DE202009003201U1 - Rotor blade of a wind turbine - Google Patents

Rotor blade of a wind turbine Download PDF

Info

Publication number
DE202009003201U1
DE202009003201U1 DE202009003201U DE202009003201U DE202009003201U1 DE 202009003201 U1 DE202009003201 U1 DE 202009003201U1 DE 202009003201 U DE202009003201 U DE 202009003201U DE 202009003201 U DE202009003201 U DE 202009003201U DE 202009003201 U1 DE202009003201 U1 DE 202009003201U1
Authority
DE
Germany
Prior art keywords
rotor blade
wind turbine
underside
transition
blade according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE202009003201U
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INST KONSTRUKTION und VERBUNDB
Institut fur Konstruktion und Verbundbauweisen Ev
Original Assignee
INST KONSTRUKTION und VERBUNDB
Institut fur Konstruktion und Verbundbauweisen Ev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INST KONSTRUKTION und VERBUNDB, Institut fur Konstruktion und Verbundbauweisen Ev filed Critical INST KONSTRUKTION und VERBUNDB
Priority to DE202009003201U priority Critical patent/DE202009003201U1/en
Publication of DE202009003201U1 publication Critical patent/DE202009003201U1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Rotorblatt für Windkraftanlagen aus Faserverbundkunststoffen (FVK), dadurch gekennzeichnet, dass Ober- und Unterseite des Rotorblatts aus einem Laminat mit durchgehenden Fasern bestehenRotor blade for wind turbines made of fiber reinforced plastics (FRP), characterized in that the top and bottom of the rotor blade consist of a laminate with continuous fibers

Figure 00000001
Figure 00000001

Description

Rotorblätter für Windkraftanlagen werden nach Stand der Technik aus Faserverbundkunststoffen (FVK) hergestellt. Das Rotorblatt ist ein nach aerodynamischen Kriterien geformter Körper, der innen hohl oder mit leichtem Kernmaterial wie z. B. Schaum gefüllt ist. Dabei werden zuerst zwei Halbschalen hergestellt, ausgehärtet und anschließend auf einem umlaufenden Klebflansch miteinander verklebt. Diese Bauweise hat mehrere gravierende Nachteile:

  • – Die Herstellung in mehreren Schritten ist zeitaufwändig.
  • – Klebnähte sind Schwachstellen, insbesondere an der konstruktiv-funktional bedingt schmalen Klebnaht der Anströmseite kommt es regelmäßig zu Bauteilversagen.
  • – Die lastaufnehmenden Verstärkungsfasern im Werkstoff sind gerade an der kritischsten Stelle, der Klebnaht, unterbrochen.
Rotor blades for wind turbines are made according to the prior art of fiber reinforced plastics (FRP). The rotor blade is a body formed according to aerodynamic criteria, the inside hollow or with lightweight core material such. B. foam is filled. First, two half shells are produced, cured and then glued together on a circumferential adhesive flange. This construction has several serious disadvantages:
  • - The production in several steps is time consuming.
  • - Adhesive seams are weak points, especially on the constructive-functional conditionally narrow seam of the inflow side, there are regularly component failure.
  • - The load-absorbing reinforcing fibers in the material are just at the most critical point, the seam, interrupted.

Mit der Erfindung wird ein Rotorblatt vorgeschlagen, dass in einem Prozessschritt hergestellt wird und die beschriebenen Nachteile nicht mehr aufweist. Das wird vor allem dadurch erreicht, dass beide Halbschalen aus einem zusammenhängenden Laminat gebildet werden und die Klebnähte entfallen. An der Anströmseite wird der Übergang von Oberschale zu Unterschale von durchgehenden Faserlagen gebildet. An der Abströmseite bilden die Laminatlagen von Ober- und Unterschale eine Überlappung mit doppelter Wandstärke.With According to the invention, a rotor blade is proposed that in one process step is produced and no longer has the disadvantages described. This is achieved mainly by the fact that both half-shells off a coherent laminate are formed and the adhesive seams omitted. On the upstream side becomes the transition formed from upper shell to lower shell of continuous fiber layers. On the downstream side The laminate layers of the upper and lower shell form an overlap with double wall thickness.

Rotorblätter der beschriebenen Bauweise sind kostengünstiger herzustellen, leichter und steifer als vergleichbare Rotorblätter bekannter Bauweise. Insbesondere das Versagensverhalten ist durch die geringe Neigung zu Ermüdungsschäden verbessert. Die Lebensdauer steigt bei hoher Zuverlässigkeit.Rotor blades of the described construction are cheaper to manufacture, easier and stiffer than comparable rotor blades of known construction. Especially The failure behavior is improved by the low tendency to fatigue damage. The Life increases with high reliability.

Ein Ausführungsbeispiel der Erfindung wird in 1 erläutert:
In 1 ist der Schnitt durch ein Rotorblatt dargestellt. Das Rotorblatt wird gebildet aus der Oberseite 1 und der Unterseite 2. Der Übergang zwischen Ober- und Unterseite auf der Anströmseite 6 ist eine nahtlose Verrundung 5 in Werkstoffdicke, auf der Abströmseite eine homogene Überlappung 4 in doppelter Werkstoffdicke. Ober- und Unterseite bilden einen Hohlraum 3.
An embodiment of the invention is shown in FIG 1 explains:
In 1 the section is represented by a rotor blade. The rotor blade is formed from the top 1 and the bottom 2 , The transition between the top and bottom on the upstream side 6 is a seamless fillet 5 in material thickness, on the downstream side a homogeneous overlap 4 in double material thickness. Top and bottom form a cavity 3 ,

Claims (4)

Rotorblatt für Windkraftanlagen aus Faserverbundkunststoffen (FVK), dadurch gekennzeichnet, dass Ober- und Unterseite des Rotorblatts aus einem Laminat mit durchgehenden Fasern bestehenRotor blade for wind turbines made of fiber reinforced plastics (FRP), characterized in that the top and bottom of the rotor blade consist of a laminate with continuous fibers Rotorblatt nach Anspruch 1 dadurch gekennzeichnet, dass der Übergang (5) zwischen Oberseite (1) und Unterseite (2) auf der Anströmseite (6) nahtlos in Werkstoffdicke ausgebildet istRotor blade according to claim 1, characterized in that the transition ( 5 ) between top ( 1 ) and underside ( 2 ) on the upstream side ( 6 ) is formed seamlessly in material thickness Rotorblatt nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass der Übergang (4) zwischen Oberseite (1) und Unterseite (2) auf der Abströmseite homogen in doppelter Werkstoffdicke ausgebildet istRotor blade according to one of the preceding claims, characterized in that the transition ( 4 ) between top ( 1 ) and underside ( 2 ) is formed on the downstream side homogeneously in double material thickness Rotorblatt nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass Oberseite (1) und Unterseite (2) einen Hohlraum (3) bilden.Rotor blade according to one of the preceding claims, characterized in that upper side ( 1 ) and underside ( 2 ) a cavity ( 3 ) form.
DE202009003201U 2009-03-05 2009-03-05 Rotor blade of a wind turbine Expired - Lifetime DE202009003201U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE202009003201U DE202009003201U1 (en) 2009-03-05 2009-03-05 Rotor blade of a wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202009003201U DE202009003201U1 (en) 2009-03-05 2009-03-05 Rotor blade of a wind turbine

Publications (1)

Publication Number Publication Date
DE202009003201U1 true DE202009003201U1 (en) 2009-06-25

Family

ID=40794881

Family Applications (1)

Application Number Title Priority Date Filing Date
DE202009003201U Expired - Lifetime DE202009003201U1 (en) 2009-03-05 2009-03-05 Rotor blade of a wind turbine

Country Status (1)

Country Link
DE (1) DE202009003201U1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110135488A1 (en) * 2009-12-01 2011-06-09 Erik Grove-Nielsen Fibre-Reinforced Plastic Material
DE102013200287A1 (en) * 2013-01-11 2014-07-17 Bayerische Motoren Werke Aktiengesellschaft Method for the production of a structural component of a vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110135488A1 (en) * 2009-12-01 2011-06-09 Erik Grove-Nielsen Fibre-Reinforced Plastic Material
DE102013200287A1 (en) * 2013-01-11 2014-07-17 Bayerische Motoren Werke Aktiengesellschaft Method for the production of a structural component of a vehicle

Similar Documents

Publication Publication Date Title
EP1832733B1 (en) Inlet cone made of a fibre composite for a gas turbine plant and method for its manufacture
US8753092B2 (en) Rotor blade for a wind turbine and methods of manufacturing the same
US10590945B2 (en) Fiber composite material and preform and fan blade made therefrom
CN105473847A (en) Wind turbine blade with sections that are joined together
DK2904262T3 (en) FIBER COMPOSITION COMPONENT FOR THE ROTOR BLADE IN A WIND TURBINE
EP3026260A1 (en) Methods of manufacturing rotor blade components for a wind turbine
US10619622B2 (en) Wind turbine blade with hybrid spar cap and associated method for making
US10690111B2 (en) Wind turbine rotor blade
US7963747B2 (en) Braided wind turbine blades and method of making same
US10465653B2 (en) Wind turbine blade with hybrid spar cap and associated method for making
DK201570507A1 (en) METHODS OF MANUFACTURING ROTOR BLADES OF A WIND TURBINE
US20120174401A1 (en) Highly Reliable, Low Cost Wind Turbine Rotor Blade
JP5503481B2 (en) Wing-like structure using fiber-reinforced composite material and manufacturing method thereof
DE102007036917A1 (en) Rotor blade for wind power plant i.e. floating wind power plant, has clamping member arranged on pillar such that effective cross section holds additional compressive strength to anticipate stress-dependent deformation due to wind load
WO1998008370A3 (en) Composite turbine rotor
DE102010002432A1 (en) Rotor blade for a wind turbine, wind turbine and method for producing a rotor blade
JP2011038520A (en) Method to manufacture at least component of blade of wind-turbine
JP2022538402A (en) One-piece pultruded composite profile and method for manufacturing same
EP3032094B1 (en) Spar cap for a wind turbine rotor blade
WO2012104022A1 (en) Semi-finished product for the production of a fibre-reinforced component of a wind energy plant, in particular a rotor blade belt
US20110052404A1 (en) Swept blades with enhanced twist response
DE202009003201U1 (en) Rotor blade of a wind turbine
CN108883588A (en) Embedded components for wind turbine blade
EP3445970B1 (en) Heavy-duty upgrading method for rotor blades of existing wind turbines
EP2716434B1 (en) Spar cap for a rotor blade of a wind turbine and method of manufacturing a spar cap

Legal Events

Date Code Title Description
R207 Utility model specification

Effective date: 20090730

R150 Utility model maintained after payment of first maintenance fee after three years

Effective date: 20121010

R151 Utility model maintained after payment of second maintenance fee after six years
R158 Lapse of ip right after 8 years