DE1997108U - DEVICE FOR CONTACTLESS MEASUREMENT OF HUMIDITY IN MOVING MEASUREMENT TRACKS - Google Patents

DEVICE FOR CONTACTLESS MEASUREMENT OF HUMIDITY IN MOVING MEASUREMENT TRACKS

Info

Publication number
DE1997108U
DE1997108U DE1997108U DE1997108U DE1997108U DE 1997108 U DE1997108 U DE 1997108U DE 1997108 U DE1997108 U DE 1997108U DE 1997108 U DE1997108 U DE 1997108U DE 1997108 U DE1997108 U DE 1997108U
Authority
DE
Germany
Prior art keywords
radiation
detector
measured
measurement
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE1997108U
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frieseke and Hoepfner GmbH
Original Assignee
Frieseke and Hoepfner GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frieseke and Hoepfner GmbH filed Critical Frieseke and Hoepfner GmbH
Priority to DE1997108U priority Critical patent/DE1997108U/en
Publication of DE1997108U publication Critical patent/DE1997108U/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • G01N21/3559Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content in sheets, e.g. in paper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

GebrauchsmusterUtility model

Die Neuerung bezieht sich auf eine Einrichtung zur berührungslosen Messung der Feuchte oder der Konzentration anderer Substanzen in "bewegten Meßgutbahnen durch Beaufschlagung des Meßgutes von einer Seite her mit von der zu messenden Substanz absorbierbarer Lichtstrahlung (Heßstrahlung) und nicht absorbierbarer Lichtstrahlung (Vergleich s s tr ahlun.3) eines Strahl ens enders, durch Empfang von Teilen dieser Strahlung mit einem auf der gleichen Seite des Meßgutes angeordneten Detektor und durch elektrische Quotientenbildung aus doa empfangenen Teilen dieser Strahlungen.The innovation relates to a device for the non-contact measurement of moisture or the concentration of other substances in "moving material paths by subjecting the material to be measured from one side with light radiation that can be absorbed by the substance to be measured (hot radiation) and light radiation that cannot be absorbed (compare ss tr ahlun. 3) a beam ens Enders, by receiving portions of this radiation with an equal on the side of the material under test arranged detector and by forming the quotient of electric doa received parts of this radiation.

Bei bekannten Geräten dieser A^-t werden die vom Meßgut zurückgeworfenen Strahlungen durch integrierende optische Glieder, wie Parabolspiegel, Ulbricht-Kugeln und dergleichen, gesammelt und dann dem Detektor zugefiihit. Dadurch wird ein hoher optischer Wirkungsgrad erzielt. Es stellt sich jedoch heraus, daß die üeßgenauigksit dieser bekannten Einrichtungen für höhere Anforderungen nicht ausreicht. Insbesondere ergehen sich dann Verfälschungen des Meßwertes, wenn Hoßgüter unterschiedlicher Oberflächenbeschaffenheit, Ξ.Β. ssgsiisiYifits gestrichene Papiere gamt>saen werden. Bt,i gleichen Pfouchtswerts.i is Keßgut werden hier unterschiedliche Meßwerte angezeigt, je naohdom, welohe Farbe der Aufstrich besitzt. Der Meßwert wird somit von der F&rbt&mperatur der Papieroberfläqhe beeinflußt. In known devices of this A ^ -t are thrown back from the material to be measured Radiations collected by integrating optical members such as parabolic mirrors, integrating spheres and the like then fed to the detector. This results in a high optical efficiency achieved. It turns out, however, that the measuring accuracy this known devices is not sufficient for higher requirements. In particular, there are then falsifications of the measured value, if high-quality goods with different surface properties, Ξ.Β. ssgsiisiYifits coated papers all together. Bt, i same Pfouchtswerts.i is Keßgut different measured values are displayed here, depending on the color of the spread. The measured value is thus influenced by the color of the paper surface.

347347

Es ist Aufgabe der vorliegenden Neuerung, eine Meßeinrichtung dor geschilderten Art anzugeben, die von Haus aus eine wesentlich höhere Moßgenauigkeit bei in der Regel geringerem Aufwand besitzt. jIt is the object of the present innovation to provide a measuring device dor described type, which is inherently an essential higher measuring accuracy with usually less effort owns. j

Neuorungsgomaß wird dios dadurch erreicht, daß der Detektor mit optisohen Kolliiaationsraitteln an sich bekannter Art zum fNeuorungsgomaß is achieved in that the detector with optisohen collation means of a known type for f

bevorzugten Empfang aohsparalxel einfallender Strahlen ausgerüstet iot, daß die optische Achse des Detoktors zur Auftreffflächs der vos Strahlenssndsr ausgesendeten Strahlung auf dom #1 Meßgut hin gerichtet ist und daß 'Iiο optischen Achsen von !The preferred reception of incident rays is equipped so that the optical axis of the detector is directed towards the impingement surface of the radiation emitted by the radiation on dom # 1 and that 'Iiο optical axes of!

Strahlensender und Detektor mit dö£ MaßgutobarflSohe Winkel !Radiation transmitter and detector with small size bar, so angles!

bilden, die in ihrer Größe voneinander abweichen. jthat differ in size from each other. j

In Abwendung vom bekannten Stand der Technik werden bei der Neuerung an Stelle der integrierenden optischen Glieder konträr hierzu ausgebildete Mittel verwendet, nämlich ausgesprochene iras^ blendglieder, die die einfallende Strahlung auf die achsparallel ankommenden Strahlen begrenzen. Im Zusammenhang mit der genannten Ausrichtung der optischen Achsen von Strahlensender und Detektor wird dadurch erreicht, daß einerseits die von der Oberfläche des Meßgutes reflektierten Strahlungsanteile kaum erfaßt werden} daß ; aber andererseits die von den Materialmolekulen im Meßgut gestreuten Strahlungsanteile, also die durch Remission zurückgeworfenen Strahlen besonders gut erfaßt werden. Hierdurch wird bewirkt, daß das vom Detektor abgegebene Signal tatsächlich nur von den remittierten, nicht aber von den reflektierten Strahlungsanteilen bestimmt wird. Die Oberflächenart des Meßgutes kann deswegen von Haus aus kaum einen verfälschenden Einfluß ausüben. Bei Einrichtungen mit optischen Integrationsmitteln hingegen wird, wie leicht einzusehen ist, der Detektor sowohl von aer reflektierten, als auch von der remittierten Strahlung beaufschlagt. So wurde beispielsweise bei einem bestimmten Papier 80 'fo reflektierte undIn a departure from the known prior art, in the innovation, instead of the integrating optical members, means which are designed contrary to this are used, namely pronounced iras ^ glare members, which limit the incident radiation to the rays arriving parallel to the axis. In connection with the aforementioned alignment of the optical axes of the radiation transmitter and detector, the result is that, on the one hand, the radiation components reflected from the surface of the material to be measured are hardly detected} that ; on the other hand, the radiation components scattered by the material molecules in the material to be measured, i.e. the rays reflected back by remission, are particularly well recorded. This has the effect that the signal emitted by the detector is actually only determined by the remitted, but not by the reflected radiation components. The type of surface of the material to be measured can therefore hardly exert a distorting influence. In the case of devices with optical integration means, however, as is easy to see, the detector is acted upon by both reflected and remitted radiation. For example, on a certain paper, 80 'fo was reflected and

nur 20 fo remittierte Strahlung gemessen, wodurch die Meßwertverfälschungen "bsi Verwendung der bekannton Integrationaglieder leicht erklärbar sind. Bei der Neuerung· hingegen läßt sich leicht ein Verhältnis von 1 % reflektierter au 99 # reraittiertor jtrahlung für den Detektor erzielen»20 fo diffusely reflected radiation is measured, whereby the measured value falsifications "bsi using the bekannton Integrationaglieder are easily explained. In the innovation · on the other hand, a ratio of 1% is easily reflected au 99 # reraittiertor jtrahlung for the detector to achieve"

Sie Neuerung wird nachstehend on Hand dec in der Zeichnung schematisiert veranschaulichten ÄusführungsbeispieiesThe innovation is schematized below on hand dec in the drawing illustrated embodiments

Von einen Motor 1 wird oino Sohoibo 2 gomiiß Pfeil 3 gedreht. Die Scheibe 2 trägt die beiden Sohraalband-Intorforenzfilter 4 und 5·By a motor 1 oino Sohoibo 2 is rotated by arrow 3. the Disk 2 carries the two Sohraalband internal filters 4 and 5

über der Soheibo 2 ist dor Strahlenaender 6 angeordnet. Er enthält im wesentlichen eino Lichtquelle 7> einen Reflektor 8 und einen Kondensor 9* Die Anordnung ist so getroffen, daß den Sendor 6 im vssentlichen oino parallel gerichtete Strahlung 10 verliißt. Aus dieser filtern die Schmalband-Interferenzfilter 4 und 5 abwechselnd spezifische Wellenlängen aus, deren Größe von der Art der zu messenden Substanz abhängt, die sich im Meßgut 11 befindet, welchetä sich gemäß Pfeil 12 bewegt. Die Wellenlängen werden dabei in bekannter Weise so gewählt, daß die eine von der zu messenden Substanz absorbiert wird, die andere hingegen nicht.The beam transmitter 6 is arranged above the Soheibo 2. He contains essentially a light source 7> a reflector 8 and a condenser 9 * The arrangement is such that the transmitter 6 essentially parallel radiation 10 leaves. The narrow-band interference filters 4 and 5 filter from this alternately specific wavelengths, the size of which depends on the type of substance to be measured, which is located in the material to be measured 11, which moves according to arrow 12. The wavelengths are thereby chosen in a known manner so that one is absorbed by the substance to be measured, while the other is not.

Der Detektorkopf 13 enthält ein Halterungsteil 14 fite den licht-'*] empfindlichen Detektor 15· Dieser ist mit einer an sich beliebigen Einrichtung verbunden, die a\is den abwechselnd abgegebenen Signalen den Quotienten als Meßwert bildRt. Vor dem Detektor 15 ist ein Breitband-Interferenzfilter 16 angeordnet und vor diesem sine Lochblende 17· Ihre Öffnung entspricht im wesentlichen der Größe der lichtempfindlichen Fläche des Detektors 15. Dadurch wird bewirkt, daß hauptsächlich nur achsparallele Strahlen 18 auf den Detektor gelangen.The detector head 13 contains a holder part 14 fit the light - '*] sensitive detector 15 · This is with any in itself Connected device, the a \ is the alternately emitted signals forms the quotient as a measured value. In front of the detector 15 is a Broadband interference filter 16 arranged and in front of this sine pinhole 17 · Its opening corresponds essentially to the size of the light-sensitive area of the detector 15. This has the effect of that mainly only axially parallel rays 18 reach the detector.

Wie ersichtlich, ist die optische Achse des Detektors zur Auftrefffläche der vom Sender 6 ausgesendeten Strahlung 10 auf des MeßgutAs can be seen, the optical axis of the detector is to the impact surface the radiation 10 emitted by the transmitter 6 on the material to be measured

i997tO8i997tO8

hin gerichtet. Weiter bilden die optischen Achsen von Sender und Detektor Winkel 19 uttd 20 mit dem Meßgut 11, die in ihrer Größe voneinander abweichen*directed towards. Next, the optical axes of the transmitter and detector form angles 19 uttd 20 with the material to be measured 11, which in their Size differ from each other *

Die Neuerung ist selbstverständlich nicht auf die gezeichnete Ausführungsform beschränkt. So kann boispiolowoiae an Stelle der einfachen Lochblende 17 ein LinaonoyDtom on sich bekannter ArtThe innovation is of course not on the drawn one Embodiment limited. So can boispiolowoiae in place of the simple perforated diaphragm 17 a LinaonoyDtom of a known type

den Detektor 15 fokussiert. Ebenso kann die relative Lage von Detektorkopf 13 und Sender 6 im Rahmen der neuerungagemäßen Vorschrift anders gestaltgrfc sein, uoispielgWeAse auch so, daß beide Strahlungen 10 und 18 in der Zeichnung von bzw. nach rechts oben verlaufen und iia MeSg1Ut in eines spitzen Winkel konvergieren. Auch hier sind die V/inkol 20 und 19 unterschiedlich und an der Oberfläche des Meßgutes 11 reflektierte» also nicht von den Materialmolekülen remittierte Strahlung kann nur in verschwindend geringem Maße auf den Detektor 15 Γ"angen.the detector 15 focused. Similarly, the relative position of the detector head 13 and transmitter 6 may be different gestaltgrfc within the neuerungagemäßen provision uoispielgWeAse also so that the two radiations 10 and 18 in the drawing from or to the right extend above and converge iia MESG 1 Ut in an acute angle . Here, too, the V / inkol 20 and 19 are different and radiation reflected on the surface of the material to be measured 11, ie radiation not remitted by the material molecules, can only reach the detector 15 "to a negligibly small extent.

Claims (1)

S c h u t zanspruch tS c h u t claim t Einrichtung zur berührungslosen Messung der Feuchte oder der Konzentration anderer Substanzen in bewegten Meßgutbahnen durch Beaufschlagung des Meßgutes von einer Seite her mit von der zu messenden Substanz absorbierbarer Lichtstrahlung (Heßstrahlung) und nicht absorbierbarer Lichtstrahlung (Vergleichs strahlung) eines Strahlensenders, durch Empfang von Teilen dieser Strahlung mit einem auf der gleichen Seite des MeSgutes angeordneten Strahlungsdetektor und durch elektrische Quotientenbildung aus den empfangenen Teilen dieser Strahlungen, dadurch gekennzeichnet, daß der Detektor (15) mit optischen Kollimationsmitteln (17) an sich bekannter Axt zum bevor7Ugten Empfang aohaparallel einfallender Sitrahlen (18) ausgerüstet ist, daß die optische Achse den Detektors zif Auftrefffläche £er v^m Strahlensender ausgesendeten Strahlung auf dem Heßgut hin gerichtet ist und daß die optischen Achsen von Strahlensender und Detektor mit der Meßgutoberfläche Winkel (19, 20) bilden, die in ihrer Größe voneinander abweichen.Device for the non-contact measurement of moisture or the concentration of other substances in moving material paths by subjecting the material to be measured from one side with light radiation (hot radiation) that can be absorbed by the substance to be measured and non-absorbable light radiation (comparison radiation) from a radiation transmitter by receiving parts of this radiation with a radiation detector arranged on the same side of the material to be measured and by forming electrical quotients from the received parts of this radiation, characterized in that the detector (15) is equipped with optical collimation means (17) known per se for the prior reception of aohaparallel incident beam (18) is that the optical axis of the detector zif impact surface £ er v ^ m radiation emitted radiation is directed towards the Heßgut and that the optical axes of the radiation transmitter and detector form angles (19, 20) with the surface of the material to be measured, the size of which v differ from each other.
DE1997108U 1968-07-26 1968-07-26 DEVICE FOR CONTACTLESS MEASUREMENT OF HUMIDITY IN MOVING MEASUREMENT TRACKS Expired DE1997108U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1997108U DE1997108U (en) 1968-07-26 1968-07-26 DEVICE FOR CONTACTLESS MEASUREMENT OF HUMIDITY IN MOVING MEASUREMENT TRACKS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1997108U DE1997108U (en) 1968-07-26 1968-07-26 DEVICE FOR CONTACTLESS MEASUREMENT OF HUMIDITY IN MOVING MEASUREMENT TRACKS

Publications (1)

Publication Number Publication Date
DE1997108U true DE1997108U (en) 1968-11-21

Family

ID=33438384

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1997108U Expired DE1997108U (en) 1968-07-26 1968-07-26 DEVICE FOR CONTACTLESS MEASUREMENT OF HUMIDITY IN MOVING MEASUREMENT TRACKS

Country Status (1)

Country Link
DE (1) DE1997108U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19701904A1 (en) * 1997-01-21 1998-07-23 Axel Hemmer System for quantitative determining of surface moisture of esp. hygiene articles such as baby diapers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19701904A1 (en) * 1997-01-21 1998-07-23 Axel Hemmer System for quantitative determining of surface moisture of esp. hygiene articles such as baby diapers
DE19701904C2 (en) * 1997-01-21 2002-02-14 Michael Tummuscheit Device for the quantitative determination of surface moisture using a combined method

Similar Documents

Publication Publication Date Title
DE3034544C2 (en)
DE1958101C3 (en) Method and device for the qualitative determination of microscopic particles contained in a carrier medium
DE2521934B2 (en) Device for determining the concentrations of components in an exhaust gas mixture
DE2739585A1 (en) SPECTROPHOTOMETER
EP0458223A2 (en) Apparatus for measuring the absorption of transparent probes having an unfavourable form
DE2019433A1 (en) spectrophotometer
DE2851455A1 (en) COMBINED GONIOPHOTOMETER AND REFLECTOMETER (GONIOREFLECTOMETER) FOR THE DIFFERENTIATED QUANTITATIVE EVALUATION OF THE GLOSS CAPACITY OF SURFACES, IN PARTICULAR ORGANIC COATINGS
DE1498762A1 (en) Calibration standards for measuring devices for the determination of the moisture content in organic carriers
DE1964388A1 (en) Photoelectric measuring device
DE3831907C1 (en)
DE2247205C3 (en) Device for comparing the spectral reflectance of colored surfaces
DE1997108U (en) DEVICE FOR CONTACTLESS MEASUREMENT OF HUMIDITY IN MOVING MEASUREMENT TRACKS
DE2834983B2 (en) Measuring head for illuminance measuring devices
DE1598420B2 (en) METHOD AND DEVICE FOR DETERMINING THE AMOUNT OF FREE UNDISOLATED WATER IN A LIQUID
DE2653230A1 (en) RADIATION DETECTOR
DE1598467B1 (en) DEVICE FOR CONTACTLESS MEASUREMENT OF HUMIDITY OR THE CONCENTRATION OF OTHER SUBSTANCES IN MOVING BALANCES
DE1772389A1 (en) Double beam photometer
CH506067A (en) Device for the non-contact measurement of the concentration of substances in the material to be measured, which passes through a path
DE2546164A1 (en) DETECTOR FOR INFRARED ANALYZER
DE2559806C3 (en) Device for determining the concentration of components of an exhaust gas mixture consisting of various gases and possibly smoke particles
DE19626187C2 (en) Method and arrangement for the detection of objects
DE2905727A1 (en) ARRANGEMENT FOR MEASURING THE PROPERTIES DETERMINING THE GLOSS POWER OF SURFACES
DE1797327C2 (en) Device for measuring the optical reflectivity or the transmittance. Eliminated from: 1622484
DE1120750B (en) Arrangement for the separate detection of specular reflection and scattered reflection with optical scanning of smooth surfaces
DE1924311C3 (en) Device for measuring the refractive index of liquids