen Leiterkarten beziehungsweise die darauf angeordneten Übertragungseinheiten haben zusätzlich zur induktiven Versorgung eine zweite Funktion der kontaktlosen kapazitiven Datenübertragung. Die unterschiedlichen physikalischen Übertragungsprinzipien erleichtern es, gegenseitige Störungen zu verhindern.
  • Die Leiterstrukturen sind bevorzugt als Kreisringe ausgebildet. Der Mittelpunkt der Kreisringe ist die Drehachse. So stehen die Leiterstrukturen zweier Leiterplatten einander unabhängig von einer Drehstellung der Abtasteinheit bezüglich der Sockeleinheit immer in gleicher Weise gegenüber. Die Kapazität bleibt also während der Abtastbewegung gleich.
  • Bevorzugt sind mehrere zueinander konzentrische Kreisringe vorgesehen, um mehrere Kondensatoren für eine bidirektionale und/oder differentielle Datenübertragung zu bilden. So können zwei Kondensatoren für bidirektionale Datenübertragung, zwei Kondensatoren für eine robustere differentielle Datenübertragung oder sogar vier Kondensatoren für eine differentielle, bidirektionale Datenübertragung vorgesehen sein.
  • Die Kreisringe sind bevorzugt untereinander flächengleich. Die durch die unterschiedlichen Innenradien variierenden Kreisumfänge werden dabei durch unterschiedliche Dicken ausgeglichen, also radiale Ausdehnung der Kreisringe, damit die Kapazitäten der gebildeten Kondensatoren untereinander gleich bleiben.
  • Die Kreisringe der Kapazitäten und die Windungen der Induktivitäten sind bevorzugt konzentrisch um die Drehachse angeordnet, und zwar derart, dass die Kreisringe die Windungen umschließen. Dadurch sind zum einen Energie- und Datenübertragung örtlich entkoppelt. Außerdem wird Störstrahlung durch die innen angeordnete Energieübertragung von der außen liegenden Datenübertragung abgeschirmt.
  • Die Übertragungseinheiten sind vorzugsweise zumindest teilweise von einem Ferritmantel eingeschlossen. Der Ferritmantel oder Ferritkern schließt den Magnetkreis der Energieversorgung bis auf einen für die Drehbewegung notwendigen Luftspalt ein und erhöht damit den Wirkungsgrad der Übertragung. Im Bereich der Datenübertragung, die deutlich höhere Frequenzen nutzt, dient der Ferritmantel als Abschirmung. Gleichzeitig kann der Ferritmantel für die mechanische Halterung der Übertragungseinheiten genutzt werden.
  • Die Leiterkarten sind bevorzugt zumindest teilweise von einer magnetischen, schlecht leitenden Abschirmung umgeben. Das verringert etwaige Störstrahlung in beide Richtungen (EMV).
  • Die Abschirmung weist bevorzugt eine Bodenplatte und eine Deckplatte sowie einen inneren Zylinder auf, so dass eine Drehachse der Abtasteinheit innerhalb des Zylinders und die Leiterkarten konzentrisch zu dem Zylinder sowie zwischen Bodenplatte und Deckplatte angeordnet sind. Diese Geometrie umgibt die Übertragungseinheiten und schirmt die Übertragung damit wirksam nach außen und von außen ab. Da nur ein innerer Zylinder vorgesehen ist, bleibt eine äußere Mantelfläche frei, wo die Leiterplatten befestigt, frei bestückt und kontaktiert werden können. Zum gleichen Zweck ist vorzugsweise der Radius von Boden- beziehungsweise Deckplatte geringer als derjenige der Leiterplatten.
  • Die Erfindung wird nachstehend auch hinsichtlich weiterer Vorteile und Merkmale unter Bezugnahme auf die beigefügte Zeichnung anhand von Ausführungsbeispielen erläutert. Die Figuren der Zeichnung zeigen in:
  • 1 eine schematische Schnittdarstellung durch einen optoelektronischen Sensor;
  • 2 eine vergrößerte Darstellung einer kontaktlosen Anbindung des Sensors gemäß 1;
  • 3 eine Draufsicht auf eine Leiterplatte der kontaktlosen Anbindung gemäß 2;
  • 4 einen Ausschnitt einer Schaltskizze zur bidirektionalen und differentiellen kapazitiven Datenübertragung;
  • 5 eine Draufsicht auf eine weitere Ausführungsform einer Spulenanordnung zur kontaktlosen Anbindung;
  • 6 eine Schnittdarstellung zur Erläuterung des Feldverlaufs in einer zusätzlich abgeschirmten Spulenanordnung gemäß 5;
  • 7 eine Resonanzübertragerschaltung für die kontaktlose Anbindung insbesondere mit einer Spule gemäß 5; und
  • 8 beispielhafte Spannungs- und Ansteuerungsverläufe für die Schaltung gemäß 7.
  • 1 zeigt eine schematische Schnittdarstellung durch einen optoelektronischen Sensor in einer Ausführungsform als Laserscanner 10. Der Laserscanner 10 umfasst in grober Aufteilung eine bewegliche Abtasteinheit 12 und eine Sockeleinheit 14. Die Abtasteinheit 12 ist der optische Messkopf, während in der Sockeleinheit 14 weitere Elemente wie eine Versorgung, Auswertungselektronik, Anschlüsse und dergleichen untergebracht sind. Im Betrieb wird mit Hilfe eines Antriebs 16 der Sockeleinheit 14 die Abtasteinheit 12 in eine Drehbewegung um eine Drehachse 18 versetzt, um so einen Überwachungsbereich 20 periodisch abzutasten.
  • In der Abtasteinheit 12 erzeugt ein Lichtsender 22 mit Hilfe einer Sendeoptik 24 einen Sendelichtstrahl 26, der in den Überwachungsbereich 20 ausgesandt wird. Zur Vermeidung von Streulicht innerhalb des Laserscanners 10 wird der interne Lichtweg des Sendelichtstrahls 26 von einem lichtundurchlässigen Tubus 28 abgeschirmt. Trifft der Sendelichtstrahl 26 in dem Überwachungsbereich 20 auf ein Objekt, so kehrt ein entsprechender Lichtstrahl als remittiertes Licht 30 zu dem Laserscanner 10 zurück. Das remittierte Licht 30 wird von einer Empfangsoptik 32 auf einen Lichtempfänger 34 geführt und dort in ein elektrisches Empfangssignal gewandelt.
  • Der Lichtempfänger 34 ist in dieser Ausführungsform auf einer Leiterkarte 36 angeordnet, die auf der Drehachse 18 liegt und mit der Welle 38 des Antriebs 16 verbunden ist. Die Empfangsoptik 32 stützt sich durch Beinchen 40 auf der Leiterkarte 36 ab und hält eine weitere Leiterkarte 42 des Lichtsenders 22. Die beiden Leiterkarten 36, 42 sind untereinander verbunden und können auch als gemeinsame Flexprint-Leiterkarte ausgebildet sein.
  • Der in 1 gezeigte optische Aufbau mit zwei übereinander geschichteten Leiterkarten 36, 42 oder Leiterkartenbereichen und einer zentral innerhalb der Empfangsoptik 32 angeordneten Sendeoptik 24 ist rein beispielhaft zu verstehen. So wäre alternativ jede andere an sich von einstrahligen optoelektronischen Sensoren oder Laserscannern bekannte Anordnung wie etwa eine Doppelaugenanordnung oder die Verwendung eines Strahlteilerspiegels möglich. Die Erfindung befasst sich weniger mit der konkreten Ausgestaltung von Lichtsender, Lichtempfänger und deren Optiken und Elektronik, sondern vielmehr mit einer kontaktlosen Anbindung 44 der beweglichen Abtasteinheit 12 an die Sockeleinheit 14 zur Energie- und/oder Datenübertragung. Die kontaktlose Anbindung 44 wird weiter unten im Zusammenhang mit den 2 bis 4 näher erläutert.
  • Die kontaktlose Anbindung 44 ist in der Abtasteinheit 12 mit der Elektronikkarte 36 und in der Sockeleinheit 14 mit einer Steuer- und Auswertungseinheit 46 verbunden. Auf diese Weise kann die Steuer- und Auswertungseinheit 46 den Lichtsender 22 steuern und erhält das Empfangssignal des Lichtempfängers 34 zur weiteren Auswertung. Die Steuer- und Auswertungseinheit 46 steuert außerdem den Antrieb 16 und erhält das Signal einer nicht gezeigten, von Laserscannern allgemein bekannten Winkelmesseinheit, welche die jeweilige Winkelstellung der Abtasteinheit 14 bestimmt.
  • Zur Auswertung wird vorzugsweise mit einem Lichtlaufzeitverfahren die Distanz zu einem angetasteten Objekt gemessen. Dazu wird in einem phasenbasierten System das Sendelicht des Lichtsenders 22 moduliert und eine Phasenbeziehung zu dem Empfangssignal des Lichtempfängers 34 ausgewertet. Alternativ werden in einem pulsbasierten System kurze Lichtpulse zu einem Sendezeitpunkt als Sendelicht ausgesandt und aus dem Empfangssignal deren Empfangszeitpunkt ermittelt. Dabei sind sowohl Einzelpulsverfahren, die jeweils aus einem einzigen Sendepuls eine Entfernung bestimmen, als auch Pulsmittelungsverfahren denkbar, in denen das Empfangssignal nach einer Vielzahl aufeinanderfolgender Sendepulse gesammelt und statistisch ausgewertet wird. Die jeweilige Winkelstellung, unter welcher der Sendelichtstrahl 26 jeweils ausgesandt wurde, ist von der Winkelmesseinheit ebenfalls bekannt. Somit stehen nach jeder Scanperiode über den Winkel und die Entfernung zweidimensionale Polarkoordinaten aller Objektpunkte in einer Abtastebene zur Verfügung. Durch eine zusätzliche Verkippung der Abtasteinheit 14 kann auch ein dreidimensionaler Überwachungsbereich 20 erfasst werden.
  • Damit sind die Objektpositionen beziehungsweise Objektkonturen bekannt und können über eine Sensorschnittstelle 48 ausgegeben werden. Die Sensorschnittstelle 48 oder ein weiterer, nicht gezeigter Anschluss dienen umgekehrt als Parametrierschnittstelle. Bei Anwendungen in der Sicherheitstechnik werden Schutzfelder, die in dem Überwachungsbereich 20 konfiguriert werden können, auf unzulässige Eingriffe überwacht, und daraufhin wird gegebenenfalls ein sicherheitsgerichtetes Abschaltsignal über die dann sicher ausgebildete Schnittstelle 48 (OSSD, Output Signal Switching Device) ausgegeben.
  • Der Lichtsender 22 kann als einfache Lichtquelle, etwa in Form einer Halbleiterdiode, aber auch als beispielsweise zeilen- oder matrixförmige Anordnung zahlreiche Lichtquellen aufgebaut sein. Entsprechend kann es sich bei dem Lichtempfänger 34 um eine einfache Empfangsfläche, etwa einer Photodiode, oder um eine beispielsweise zeilen- oder matrixförmige Anordnung von Lichtempfangselementen handeln, wie einen CCD- oder CMOS-Chip. Damit entsteht dann nicht nur ein einzelner Abtaststrahl, sondern eine entsprechende Vielzahl zur Aufnahme von zweidimensionalen Bilddaten oder dreidimensionalen Bilddaten mit Hilfe eines Lichtlaufzeitverfahrens. Prinzipiell können nahezu beliebige Sensoreinheiten in der Abtasteinheit 12 rotieren und so den Überwachungsbereich 20 erfassen, beispielsweise auch mehrere Sensoreinheiten in unterschiedlichen Winkelstellungen, die einander mit gleichen oder unterschiedlichen physikalischen Messprinzipien ergänzen. Es besteht auch die Möglichkeit, die Abtasteinheit zusätzlich zu verkippen oder mehrere übereinander angeordnete Lichtsender 22 beziehungsweise Lichtempfänger 34 oder eine insbesondere entfernungsmessende Kamerazeile rotieren zu lassen, um einen dreidimensionalen Raumbereich abzutasten.
  • 2 zeigt eine Ausschnittvergrößerung eines linken Bereichs der kontaktlosen Anbindung 44 aus 1. Der in 2 nicht gezeigte rechte Bereich der kontaktlosen Anbindung ist nur ein anderer Schnitt durch die insgesamt zylindrische kontaktlose Anbindung 44 und sieht bis auf Spiegelung gleich aus, wie auch aus 1 hervorgeht.
  • Die kontaktlose Anbindung 44 weist einen unteren Teil mit einer ersten Leiterkarte 50 in der Sockeleinheit 14 und einen oberen Teil mit einer zweiten Leiterkarte 52 in der Abtasteinheit 12 auf. Beispielsweise ist die erste Leiterkarte 50 an einem Gehäuse des Laserscanners 10 und die zweite Leiterkarte 52 an der Welle 38 befestigt. Demzufolge rotiert die zweite Leiterkarte 52 mit der Abtasteinheit 12 gegen die erste Leiterkarte 50 in der stationären Sockeleinheit 14, wobei die Leiterkarten 50, 52 dabei in jeder Winkelstellung flächig übereinander angeordnet und nur durch einen kleinen Spalt getrennt sind.
  • In einem zentralen Bereich, also nahe der Drehachse 18, weisen die Leiterplatten 50, 52 eine kontaktlose Energieversorgung 54 auf. Dazu sind in die Leiterplatten 50, 52 Spulen 56, 58 vorzugsweise als mehrlagige Planarspulen mit Windungen um die Drehachse 18 integriert. Über die Spulen 56, 58 kann die Abtasteinheit 12 induktiv kontaktlos versorgt werden. Die induktive Kopplung beeinflusst das Drehmoment nicht, da die Feldlinien vertikal zu der Drehachse 18 verlaufen. 3 zeigt eine ergänzende Draufsicht auf die erste Leiterkarte 50, wobei in einer Unteransicht der zweiten Leiterkarte 52 vergleichbare Strukturen zu sehen wären.
  • Um die elektromagnetische Abstrahlung der Spulen 56, 58 gering zu halten und die Schaltfrequenz zu optimieren, ist auf der ersten Leiterplatte 50 vorzugsweise eine nicht dargestellte Royer-Oszillator-Schaltung angeordnet. Diese an sich bekannte Schaltung sorgt für eine oberwellenfreie Ansteuerung der Spulen 56, 58 im Resonanzbereich. Die Transistoren der Schaltung haben außerdem ein vorteilhaftes Schaltverhalten, die das Signal schnell und zuverlässig auf 0V bringen. Dadurch entstehen keine Schaltverluste oder störenden Oberwellen, und es wird ein sauberes sinusförmiges Signal bereitgestellt.
  • Zusätzlich zur kontaktlosen Versorgung hat die kontaktlose Anbindung 44 vorzugsweise auch die Aufgabe einer kontaktlosen Datenübertragung 60. Dazu sind in einem äußeren Bereich der Leiterplatten 50, 52, also weiter von der Drehachse 18 beabstandet, leitende Kreisringe 62, 64 vorgesehen, welche die Windungen der Spulen 56, 58 umschließen. Jeweils einander gegenüberstehende Kreisringe 62, 64 der beiden Leiterplatten 50, 52 bilden einen Plattenkondensator, der für eine kapazitive Datenübertragung genutzt wird. Da die Kreisringe 62, 64 konzentrisch sind, stehen sich die Kreisringe 62, 64 in jeder Drehstellung der Abtasteinheit 14 weiterhin gegenüber, so dass die kapazitive Kopplung von der Drehbewegung nicht beeinträchtigt wird.
  • In der Draufsicht gemäß 3 ist eine Ausführungsform mit je zwei Kreisringen 62a–b, in 2 sogar eine Ausführungsform mit je vier Kreisringen gezeigt. Dementsprechend werden mehrere Plattenkondensatoren gebildet, die dafür genutzt werden, Daten bidirektional und/oder differentiell zu übertragen. Eine differentielle Datenübertragung ist unempfindlich gegen Gleichtaktstörungen. Gleichspannungsfreie Datensignale werden beispielsweise durch eine 8B10B-Codierung erreicht.
  • 4 zeigt einen Ausschnitt einer Schaltskizze zur bidirektionalen und differentiellen kapazitiven Datenübertragung mit vier durch entsprechende Kreisringpaare gebildeten Kondensatoren 66a–d. Der Vorteil einer differentiellen kapazitiven Datenübertragung liegt in dem robusten Störverhalten sowohl hinsichtlich Einstrahlung als auch Abstrahlung. Es lassen sich Datenraten von beispielsweise 2,5 GBit erreichen. Die Kondensatoren 66a–d sollten die gleiche Kapazität haben, was durch Anpassung der Breite der Kreisringe 62, 64 erreicht werden kann, damit diese untereinander flächengleich sind. Die Datenübertragung kann doppelt ausgebildet werden, um mehr Bandbreite oder eine redundante Datenübertragung beispielsweise für Sicherheitsanwendungen zu erzielen.
  • Wie in 2 zu erkennen, ist die kontaktlose Anbindung 44 von einer zweiteiligen Abschirmung 68, 70 umgeben, beispielsweise einem Ferritmantel. Dies verbessert die induktive Kopplung und sorgt für eine Abschirmung gegen Störstrahlung. Die Abschirmung besteht aus einer Boden- beziehungsweise Deckplatte, welche die Leiterplatten 50, 52 bis zu einem gewissen radialen Abstand zur Drehachse 18 abdecken sowie jeweils einem inneren Zylinder als Abschluss. Es ist denkbar, die Abschirmung 68, 70 zumindest teilweise in die Leiterplatten 50, 52 zu integrieren.
  • 5 zeigt eine Draufsicht auf eine weitere Ausführungsform einer Spulenanordnung, die sich durch die Gestaltung der Windungen 56, 58 unterscheidet. Es verlaufen nämlich Windungen 56, 58 in zueinander entgegengesetzter Richtung, also mit und gegen den Uhrzeigersinn, wobei 5 gerade die besonders vorteilhafte minimale Konfiguration mit einer derartigen selbstkompensierenden Doppelwindung darstellt. Der vorteilhafte Effekt ist, dass im Inneren der Windungen 56, 58 das Magnetfeld zumindest partiell ausgelöscht wird. Dies ermöglicht einen verlustoptimierten symmetrischen Aufbau um ein elektrisch leitendes Objekt herum, wobei hier natürlich bei einem solchen Objekt im Inneren in erster Linie an die Welle 38 des Antriebs 16 zu denken ist.
  • 6 zeigt eine vereinfachende Schnittdarstellung des Feldverlaufs an einer solchen Spule gemäß 5 mit selbstkompensierender Doppelwindung 56, 58. Der Bereich der Welle 38 ist zumindest nahezu feldfrei. Als weitere optionale Ausgestaltung ist hier eine zweischichtige Abschirmung mit einer Ferritschicht 68a, 70a direkt über den Windungen 56, 58 und darüber eine weitere leitende Abschirmschicht 68b, 70b beispielsweise aus Kupfer vorgesehen. Die Ferritschicht 68a, 70a beziehungsweise Ferritplatten sorgen für eine Ablenkung des magnetischen Feldes. Dadurch werden die Magnetfelder im Bereich der Energieübertragung konzentriert und die Abstrahlung gering gehalten. Die zusätzliche optionale Kupferschicht 68b, 70b verringert die Abstrahlung noch weiter. Felder, die in der abschirmenden Kupferschicht 68b, 70b ankommen, werden durch Wirbelstromverluste absorbiert und in Wärme umgesetzt.
  • Über die in 6 gezeigte zweischichtige Abschirmung hinaus kann es sinnvoll sein, die Windungen 56, 58 und gegebenenfalls auch die Kreisringe 62, 64 nicht nur mit Ferrit abzudecken, sondern weitgehend mit Ferrit zu ummanteln. Dadurch wird der Magnetkreis bis auf einen für die Drehbewegung nötigen Luftspalt eingeschlossen. Die Kopplung über den Luftspalt kann durch entsprechende Isolierstoffe mit höherer dielektrischer Konstante verbessert werden. Die Schirmtechnik kann gleichzeitig für die mechanische Halterung von Primär- beziehungsweise Sekundärkreis genutzt werden.
  • Eine weitere Maßnahme zusätzlich zu der bereits erläuterten differentiellen kapazitiven Datenübertragung besteht in einer Spulentrennung, also dem Vorsehen einer radialen Lücke zwischen Windungen oder Doppelwindungen der Spulen 56, 58. Ähnliches ist auch für die Kreisringe 62, 64 der kapazitiven Datenübertragung denkbar. Die Spulentrennung wird induktiv für eine weiter verbesserte Magnetfeldkonzentration auf den aktiven Bereich genutzt. Außerdem kann die Feldstreuung nach außen reduziert werden.
  • Der Frequenzbereich der Energieübertragung und der Datenübertragung unterscheidet sich vorteilhafterweise erheblich, und dieser Unterschied kann in einer Größenordnung von drei Zehnerpotenzen liegen. Der Ferritmantel hat in diesen beiden Frequenzbereichen ein sehr unterschiedliches Verhalten. Für die Energieübertragung kann die erhöhte Effizienz genutzt werden, für den Datenverkehr die hohe Abstrahlreduktion nach außen durch Dämpfung.
  • 7 zeigt eine Resonanzübertragerschaltung, mit der induktiv über die Spulen 56, 58 Energie von der Sockeleinheit 14 in die Abtasteinheit 12 übertragen wird. Der obere Teil dieser Schaltung ist beispielsweise auf der Leiterkarte 52 beziehungsweise vor oder auf der Leiterkarte 52, der untere Teil der Schaltung auf der Leiterkarte 50 beziehungsweise vor oder auf der Steuer- und Auswertungseinheit 46 untergebracht. Der Übergang vom stationären System der Sockeleinheit 14 auf das rotierende System der Abtasteinheit 12 bilden die Induktivität L3, welche der Spule 56, und die Induktivität L4, welche der Spule 58 entspricht. Eine alternative Möglichkeit, diese Schaltung zu gestalten, ist ein an sich bekannter Royer-Oszillator oder Royer-Konverter. Das hat aber den Nachteil, dass es mit der speziellen Spulenform nach 5 nicht ohne Weiteres funktioniert, weil ein Royer-Oszillator Hilfswindungen und einen Mittenabgriff erfordert.
  • Die in 7 gezeigte Schaltung arbeitet als Resonanzübertrager. Die Ansteuerung über die Schalter S1 und S2 kann gezielt über eine externe Taktquelle oder gleichsam spontan durch Aufschwingen immer vorhandener kleiner Störungen erfolgen. Die Feedbackleitung kann dazu verwendet werden, den Schaltzeitpunkt gerade beim Nulldurchgang der Spannung und damit so festzulegen, dass in dem Schalter S1, S2 keine Schaltverluste entstehen. Als Schalter S1, S2 dienen beispielsweise bipolare Transistoren oder Feldeffekttransistoren.
  • Die Grundfrequenz der Schaltung ist die Resonanzfrequenz von L3 und C3 sowie L4 und C4 gemäß der üblichen Formel f = 1⁄2π√LC . Die Induktivitäten L1 und L2 werden benötigt, um den Schwingkreis von der Versorgungsspannung abzukoppeln. Die Energieübertragung erfolgt von L3 nach L4, und R1 entspricht der Last, also den mitdrehenden Verbrauchern in der rotierenden Ablenkeinheit 12. Ein hinter den Serienschwingkreis aus L4 und C4 angeordneter Gleichrichter übernimmt gemeinsam mit der Kapazität C1 die Umwandlung der übertragenen Wechselspannung in eine Gleichspannung, die das mitdrehende System in der Ablenkeinheit 12 gewöhnlich benötigt.
  • Im Vergleich mit einem herkömmlichen Royer-Oszillator hat diese Schaltung den Vorteil, dass keine Mittelpunktanzapfung der Primärwicklung und keine Hilfswicklung der Primärwicklung nötig ist. Das macht die Schaltung gemäß 7 besonders geeignet für anhand der 5 beschriebene selbstkompensierende Spulen 56, 58.
  • 8 zeigt beispielhafte Spannungs- und Ansteuerungsverläufe für die soeben erläuterte Schaltung gemäß 7. Dabei ist der obere Verlauf 74 die Ansteuerung beispielsweise an S1 und der untere Verlauf 76 der zugehörige Spannungsverlauf. Die Schaltung insgesamt erzeugt somit einen sehr reinen, sinusförmigen Strom ohne Oberwellen durch die Induktivität L3, der dementsprechend bei korrekter Anordnung und räumlicher Nähe in der Induktivität L4 induziert wird.
  • Die bisherigen Ausführungsformen beschreiben eine Energie- und Datenübertragung auf Leiterkarten 50, 52 mit einem zusätzlichen Antrieb 16. Es ist aber auch denkbar, den Motor zu integrieren, und zwar auf zwei alternativen Wegen. In einer Ausführungsform werden Rotor- und Statorspulen des Motors ähnlich wie die Windungen 56, 58 und die Kreisringe 62, 64 ebenfalls auf die Leiterkarten 50, 52 integriert. Dabei können die Abschirmungen 68, 70 und insbesondere die Ferritkerne mit genutzt werden. In einer anderen Ausführungsform wird die Integration umgekehrt betrieben. Dabei werden die Leiterkarten 50, 52 in den Antrieb 16 integriert. Der Antrieb stellt selbst dann mitbewegte Versorgungs- und Datenanschlüsse zur Verfügung. Beim Aufbau des Laserscanners 10 selbst muss dann die drahtlose Übertragung nicht mehr geplant werden, sondern es können einfach die vorhandenen Anschlüsse des Antriebs 16 genutzt werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 4340756 A1 [0004]
    • DE 19757849 B4 [0006]
    • EP 2388619 A1 [0006]
  • Zitierte Nicht-Patentliteratur
    • EN13849 [0004]
    • EN61496 [0004]

Claims (14)

  1. Optoelektronischer Sensor (10) zur Erfassung von Objekten in einem Überwachungsbereich (20), insbesondere Laserscanner, mit einem Lichtsender zum Aussenden eines Sendelichtstrahls (26), einem Lichtempfänger (34) zum Erzeugen eines Empfangssignals aus dem von Objekten in dem Überwachungsbereich (20) remittierten Licht (30), einer Sockeleinheit (14), einer gegenüber der Sockeleinheit (14) beweglichen Abtasteinheit (12) zur periodischen Abtastung des Überwachungsbereichs (20) sowie einer Auswertungseinheit (46) zur Erfassung von Informationen über Objekte in dem Überwachungsbereich (20) anhand des Empfangssignals, wobei die Sockeleinheit (14) eine erste Übertragungseinheit (44, 54, 56) und die Abtasteinheit (12) eine zweite Übertragungseinheit (44, 54, 58) zur kontaktlosen Übertragung von Energie zwischen der Sockeleinheit (14) und der Abtasteinheit (12) aufweisen, dadurch gekennzeichnet, dass die Sockeleinheit (14) eine erste Leiterkarte (50) mit der ersten Übertragungseinheit (44, 54, 58) und die Abtasteinheit (12) eine zweite Leiterkarte (52) mit der zweiten Übertragungseinheit (44, 54, 58) aufweist, dass die beiden Leiterkarten (50, 52) flächig übereinander angeordnet sind und die zweite Leiterkarte (52) mit der Abtasteinheit (12) gegenüber der ersten Leiterkarte (50) beweglich ist und dass die Übertragungseinheiten (44, 54, 56, 58) jeweils in die Leiterkarten (50, 52) integrierte Spulen (56, 58) zur Versorgung der Abtasteinheit (12) durch induktive Kopplung aufweisen.
  2. Sensor (10) nach Anspruch 1, wobei die erste Leiterkarte (50) in der Sockeleinheit (14) und die zweite Leiterkarte (52) an einer Welle (38) eines Antriebs (16) für die Abtasteinheit (12) befestigt ist.
  3. Sensor (10) nach Anspruch 1 oder 2, wobei der Lichtsender (22) und der Lichtempfänger (34) in der Abtasteinheit (12) angeordnet sind.
  4. Sensor (10) nach einem der vorhergehenden Ansprüche, wobei die erste Leiterkarte (50) eine Royer-Oszillator-Schaltung aufweist.
  5. Sensor (10) nach einem der vorhergehenden Ansprüche, wobei die zweite Leiterkarte (52) kreisförmig ausgebildet ist.
  6. Sensor (10) nach einem der vorhergehenden Ansprüche, wobei die Spulen als zentral angeordnete Windungen (56, 58) um eine Drehachse (18) der Abtasteinheit (12) auf den Leiterkarten (50, 52) ausgebildet sind.
  7. Sensor (10) nach einem der vorhergehenden Ansprüche, wobei die Spulen (56, 58) gegenläufige Windungen aufweisen, insbesondere die Spulen (56, 58) eine selbstkompensierende Doppelwicklung mit einer inneren Windung in der einen und einer äußeren Windung in der anderen Richtung aufweisen.
  8. Sensor (10) nach einem der vorhergehenden Ansprüche, wobei die Übertragungseinheiten einen Resonanzübertrager ohne primärseitige Hilfswicklung und Mittelpunktanzapfung aufweisen.
  9. Sensor (10) nach einem der vorhergehenden Ansprüche, wobei die Übertragungseinheiten (44, 54, 56, 58) jeweils einander gegenüberliegende, insbesondere als Kreisringe ausgebildete, Leiterstrukturen (62, 64) auf den Leiterkarten (50, 52) aufweisen, die mindestens einen Kondensator zur kapazitiven kontaktlosen Datenübertragung (60) bilden.
  10. Sensor (10) nach Anspruch 9, wobei mehrere zueinander konzentrische Kreisringe (62a–b) vorgesehen sind, um mehrere Kondensatoren für eine bidirektionale und/oder differentielle Datenübertragung (60) zu bilden.
  11. Sensor (10) nach Anspruch 10, wobei die Kreisringe (62, 64) untereinander flächengleich sind.
  12. Sensor (10) nach Anspruch 6 oder 7 und einem der Ansprüche 9 bis 11, wobei die Kreisringe (62, 64) und die Windungen (56, 58) konzentrisch um die Drehachse (18) angeordnet sind, so dass die Kreisringe (62, 64) die Windungen (56, 58) umschließen.
  13. Sensor (10) nach einem der vorhergehenden Ansprüche, wobei die Übertragungseinheiten (44, 54, 56, 58) zumindest teilweise von einem Ferritmantel (68, 70) eingeschlossen sind.
  14. Sensor (10) nach einem der vorhergehenden Ansprüche, wobei die Leiterkarten (50, 52) zumindest teilweise von einer magnetischen, schlecht leitenden Abschirmung (68, 70) umgeben sind, wobei die Abschirmung (68, 70) eine Bodenplatte und eine Deckplatte sowie einen inneren und/oder äußeren Zylinder aufweist, so dass eine Drehachse (18) der Abtasteinheit (12) innerhalb des Zylinders und die Leiterkarten (50, 52) konzentrisch zu dem Zylinder sowie zwischen Bodenplatte und Deckplatte angeordnet sind.
DE202014101753.4U 2014-04-14 2014-04-14 Optoelektronischer Sensor zur Erfassung von Objekten in einem Überwachungsbereich Expired - Lifetime DE202014101753U1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE202014101753.4U DE202014101753U1 (de) 2014-04-14 2014-04-14 Optoelektronischer Sensor zur Erfassung von Objekten in einem Überwachungsbereich

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202014101753.4U DE202014101753U1 (de) 2014-04-14 2014-04-14 Optoelektronischer Sensor zur Erfassung von Objekten in einem Überwachungsbereich

Publications (1)

Publication Number Publication Date
DE202014101753U1 true DE202014101753U1 (de) 2015-07-17

Family

ID=53782793

Family Applications (1)

Application Number Title Priority Date Filing Date
DE202014101753.4U Expired - Lifetime DE202014101753U1 (de) 2014-04-14 2014-04-14 Optoelektronischer Sensor zur Erfassung von Objekten in einem Überwachungsbereich

Country Status (1)

Country Link
DE (1) DE202014101753U1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200016942A (ko) * 2017-06-07 2020-02-17 헤사이 포토닉스 테크놀로지 씨오., 엘티디 멀티 라인 레이저 레이더
JP2021505889A (ja) * 2017-12-07 2021-02-18 アウスター インコーポレイテッド 回転コンパクト光測距システム
DE102021212150A1 (de) 2021-10-27 2023-04-27 Mahle International Gmbh Verfahren zum Berechnen der Position einer Leiterbahn auf einer Leiterplatte
DE102021212145A1 (de) 2021-10-27 2023-04-27 Mahle International Gmbh Elektrischer Drehtransformator zur induktiven Energieübertragung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340756A1 (de) 1992-12-08 1994-06-09 Sick Optik Elektronik Erwin Laserabstandsermittlungsvorrichtung
DE19757849B4 (de) 1997-12-24 2004-12-23 Sick Ag Scanner und Vorrichtung zur optischen Erfassung von Hindernissen, sowie deren Verwendung
EP2388619A1 (de) 2010-05-20 2011-11-23 Leuze electronic GmbH + Co. KG Optischer Sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340756A1 (de) 1992-12-08 1994-06-09 Sick Optik Elektronik Erwin Laserabstandsermittlungsvorrichtung
DE19757849B4 (de) 1997-12-24 2004-12-23 Sick Ag Scanner und Vorrichtung zur optischen Erfassung von Hindernissen, sowie deren Verwendung
EP2388619A1 (de) 2010-05-20 2011-11-23 Leuze electronic GmbH + Co. KG Optischer Sensor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EN13849
EN61496

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200016942A (ko) * 2017-06-07 2020-02-17 헤사이 포토닉스 테크놀로지 씨오., 엘티디 멀티 라인 레이저 레이더
KR102641651B1 (ko) * 2017-06-07 2024-02-29 헤사이 테크놀로지 씨오., 엘티디. 멀티 라인 레이저 레이더
EP3637145A4 (de) * 2017-06-07 2021-03-17 Hesai Photonics Technology Co., Ltd Mehrlinien-laserradar
KR20240000630A (ko) * 2017-06-07 2024-01-02 헤사이 테크놀로지 씨오., 엘티디. 멀티 라인 레이저 레이더
KR102616109B1 (ko) * 2017-06-07 2023-12-21 헤사이 테크놀로지 씨오., 엘티디. 멀티 라인 레이저 레이더
US11543503B2 (en) 2017-06-07 2023-01-03 Hesai Technology Co., Ltd. Multi-line laser radar
US11353556B2 (en) 2017-12-07 2022-06-07 Ouster, Inc. Light ranging device with a multi-element bulk lens system
US11340336B2 (en) 2017-12-07 2022-05-24 Ouster, Inc. Rotating light ranging system with optical communication uplink and downlink channels
US11300665B2 (en) 2017-12-07 2022-04-12 Ouster, Inc. Rotating compact light ranging system
US11287515B2 (en) 2017-12-07 2022-03-29 Ouster, Inc. Rotating compact light ranging system comprising a stator driver circuit imparting an electromagnetic force on a rotor assembly
JP7277461B2 (ja) 2017-12-07 2023-05-19 アウスター インコーポレイテッド 回転コンパクト光測距システム
CN113311447A (zh) * 2017-12-07 2021-08-27 奥斯特公司 旋转紧凑型光测距系统
EP3721262A4 (de) * 2017-12-07 2021-08-18 Ouster, Inc. Rotierendes kompaktes lichtentfernungsmesssystem
JP2021505889A (ja) * 2017-12-07 2021-02-18 アウスター インコーポレイテッド 回転コンパクト光測距システム
DE102021212150A1 (de) 2021-10-27 2023-04-27 Mahle International Gmbh Verfahren zum Berechnen der Position einer Leiterbahn auf einer Leiterplatte
DE102021212145A1 (de) 2021-10-27 2023-04-27 Mahle International Gmbh Elektrischer Drehtransformator zur induktiven Energieübertragung

Similar Documents

Publication Publication Date Title
DE102014105261B3 (de) Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich
EP1186087B1 (de) System für eine vielzahl von näherungssensoren aufweisende maschine sowie näherungssensor und primärwicklung hierzu
EP3070723B1 (de) Vorrichtung zur übertragung von daten und energie zwischen zwei sich relativ zueinander bewegenden gegenständen
DE102014100301B3 (de) Optoelektronischer Sensor zur Erfassung von Objekten in einem Überwachungsbereich
EP2902800B1 (de) Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich
DE202014101753U1 (de) Optoelektronischer Sensor zur Erfassung von Objekten in einem Überwachungsbereich
DE102004051170B4 (de) Computertomographiegerät mit gleichzeitiger kontaktloser elektrischer Übertragung von Versorgungsspannung und Mess- und Steuerdaten
DE3043026A1 (de) Schleifenantenne fuer ein elektronisches sicherheitssystem
EP1714162A1 (de) Spulenarray für die bildgebende magnetische resonanz mit ver ringerter kopplung zwischen benachbarten spulen
EP3179638A1 (de) Vorrichtung zur kontaktlosen übertragung von daten und zur ermittlung einer winkeländerung zwischen zwei sich relativ zueinander bewegenden gegenständen
DE4125145A1 (de) Uebertragungseinrichtung
DE102017211491A1 (de) Drehwinkelsensoranordnung, LiDAR-System, Arbeitsvorrichtung und Betriebsverfahren für ein LiDar-System
DE102017211490A1 (de) Drehwinkelsensoranordnung, LiDAR-System, Arbeitsvorrichtung und Betriebsverfahren für ein LiDAR-System
DE19926799A1 (de) Verfahren und Anordnung zur drahtlosen Versorgung einer Vielzahl Sensoren mit elektrischer Energie, Sensor hierzu sowie System für eine eine Vielzahl von Sensoren aufweisende Maschine
DE3915188C1 (en) Wireless interrogation and current supply method for switches - using capacitative and inductive elements corresp. to sec. winding of transformer
EP3293546B1 (de) Optoelektronischer sensor und verfahren zum abstützen einer haube eines sensors
DE102016120389B3 (de) Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich
EP3489179B1 (de) Sensor zum erfassen mindestens einer kante einer laufenden warenbahn
DE102015121452B3 (de) Vorrichtung zur kontaktlosen Übertragung von Daten und zur Ermittlung einer Winkeländerung zwischen zwei sich relativ zueinander bewegenden Gegenständen
EP3848721B1 (de) Optoelektronischer sensor und verfahren zur erfassung von objekten
EP3179637A2 (de) Vorrichtung zur kontaktlosen übertragung von daten und zur ermittlung einer winkeländerung zwischen zwei sich relativ zueinander bewegenden gegenständen
EP3104128B1 (de) Vorrichtung zur kontaktlosen übertragung von daten und zur ermittlung einer winkeländerung zwischen zwei sich relativ zueinander bewegenden gegenständen
DE102021108318B4 (de) Optoelektronischer Sensor
DE202016105042U1 (de) Optoelektronischer Sensor
DE202020100126U1 (de) Optoelektronischer Sensor zur Erfassung von Objekten

Legal Events

Date Code Title Description
R207 Utility model specification
R156 Lapse of ip right after 3 years