DE19943720A1 - Solar cell module; has serially interconnected part-cells separated by grooves for their insulation - Google Patents

Solar cell module; has serially interconnected part-cells separated by grooves for their insulation

Info

Publication number
DE19943720A1
DE19943720A1 DE19943720A DE19943720A DE19943720A1 DE 19943720 A1 DE19943720 A1 DE 19943720A1 DE 19943720 A DE19943720 A DE 19943720A DE 19943720 A DE19943720 A DE 19943720A DE 19943720 A1 DE19943720 A1 DE 19943720A1
Authority
DE
Germany
Prior art keywords
trench
layer
area
solar cell
solar cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19943720A
Other languages
German (de)
Inventor
Uwe Kerst
Hans-Guenther Wagemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAGEMANN HANS GUENTHER
Original Assignee
WAGEMANN HANS GUENTHER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAGEMANN HANS GUENTHER filed Critical WAGEMANN HANS GUENTHER
Priority to DE19943720A priority Critical patent/DE19943720A1/en
Publication of DE19943720A1 publication Critical patent/DE19943720A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The series-connected part-cells of the solar cell module on a support disc (1) are structured by a separating groove (4). Conductive contact region layers of first conductivity are located on both flanks of the groove are located .The contact region layer of the one side flank of minimum width on the flat surface of a semiconductor layer (3) ends parallel to the groove edge. The contact region layer of a second conductivity on this side of the groove is located fully on the top surface of the semiconductor layer, separated from the contact region layer.

Description

Die Erfindung bezieht sich auf verschaltete Dünnschichtsolar­ zellen, insbesondere auf die Art der elektrischen Verbindung seriell verschalteter Teil-Solarzellen auf einem Substrat, die durch Trenngräben voneinander isoliert sind.The invention relates to interconnected thin-film solar cells, especially on the type of electrical connection serial connected partial solar cells on a substrate, the are isolated from one another by separating trenches.

Aus ökonomischen Gründen zielt die Herstellung von Solarzellen für den Massenbedarf auf eine möglichst einfache Technologie. Als Bestandteil einer solchen ist das Einbringen von Trenngräben zur elektrischen Isolation der Teil-Solarzellen voneinander ein gebräuchliches Verfahren. Solarzellen mit Trenngräben sind z. B. in den Patentschriften EP 0232749 A1, DE 37 27 825 A1 und EP 0334111 A1 beschrieben. In der Schrift DE 196 51 655 wird diese Art der Trenngrabenherstellung wegen der dabei möglicherweise auftretenden Störungen durch den mechanischen Materialabtrag kritisiert. Die Technologien der Grabenherstellung sind aber heutzutage so weit entwickelt, daß das Argument der Fehlerhaf­ tigkeit nicht mehr relevant ist. Von der Einfachheit und Wirt­ schaftlichkeit der mechanischen Trennverfahren her sind diese für eine kostensparende Herstellung ausgesprochen günstig, d. h. besser als durch aufwendige Umwandlung von in den aneinander­ grenzenden Bereichen der Teil-Solarzellen vorhandenem Material in isolierendes Material, wie das in der DE 196 51 655 beschrie­ ben ist. Nachteile ergeben sich bei Trenngrabenstrukturen auf eine andere Weise: Im Gebiet der Trenngräben erfolgt die elek­ trische Verbindung der Teil-Solarzellen durch Metallisierung. Zweckmäßigerweise ist dazu an der einen Flanke des Grabens der einen Zelle z. B. 'p' zu kontaktieren und an der anderen Flanke der benachbarten Zelle dann 'n'. Eine einseitige Aufdotierung im Grabenbereich setzt eine aufwendige Photolithographie voraus (präziser Maskenjustierer der Technologie integrierter Schaltun­ gen und einen Lack, der in seiner inhomogenen Verteilung im Gra­ ben durchbelichtet werden kann), welche die Gesamttechnologie wieder komplizierter macht und teurer werden läßt.The manufacture of solar cells is targeted for economic reasons for mass demand on the simplest possible technology. As part of such a trench is the introduction for electrical insulation of the partial solar cells from one another common procedure. Solar cells with separation trenches are e.g. B. in the patents EP 0232749 A1, DE 37 27 825 A1 and EP 0334111 A1. In the document DE 196 51 655 this Type of trenches may be due to this Malfunctions caused by mechanical material removal criticized. The technologies of trench production are, however developed so far today that the argument of error activity is no longer relevant. Of simplicity and host The mechanical separation processes are economical extremely economical for a cost-saving production, d. H. better than by converting them into each other bordering areas of the partial solar cells existing material in insulating material, such as that described in DE 196 51 655 ben is. Disadvantages arise with trench structures another way: in the area of the separating trenches, the elec trical connection of the partial solar cells by metallization. For this purpose, the one flank of the trench is expediently a cell z. B. 'p' to contact and on the other flank the neighboring cell then 'n'. A one-sided allocation in the Trench area requires complex photolithography (precise mask adjuster of technology integrated circuit and a varnish, which in its inhomogeneous distribution in the Gra ben can be exposed), which the overall technology  makes it more complicated again and makes it more expensive.

Es ist Aufgabe der Erfindung, die geschilderten Nachteile bei der Herstellung seriell verschalteter Teil-Solarzellen auf einem Substrat mit Trenngräben zwischen den Teilsolarzellen zu behe­ ben.It is an object of the invention to overcome the disadvantages described the production of series-connected partial solar cells on one Substrate with separating trenches between the partial solar cells ben.

Ziel der Erfindung ist eine vereinfachte ökonomisch verbesserte Herstellungstechnologie für die Massenproduktion von terrestri­ schen Solarzellen aus seriell verschalteten Teil-Solarzellen auf einem isolierenden Substrat.The aim of the invention is a simplified economically improved Manufacturing technology for mass production of terrestri solar cells from partially connected partial solar cells an insulating substrate.

Erfindungsgemäß wir die Aufgabe dadurch gelöst, daß der zu kon­ taktierende Bereich des einen Leitungstyps der einen Zelle und der mit diesem elektrisch durch Metallbrücken zu verbindende Bereich des anderen Leitungstyps der benachbarten Zelle angren­ zend an das Grabengebiet jeweils auf den ebenen, der Oberfläche der Solarzelle parallelen Bereich gelegt ist, wobei das Graben­ gebiet im Ganzen entweder zum Bereich des einen oder des anderen Leitungstyps gehört. Damit sind die Schwierigkeiten des photo­ lithographischen Verfahrensschrittes im Grabengebiet beseitigt, da so die elektrisch zu verbindenden benachbarten dotierten Kon­ taktierbereiche entgegengesetzten Leitungstyps in einer Ebene liegen.According to the invention we solved the problem in that the con tactical area of the one conduction type of the one cell and the one to be connected to it electrically by metal bridges Connect to the area of the other line type of the neighboring cell to the ditch area on the flat, surface parallel area of the solar cell is placed, the digging area as a whole either to the area of one or the other Belongs to the line type. So the difficulties of the photo lithographic process step in the trench area eliminated, since the adjacent doped cones to be electrically connected Tactical areas of opposite line types in one level lie.

Die Erfindung soll an einem Ausführungsbeispiel näher erläutert werden.The invention will be explained in more detail using an exemplary embodiment become.

Es zeigen:Show it:

Fig. 1 das Kontaktiergebiet zweier im Grabengebiet serienverschalteter Teil-Solarzellen auf einem Substrat in sche­ matischer Darstellung eines Schnittes senkrecht zum Trenngraben (technologisch ungünstig). Fig. 1 shows the contacting area of two partial solar cells connected in series in the trench area on a substrate in a schematic representation of a section perpendicular to the separating trench (technologically unfavorable).

Fig. 2 das Kontaktiergebiet zweier in erfindungsgemäßer Weise serienverschalteter Teil-Solarzellen auf einem Substrat in sche­ matischer Darstellung eines Schnittes senkrecht zum Trenngraben. Fig. 2 shows the contacting area of two partial solar cells connected in series in accordance with the invention on a substrate in a schematic representation of a section perpendicular to the separating trench.

Fig. 3 die Lage der seriellen Verschaltungszone (Ladungsverlust­ zone im Kurzschlußfall) in schematischer Darstellung senkrecht zum Trenngraben. Fig. 3 shows the location of the serial connection zone (charge loss zone in the event of a short circuit) in a schematic representation perpendicular to the trench.

In Fig. 1 befindet sich auf der Trägerscheibe (1) eine Isolationsschicht (2), und auf dieser die dünne Halbleiterschicht aus Si (3) mit dem Trenngraben (4), an dessen Flanken der p+-dotierte Bereich (5) und der n+-dotierte Bereich (6) ausgebildet sind. Alternativ kann der Träger (1) auch iso­ lierend ausgeführt, z. B. aus Keramik, sein, so daß (2) entfällt. Die der Sonnenstrahlung ausgesetzten Oberflächen der Teil-Solar­ zellen sind vorzugsweise mit einer Antireflexionsschicht (7) abgedeckt. Der metallische Kontakt der seriellen Verschaltung der beiden Teil-Solarzellen ist die Metallschicht (8).In Fig. 1 there is an insulating layer ( 2 ) on the carrier disc ( 1 ), and on this the thin semiconductor layer made of Si ( 3 ) with the separating trench ( 4 ), on the flanks of which the p + -doped region ( 5 ) and n + -doped region ( 6 ) are formed. Alternatively, the carrier ( 1 ) is also designed to be insulating, for. B. made of ceramic, so that ( 2 ) is omitted. The surfaces of the partial solar cells exposed to solar radiation are preferably covered with an anti-reflection layer ( 7 ). The metallic contact of the serial connection of the two partial solar cells is the metal layer ( 8 ).

In Fig. 2 ist die grundsätzliche Schichtanordnung ähnlich der in Fig. 1. Der n+-dotierte Bereich (6) überdeckt den gesamten Graben­ bereich (beide Grabenflanken) und endet auf dem horizontalen ebenen Oberflächengebiet neben dem Graben. Der p+-dotierte Be­ reich (5) liegt diesem im gleichen Gebiet gegenüber. Die Metal­ lisierung bedeckt auch hier den gesamten Trenngraben und reicht bis auf den p+-dotierten Kontaktbereich. Allerdings entsteht bei dieser Art der Realisierung der metallischen Verbindung eine geringfügig größere Zone, aus der im Kurzschlußfall der äußere Stromkreis keine Ladungsträger entziehen kann.In FIG. 2, the basic arrangement is similar to the layer doped in FIG. 1. The n + region (6) covers the entire trench area (both grave edges) and ends on the horizontal planar surface area adjacent to the trench. The p + -doped region ( 5 ) lies opposite this in the same area. The metalization also covers the entire separation trench and extends to the p + -doped contact area. However, this type of realization of the metallic connection creates a slightly larger zone from which the external circuit cannot withdraw charge carriers in the event of a short circuit.

Da aber bei einer Solarzelle der Abstand der beiden Teil-Solar­ zellen mehrere Millimeter beträgt und die Kontaktbreite bei 100 µm liegt, sowie unterhalb des Kontaktes keine Ladungsträgergene­ ration stattfindet, ist der Verlust durch den Kurzschlußanteil vernachlässigbar gering. But since the distance between the two partial solar cells in a solar cell cells is several millimeters and the contact width at 100 µm lies, as well as no charge carrier genes below the contact ration takes place, is the loss due to the short circuit component negligible.  

In Fig. 3 sind die Ladungsträgerströme im Volumen des Hauptberei­ ches der Teil-Solarzellen (1) und (2) und in der Verlustzone (3) schematisch dargestellt. In Fig. 3, the charge carrier flows in the volume of the main area of the partial solar cells ( 1 ) and ( 2 ) and in the loss zone ( 3 ) are shown schematically.

BezugszeichenlisteReference list Fig. 1 Fig. 1

11

Trägerscheibe
Carrier disc

22nd

Isolatorschicht
Insulator layer

33rd

Halbleiterschicht (Si)
Semiconductor layer (Si)

44th

Trenngraben
Dividing ditch

55

p+ p +

-dotierter Kontaktierbereich
-doped contacting area

66

n+ n +

-dotierter Kontaktierbereich
-doped contacting area

77

Antireflexionsschicht
Anti-reflective layer

88th

Metallkontaktschicht
Metal contact layer

Fig. 2 Fig. 2

11

Trägerscheibe
Carrier disc

22nd

Isolatorschicht
Insulator layer

33rd

Halbleiterschicht (Si)
Semiconductor layer (Si)

44th

Trenngraben
Dividing ditch

55

p+ p +

-dotierter Kontaktierbereich
-doped contacting area

66

n+ n +

-dotierter Kontaktierbereich
-doped contacting area

77

Antireflexionsschicht
Anti-reflective layer

88th

Metallkontaktschicht
Metal contact layer

Fig. 3 Fig. 3

11

Ladungsträgerstrom in der Teilsolarzelle 1
Charge carrier current in partial solar cell 1

22nd

Ladungsträgerstrom in der Teilsolarzelle 2
Charge carrier current in partial solar cell 2

33rd

Verlustzone mit Ladungsträgerverluststrom
Loss zone with charge carrier leakage current

Claims (1)

Solarzelle mit serieller Verschaltung von Teil-Solarzellen auf einer Trägerscheibe, wobei die Teil-Solarzellen durch ein Trenngabengebiet strukturiert sind, dadurch gekennzeichnet, daß leitende Kontaktbereichsschichten mit dem einen Leitungstyp an beiden Flanken des Trenn­ grabengebietes vorhanden sind und die Kontaktbereichsschicht der Flanke an einer Seite des Trenngrabens mit einer minimalen Breite auf der ebenen Oberfläche der Halbleiterschicht parallelgeführt zur Grabenkante endet und sich die Kontaktbereichsschicht mit dem anderen Leitungstyp an dieser einen Seite des Trenngrabens voll auf der ebenen Oberfläche der Halbleiterschicht, von der Kontaktbereichsschicht mit dem einer Leitungstyp getrennt gegenüber befindet.Solar cell with serial connection of partial solar cells on a carrier disc, the partial solar cells being structured by a separation area, characterized in that conductive contact area layers with the one line type are present on both flanks of the trench area and the contact area layer of the flank on one side of the Trench with a minimum width ends on the flat surface of the semiconductor layer parallel to the trench edge and the contact area layer with the other conduction type on this one side of the trench is fully on the flat surface of the semiconductor layer, separated from the contact area layer with the one conduction type.
DE19943720A 1999-09-02 1999-09-02 Solar cell module; has serially interconnected part-cells separated by grooves for their insulation Withdrawn DE19943720A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19943720A DE19943720A1 (en) 1999-09-02 1999-09-02 Solar cell module; has serially interconnected part-cells separated by grooves for their insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19943720A DE19943720A1 (en) 1999-09-02 1999-09-02 Solar cell module; has serially interconnected part-cells separated by grooves for their insulation

Publications (1)

Publication Number Publication Date
DE19943720A1 true DE19943720A1 (en) 2000-05-25

Family

ID=7921789

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19943720A Withdrawn DE19943720A1 (en) 1999-09-02 1999-09-02 Solar cell module; has serially interconnected part-cells separated by grooves for their insulation

Country Status (1)

Country Link
DE (1) DE19943720A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1787327A1 (en) * 2004-06-04 2007-05-23 Newsouth Innovations Pty Limited Thin-film solar cell interconnection
WO2008022383A1 (en) * 2006-08-22 2008-02-28 Newsouth Innovations Pty Ltd Thin-film solar module
WO2008053032A1 (en) * 2006-11-01 2008-05-08 Sulfurcell Solartechnik Gmbh Method for measuring the sheet resistance of at least two-layered electronic components via isolation trenches
NL2004065C2 (en) * 2010-01-06 2011-07-07 Stichting Energie Solar panel module and method for manufacturing such a solar panel module.
GB2549132A (en) * 2016-04-07 2017-10-11 Big Solar Ltd Aperture in a semiconductor
WO2017174996A1 (en) * 2016-04-07 2017-10-12 Big Solar Limited Gap between semiconductors
US10665737B2 (en) 2011-06-23 2020-05-26 Power Roll Limited Method of making a structure comprising coating steps and corresponding structure and devices
US10797190B2 (en) 2016-04-07 2020-10-06 Power Roll Limited Asymmetric groove
US10825941B2 (en) 2013-01-30 2020-11-03 Power Roll Limited Optoelectronic device and method of producing the same
US10964832B2 (en) 2016-10-11 2021-03-30 Power Roll Limited Capacitors in grooves

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1787327A4 (en) * 2004-06-04 2010-09-08 Newsouth Innovations Pty Ltd Thin-film solar cell interconnection
EP1787327A1 (en) * 2004-06-04 2007-05-23 Newsouth Innovations Pty Limited Thin-film solar cell interconnection
WO2008022383A1 (en) * 2006-08-22 2008-02-28 Newsouth Innovations Pty Ltd Thin-film solar module
WO2008053032A1 (en) * 2006-11-01 2008-05-08 Sulfurcell Solartechnik Gmbh Method for measuring the sheet resistance of at least two-layered electronic components via isolation trenches
NL2004065C2 (en) * 2010-01-06 2011-07-07 Stichting Energie Solar panel module and method for manufacturing such a solar panel module.
WO2011084053A3 (en) * 2010-01-06 2011-12-29 Stichting Energieonderzoek Centrum Nederland Solar panel module and method for manufacturing such a solar panel module
US10665737B2 (en) 2011-06-23 2020-05-26 Power Roll Limited Method of making a structure comprising coating steps and corresponding structure and devices
US10825941B2 (en) 2013-01-30 2020-11-03 Power Roll Limited Optoelectronic device and method of producing the same
US10586881B2 (en) 2016-04-07 2020-03-10 Power Roll Limited Gap between semiconductors
WO2017174996A1 (en) * 2016-04-07 2017-10-12 Big Solar Limited Gap between semiconductors
US10797184B2 (en) 2016-04-07 2020-10-06 Power Roll Limited Aperture in a semiconductor
US10797190B2 (en) 2016-04-07 2020-10-06 Power Roll Limited Asymmetric groove
GB2549132A (en) * 2016-04-07 2017-10-11 Big Solar Ltd Aperture in a semiconductor
US10964832B2 (en) 2016-10-11 2021-03-30 Power Roll Limited Capacitors in grooves
US10978603B2 (en) 2016-10-11 2021-04-13 Power Roll Limited Energy storage
US11688817B2 (en) 2016-10-11 2023-06-27 Power Roll Limited Capacitors in grooves
US11777046B2 (en) 2016-10-11 2023-10-03 Power Roll Limited Energy storage

Similar Documents

Publication Publication Date Title
DE19854269B4 (en) Thin-film solar cell arrangement and method for producing the same
DE112016003768B4 (en) SOLAR PANEL
EP2218107B1 (en) Rear-contact solar cell having elongate, nested emitter and base regions on the rear side and method for producing the same
DE3031907C2 (en) Solar cell with integrated, anti-parallel connected shunt diode
DE2542518C3 (en)
DE2659425A1 (en) SOLAR CELL PACK
DE102006049603A1 (en) Cell connector for electrical contacting of flat power sources and use
DE102010011258A1 (en) Semiconductor device and method for manufacturing the same
DE19943720A1 (en) Solar cell module; has serially interconnected part-cells separated by grooves for their insulation
DE102007035883A1 (en) Solar module, has rear contact solar cells arranged at distance along translation direction, where contact surface is not overlapped with another contact surface when former surface is shifted to distance in translation direction
DE19803326C1 (en) Solar module using integrated thin-film technique
DE102020116653B4 (en) SILICON CARBIDE SEMICONDUCTOR COMPONENT
DE19934560B4 (en) Photovoltaic module with integrated series-connected cells and manufacturing method thereof
DE102004055225A1 (en) Arrangement with solar cell and integrated bypass diode
WO1995001654A1 (en) Solar cell system
DE102018105472A1 (en) Process for producing a photovoltaic solar cell, photovoltaic solar cell and photovoltaic module
DE2342923C2 (en) Method for producing a two-phase charge transfer arrangement and two-phase charge transfer arrangement produced according to this method
DE4201571C2 (en) Method for producing a solar cell that is partially transparent to light and a corresponding solar module
DE102021106598B4 (en) Solar cell string and method for producing a solar cell string
DE102008020796A1 (en) Rearside contact-solar cell manufacturing method, involves galvanically separating conductor material for spatially separated formation of metallic contacts, where material is limited by structured seed layer structure
WO1998047184A1 (en) Method for making a system comprised of single sequentially arranged solar cells, and the system
DE102015114135A1 (en) Photovoltaic device and method for producing a photovoltaic device
EP2956966A1 (en) Busbarless rear contact solar cell, method of manufacture therefor and solar module having such solar cells
DE19614011C2 (en) Semiconductor component in which the tunnel gate electrode and the channel gate electrode are interrupted by an insulation structure at the interface with the tunnel dielectric or gate dielectric
WO1993017459A2 (en) Process for producing a semiconductor structure and semiconductor structure produced according to this process

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
8122 Nonbinding interest in granting licences declared
8139 Disposal/non-payment of the annual fee