DE19927168A1 - Ölbäder - Google Patents

Ölbäder

Info

Publication number
DE19927168A1
DE19927168A1 DE1999127168 DE19927168A DE19927168A1 DE 19927168 A1 DE19927168 A1 DE 19927168A1 DE 1999127168 DE1999127168 DE 1999127168 DE 19927168 A DE19927168 A DE 19927168A DE 19927168 A1 DE19927168 A1 DE 19927168A1
Authority
DE
Germany
Prior art keywords
acid
carbon atoms
radical
alkyl
contain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1999127168
Other languages
English (en)
Inventor
Celia Kosboth
Anke Eggers
Josef Koester
Werner Seipel
Hermann Hensen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Priority to DE1999127168 priority Critical patent/DE19927168A1/de
Priority to PCT/EP2000/005173 priority patent/WO2000076459A2/de
Publication of DE19927168A1 publication Critical patent/DE19927168A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/604Alkylpolyglycosides; Derivatives thereof, e.g. esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/39Derivatives containing from 2 to 10 oxyalkylene groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/26Optical properties
    • A61K2800/262Transparent; Translucent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations

Abstract

Es werden kosmetische Zubereitungen für die Anwendung im Bereich der Haar- und Hautpflege vorgeschlagen, frei von Alkanolamiden, bestehend aus DOLLAR A (a) 30 bis 70 Gew.-% einer Mischung aus (a1) alkoxylierten Carbonsäureestern, (a2) Fettalkoholpolyglycolethern, (a3) Polyolen, (a4) Alkyl- und/oder Alkylenoligoglykosiden und DOLLAR A b) 70 bis 30 Gew.-% Ölkörpern DOLLAR A mit der Maßgabe, daß sich die Mengenangaben zu 100 Gew.-% ergänzen.

Description

Gebiet der Erfindung
Die Erfindung betrifft klare, alkanolamid- und wasserfreie kosmetische Zubereitungen für die Anwen­ dung in der Haut- und Haarpflege mit definiertem Gehalt einer Mischung aus alkoxylierten Carbonsäureestern, Fettalkoholpolyglycolethern, Polyolen, Alkyl- und/oder Alkylenoligoglykosiden und Ölkörpern.
Stand der Technik
Für die Herstellung von kosmetischen Zubereitungen können Tenside und Öle je nach gewünschtem Anwendungszweck in beliebigem Verhältnis abgemischt werden. Diese Formulierungen enthielten bis­ her Alkanolamide, die zu den "Nitrosamin bildenden Stoffen" gehören. Nitrosamine können in jeder geringen Menge, nicht durch ihr Vorhandensein in Kosmetika, jedoch wenn sie in den Körper gelangen, schädigend wirken. Aus diesem Grund sind kosmetische Zubereitungen, die keine Alkanolamide ent­ halten, wünschenswert. Das Entfernen von Alkanolamiden aus den Tensidmischungen führt hingegen beim Abmischen mit Ölkomponenten zu trüben Formulierungen.
Die Aufgabe der vorliegenden Erfindung hat somit darin bestanden, durch Abmischen von alkanola­ midfreien Tensidmischungen mit definierten Mengen an Ölkörpern klare, wasserfreie kosmetische Zu­ bereitungen zur Verfügung zu stellen, die auch bei Lagerung keine Trübung zeigen.
Beschreibung der Erfindung
Gegenstand der Erfindung sind kosmetische Zubereitungen frei von Alkanolamiden, bestehend aus
  • a) 30 bis 70 Gew.-% einer Mischung aus (a1) alkoxylierten Carbonsäureestern, (a2) Fettalkoholpo­ lyglycolethern, (a4) Alkyl- und/oder Alkylenoligoglykosiden und/oder (a3) Polyolen und
  • b) 70 bis 30 Gew.-% Ölkörpern
mit der Maßgabe, daß sich die Mengenangaben zu 100 Gew.-% ergänzen.
Ein weiterer Gegenstand der Erfindung ist die Verwendung dieser Mischungen zur Herstellung von klaren, alkanolaminfreien kosmetischen Zubereitungen.
Überraschenderweise wurde gefunden, daß sich aus trüben, alkanolamidfreien Tensidmischungen, bestehend aus alkoxylierten Carbonsäureestern, Fettalkoholpolyglycolethern, Polyolen, Alkyl- und/oder Alkylenoligoglykosiden durch Zugabe einer definierten Menge Ölkörper klare, wasserfreie kosmetische Zubereitungen herstellen lassen. Diese zeichnen sich zusätzlich durch gute Rückfettung, gute Schaum­ eigenschaften und Lagerstabilität aus.
Alkoylierte Carbonsäureester
Alkoxylierte Carbonsäureester, die in den erfindungsgemäßen Mitteln als Komponente (a1) zwingend enthalten sind, sind aus dem Stand der Technik bekannt. So sind beispielsweise derartige alkoxylierte Carbonsäureester durch Veresterung von alkoxylierten Carbonsäuren mit Alkoholen zugänglich. Bevor­ zugt im Sinne der vorliegenden Erfindung werden die Verbindungen jedoch durch Umsetzung von Car­ bonsäureestern mit Alkylenoxiden unter Verwendung von Katalysatoren hergestellt, insbesondere unter Verwendung von calciniertem Hydrotalcit gemäß der Deutschen Offenlegungsschrift DE 39 14 131 A, die Verbindungen mit einer eingeschränkten Homologenverteilung liefern. Nach diesem Verfahren kön­ nen sowohl Carbonsäureester von einwertigen Alkoholen als auch von mehrwertigen Alkoholen alkoxy­ liert werden. Bevorzugt gemäß der vorliegenden Erfindung werden alkoxylierte Carbonsäureester von einwertigen Alkoholen, die der allgemeinen Formel (I) folgen,
R1CO(OAlk)nOR2 (I)
in der R1CO für einen aliphatischen Acylrest, abgeleitet von einer Carbonsäure, AlkO für Alkylenoxid und R2 für einen aliphatischen Alkylrest, abgeleitet von einem einwertigen aliphatischen Alkohol, steht. Insbesondere geeignet sind alkoxylierte Carbonsäureester der Formel (I), in der R1CO für einen alipha­ tischen Acylrest mit 6 bis 30, vorzugsweise 6 bis 22 und insbesondere 10 bis 18 Kohlenstoffatomen, OAlk für einen -OCH2CH2, -OCHCH3CH2 und/oder OCH2-CHCH3-Rest, n durchschnittlich für Zahlen von 1 bis 30, vorzugsweise 5 bis 20 und insbesondere 10 bis 15 und R2 für einen linearen oder verzweigten Alkylrest mit 1 bis 4, vorzugsweise 1 und/oder 2 Kohlenstoffatomen und insbesondere Methyl steht.
Bevorzugte Acylreste leiten sich von Carbonsäuren mit 6 bis 22 Kohlenstoffatomen natürlicher oder synthetischer Herkunft ab, insbesondere von linearen, gesättigten und/oder ungesättigten Fettsäuren einschließlich technischer Gemische derselben, wie sie durch Fettspaltung aus tierischen und/oder pflanzlichen Fetten und Ölen zugänglich sind, zum Beispiel aus Kokosöl, Palmkernöl, Palmöl, Sojaöl, Sonnenblumenöl, Rüböl, Baumwollsaatöl, Fischöl, Rindertalg und Schweineschmalz. Beispiele für der­ artige Carbonsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadolein­ säure, Behensäure und/oder Erucasäure.
AlkO steht für die Alkylenoxide, die mit den Carbonsäureestern umgesetzt werden und umfassen Ethylenoxid, Propylenoxid und/oder Butylenoxid, vorzugsweise Ethylenoxid und/oder Propylenoxid, insbesondere Ethylenoxid alleine.
Insbesondere geeignet sind alkoxylierte Carbonsäureester der Formel (I), in der R1CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 10 bis 18 Kohlenstoffatomen, OAlk für einen OCH2CH2-Rest, n für Zahlen von 5 bis 20 und R2 für einen Methylrest steht. Beispiele für derartige Verbindungen sind mit im Durchschnitt 5, 7, 9 oder 11 Mol Ethylenoxid alkoxylierte Laurin­ säuremethylester, Kokosfettsäuremethylester und Talgfettsäuremethylester.
Im Sinne des erfindungsgemäßen Verfahrens können die alkoxylierten Carbonsäureester in Mengen von 0,1 bis 20, vorzugsweise 0,5 bis 10 und insbesondere 1 bis 5 Gew.-% - jeweils bezogen auf die keratinreduzierende Substanz bzw. das Oxidationsmittel - eingesetzt werden.
Fettalkoholpolyglycolether
Unter Fettalkoholpolyglycolether, welche die Komponente (a2) bilden, sind primäre aliphatische Poly­ glycolether der Formel (II) zu verstehen,
R3O(CH2CH2O)mH (II)
in der R3 für einen linearen oder verzweigten, gesättigten oder ungesättigten Kohlenwasserstoffrest mit 10 bis 18 Kohlenstoffatomen und m für Zahlen von durchschnittlich 2 bis 6 steht. Typische Beispiele sind Anlagerungsprodukte von durchschnittlich 2 bis 6 Mol Ethylenoxid an Laurylalkohol, Isotridecyl­ alkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol und Elaeostearylalkohol sowie deren technische Mischungen, die z. B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelenschen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Bevorzugt sind Ethoxylate technischer Fettalkohole mit 12 bis 14 Kohlenstoffatomen, wie beispielsweise Kokos- oder Palmkernfettalkohol.
Polyole
Polyole, welche die Komponente (a3) bilden, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbeson­ dere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
  • - Glycerin;
  • - Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
  • - technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa tech­ nische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
  • - Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
  • - Niedrigalkylglucoside, insbesondere solche, mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispiels­ weise Methyl- und Butylglucosid;
  • - Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
  • - Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
  • - Aminozucker, wie beispielsweise Glucamin;
  • - Dialkoholamine, wie Diethanolamin oder 2-Amino-1,3-propandiol.
Vorzugsweise werden Glycerin, Butylenglycol, Hexylenglycol, Polyethylenglycole und insbesondere Propylenglycol mit einem durchschnittlichen Molekulargewicht im Bereich von 100 bis 1.000 Dalton eingesetzt.
Die erfindungsgemäßen Mittel können die Komponenten (a) in Mengen von 30 bis 70, vorzugsweise 40 bis 60 und insbesondere 50 Gew.-% enthalten. In einer bevorzugten Ausführungsform der Erfindung enthalten die Mittel eine Mischung aus (a1) alkoxylierten Carbonsäureestern, vorzugsweise 45 Gew.-%, (a2) Fettalkoholpolyglycolethern, vorzugsweise 45 Gew.-% und (a3) Polyolen, vorzugsweise insbeson­ dere 10 Gew.-%.
Alkyl- und/oder Alkenyloligoglykoside
Alkyl- und/oder Alkenyloligoglykoside, welche die Komponente (a4) bilden, stellen bekannte nichtio­ nische Tenside dar, die der Formel (III) folgen,
R4O-[G]p (III)
in der R4 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägi­ gen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfang­ reiche Schrifttum sei hier auf die Übersichtsarbeit von Biermann et al. in Starch/Stärke 45, 281 (1993), B. Salka in Cosm. Toil. 108, 89 (1993) sowie J. Kahre et al. in SÖFW-Journal Heft 8, 598 (1995) ver­ wiesen.
Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlen­ stoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (III) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloli­ goglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloli­ goglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenylrest R4 kann sich von primären Alkoholen mit 4 bis 11, vorzugs­ weise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylal­ kohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehy­ den aus der Roelenschen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Ket­ tenlänge C8-C10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C18- Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C12-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C9/11-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R3 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren techni­ sche Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C12/14-Kokosalkohol mit einem DP von 1 bis 3.
Ölkörper
Als Ölkörper, welche die Komponente (b) bilden, kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22- Fettsäuren mit linearen C6-C22-Fettalkoholen, Ester von verzweigten C6-C13-Carbonsäuren mit linearen C6-C22-Fettalkoholen, Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2- Ethylhexanol, Ester von Hydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z. B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C6-C10-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von C6-C18-Fettsäu­ ren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, ins­ besondere Benzoesäure, Ester von C2-C12-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22- Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22- Alkoholen (z. B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dial­ kylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fett­ säureestern mit Polyolen, Siliconöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe in Betracht. Die erfindungsgemäßen Mittel können die Ölkörper, vorzugsweise Rizinusöl, in Mengen von 70 bis 30, vorzugsweise 60 bis 40 und insbesondere 50 Gew.-% enthalten.
Gewerbliche Anwendbarkeit
Die erfindungsgemäßen kosmetischen Zubereitungen können zur Herstellung von klaren, alkanolamin­ freien Haar- und Hautpflegemittel eingesetzt werden. Die Mittel, wie beispielsweise Haarshampoos, Haarlotionen, Schaumbäder, Duschbäder, Cremes, Gele, Lotionen, alkoholische und wäß­ rig/alkoholische Lösungen oder Emulsionen, können ferner als weitere Hilfs- und Zusatzstoffe milde Tenside, Emulgatoren, Überfettungsmittel, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, Fette, Wachse, Stabilisatoren, biogene Wirkstoffe, Deowirkstoffe, An­ tischuppenmittel, Filmbildner, Quellmittel, UV-Lichtschutzfaktoren, Antioxidantien, Konservierungsmittel, Insektenrepellentien, Selbstbräuner, Solubilisatoren, Parfümöle, Farbstoffe, keimhemmende Mittel und dergleichen enthalten.
Typische Beispiele für geeignete milde, d. h. besonders hautverträgliche Tenside sind Monoglycerid­ sulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäu­ retauride, Fettsäureglutamate, Ethercarbonsäuren, α-Olefinsulfonate, Fettsäureglucamide, Alkylamido­ betaine und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
  • 1. Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an Fett­ säuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe;
  • 2. C12/18-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin;
  • 3. Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte;
  • 4. Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
  • 5. Polyol- und insbesondere Polyglycerinester, wie z. B. Polyglycerinpolyricinoleat, Polyglycerinpoly- 12-hydroxystearat oder Polyglycerindimeratisostearat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen;
  • 6. Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
  • 7. Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C6/22-Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipentae­ rythrit, Zuckeralkohole (z. B. Sorbit), Alkylglucoside (z. B. Methylglucosid, Butylglucosid, Laurylglu­ cosid) sowie Polyglucoside (z. B. Cellulose);
  • 8. Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
  • 9. Wollwachsalkohole;
  • 10. Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
  • 11. Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 11 65 574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyo­ len, vorzugsweise Glycerin oder Polyglycerin,
  • 12. Polyalkylenglycole sowie
  • 13. Glycerincarbonat.
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettsäuren, Alkylphenole, Glycerinmono- und -diester sowie Sorbitanmono- und -diester von Fettsäuren oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. C12/18-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 20 24 051 PS als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Ten­ side werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Beson­ ders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylam­ moniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N- dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Eben­ falls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden sol­ che oberflächenaktiven Verbindungen verstanden, die außer einer C8/18-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthal­ ten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hy­ droxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropio­ nat und das Civia-Acylsarcosin. Neben den ampholytischen kommen auch quartäre Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretrietha­ nolaminester-Salze, besonders bevorzugt sind.
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxy­ lierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäu­ realkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldi­ stearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stea­ rinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe min­ destens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearin­ säure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfett­ säuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Aerolsil-Typen (hydrophile Kieselsäuren), Polysac­ charide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethyl­ cellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z. B. Carbopole® von Goodrich oder Synthalene® von Sigma), Polyacryl­ amide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäuregly­ ceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z. B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhält­ lich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z. B. Luviquat® (BASF), Kondensationsprodukte von Poly­ glycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium hydroxy­ propyl hydrolyzed collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z. B. Amidomethicone, Copolymere der Adipinsäure und Dimethyla­ minohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl­ diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z. B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie bei­ spielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z. B. Dibrombutan mit Bisdialkylaminen, wie z. B. Bis-Dimethylamino-1,3-propan, kationischer Guar-Gum, wie z. B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z. B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/­ Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, un­ vernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/Acrylat- Copolymere, Octylacrylamid/Methylmethacrylat/tert.-Butylaminoethylmethacrylat/2-Hydroxyproyl­ methacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/Di­ methylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder al­ kylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vor­ liegen können. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm. Toil. 91, 27 (1976).
Typische Beispiele für Fette sind Glyceride, als Wachse kommen u. a. Bienenwachs, Carnaubawachs, Candelillawachs, Montanwachs, Paraffinwachs, hydriertes Ricinusöle, bei Raumtemperatur feste Fett­ säureester oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen, z. B. Cetyl­ stearylalkohol oder Partialglyceriden in Frage. Als Stabilisatoren können Metallsalze von Fettsäuren, wie z. B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säu­ ren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Als Deowirkstoffe kommen z. B. Antiperspirantien wie etwa Aluminiumchlorhydate in Frage. Hierbei handelt es sich um farblose, hygroskopische Kristalle, die an der Luft leicht zerfließen und beim Ein­ dampfen wäßriger Aluminiumchloridlösungen anfallen. Aluminiumchlorhydrat wird zur Herstellung von schweißhemmenden und desodorierenden Zubereitungen eingesetzt und wirkt wahrscheinlich über den partiellen Verschluß der Schweißdrüsen durch Eiweiß- und/oder Polysaccharidfällung [vgl. J. Soc. Cosm. Chem. 24, 281 (1973)]. Unter der Marke Locron® der Hoechst AG, Frankfurt/FRG, befindet beispielsweise sich ein Aluminiumchlorhydrat im Handel, das der Formel [Al2(OH)5Cl].2,5 H2O ent­ spricht und dessen Einsatz besonders bevorzugt ist [vgl. J. Pharm. Pharmacol. 26, 531 (1975)]. Neben den Chlorhydraten können auch Aluminiumhydroxylactate sowie saure Aluminium/Zirkoniumsalze ein­ gesetzt werden. Als weitere Deowirkstoffe können Esteraseinhibitoren zugesetzt werden. Hierbei han­ delt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tribu­ tylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Wahrscheinlich wird dabei durch die Spaltung des Citronensäureesters die freie Säure freigesetzt, die den pH-Wert auf der Haut soweit absenkt, daß dadurch die Enzyme inhibiert werden. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipin­ säuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarb­ nonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäure­ diethylester. Antibakterielle Wirkstoffe, die die Keimflora beeinflussen und schweißzersetzende Bakte­ rien abtöten bzw. in ihrem Wachstum hemmen, können ebenfalls in den Stiftzubereitungen enthalten sein. Beispiele hierfür sind Chitosan, Phenoxyethanol und Chlorhexidingluconat. Besonders wirkungs­ voll hat sich auch 5-Chlor-2-(2,4-dichlorphen-oxy)-phenol erwiesen, das unter der Marke Irgasan® von der Ciba-Geigy, Basel/CH vertrieben wird.
Als Antischuppenmittel können Octopirox® (1-Hydroxy-4-methyl-6-(2,4,4-trimythylpentyl)-2-(1H)- pyridon-monoethanolaminsalz), Baypival, Pirocton Olamin, Ketoconazol®, (4-Acetyl-1-{-4-[2-(2.4- dichlorphenyl)r-2-(1H-imidazol-1-ylmethyl)-1,3-dioxylan-c-4-ylmethoxyphenyl}piperazin, Selendisulfid, Schwefel kolloidal, Schwefelpolyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwe­ felteer Destillate, Salicylsäure (bzw. in Kombination mit Hexachlorophen), Undexylensäure Monoethanolamid Sulfosuccinat Na-Salz, Lamepon® UD (Protein-Undecylensäurekondensat), Zinkpyrethion, Aluminiumpyrition und Magnesiumpyrithion/Dipyrithion-Magnesiumsulfat eingesetzt werden.
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäure­ reihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Ver­ bindungen.
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkyl­ modifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R. Lochhead in Cosm. Toil. 108, 95 (1993) entnommen werden.
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorlie­ gende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strah­ len zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z. B. Wärme wie­ der abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z. B. zu nennen:
  • - 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z. B. 3-(4-Methylbenzy­ liden)campher wie in der EP 0693471 B1 beschrieben;
  • - 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4- (Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester;
  • - Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepro­ pylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octo­ crylene);
  • - Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylben­ zylester, Salicylsäurehomomenthylester;
  • - Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-me­ thoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
  • - Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
  • - Triazinderivate, wie z. B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin und Octyl Tria­ zon, wie in der EP 0818450 A1 beschrieben;
  • - Propan-1,3-dione, wie z. B. 1-(4-tert.-Butylphenyl)-3-(4'methoxyphenyl)propan-1,3-dion;
  • - Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
  • - 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
  • - Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5- sulfonsäure und ihre Salze;
  • - Sulfonsäurederivate des 3-Benzylidencamphers, wie z. B. 4-(2-Oxo-3-bornylidenmethyl)benzol­ sulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispiels­ weise 1-(4'-tert.-Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion, 4-tert.-Butyl-4'-methoxydibenzoyl­ methan (Parsol 1789), oder 1-Phenyl-3-(4'-isopropylphenyl)-propan-1,3-dion. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metall­ oxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titan­ dioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weni­ ger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm auf­ weisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Ein­ satz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente ein­ gesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet.
Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P. Finkel in SÖFW-Journal 122, 543 (1996) zu entnehmen.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Licht­ schutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z. B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z. B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z. B. Anserin), Carotinoide, Carotine (z. B. α-Carotin, β-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z. B. Dihydroliponsäure), Au­ rothioglucose, Propylthiouracil und andere Thiole (z. B. Thioredoxin, Glutathion, Cystein, Cystin, Cysta­ min und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodi­ propionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleo­ side und Salze) sowie Sulfoximinverbindungen (z. B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z. B. pmol bis µmol/kg), ferner (Metall)-Chelatoren (z. B. α-Hydroxyfettsäuren, Palmitinsäure, Phytin­ säure, Lactoferrin), α-Hydroxysäuren (z. B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gal­ lensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäu­ ren und deren Derivate (z. B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z. B. Ascorbylpalmitat, Mg-Ascor­ bylphosphat, Ascorbylacetat), Tocopherole und Derivate (z. B. Vitamin-E-acetat), Vitamin A und Deri­ vate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z. B. ZnO, ZnSO4) Selen und dessen Derivate (z. B. Selen-Methionin), Stilbene und deren Derivate (z. B. Stil­ benoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Para­ bene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung auf­ geführten weiteren Stoffklassen. Als Insekten-Repellentien kommen N,N-Diethyl-m-touluamid, 1,2- Pentandiol oder Insekten-Repellent 3535 in Frage, als Selbstbräuner eignet sich Dihydroxyaceton.
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Frucht­ schalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Bal­ samen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Roh­ stoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindun­ gen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Bu­ tylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa­ licylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alka­ nale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, ∝-Isomethylionon und Me­ thylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Pheny­ lethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Bal­ same. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aro­ makomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanu­ möl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Lina­ lool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessig­ säure, Geranylacetat, Benzylacetat, Rosenoxid, Romillat, Irotyl und Floramat allein oder in Mischun­ gen, eingesetzt.
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen ver­ wendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoff­ kommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S. 81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Typische Beispiele für keimhemmende Mittel sind Konservierungsmittel mit spezifischer Wirkung gegen gram-positive Bakterien wie etwa 2,4,4'-Trichlor-2'-hydroxydiphenylether, Chlorhexidin (1,6-Di- (4-chlorphenyl-biguanido)-hexan) oder TCC (3,4,4'-Trichlorcarbonilid). Auch zahlreiche Riechstoffe und etherische Öle weisen antimikrobielle Eigenschaften auf. Typische Beispiele sind die Wirkstoffe Euge­ nol, Menthol und Thymol in Nelken-, Minz- und Thymianöl. Ein interessantes natürliches Deomittel ist der Terpenalkohol Farnesol (3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol), der im Lindenblütenöl vorhan­ den ist und einen Maiglöckchengeruch hat. Auch Glycerinmonolaurat hat sich als Bakteriostatikum bewährt. Üblicherweise liegt der Anteil der zusätzlichen keimhemmenden Mittel bei etwa 0,1 bis 2 Gew.-% - bezogen auf den auf den Feststoffanteil der Zubereitungen.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt- oder Heißprozesse erfol­ gen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.
Beispiele
Zur Herstellung von Ölbädern wurden die alkanolamidfreie Tensidformulierung (a)
  • a) 45 Gew.-% C12/18-Kokosfettsäure + 2 EO-methylester, 45 Gew.-% Fettalkoholpolyglycolether (Dehydol® LS 4 DEO-N, Henkel KGaA) und 10 Gew.-% Polyol (Propylenglycol, alkanolamidfrei, Henkel KGaA)
mit unterschiedlichen Mengen verschiedener Öle versetzt und auf Trübung und Lagerstabilität bei Raumtemperatur oder 8°C (stabil = +) untersucht. Die eingesetzten Mengenverhältnisse Tensid : Öl und die Ergebnisse sind in Tabelle 1 zusammengefaßt. Die Ölbäder mit der Tensidformulierung (a) zeichnen sich durch gute Schaumeigenschaften und gute Rückfettung aus.
Tabelle 1
Ölbäder (Zusammensetzung in Gew.-%)

Claims (10)

1. Kosmetische Zubereitungen frei von Alkanolamiden, bestehend aus
  • a) 30 bis 70 Gew.-% einer Mischung aus (a1) alkoxylierten Carbonsäureestern, (a2) Fettalkoholpolyglycolethern, (a3) Polyolen, (a4) Alkyl- und/oder Alkylenoligoglykosiden und
  • b) 70 bis 30 Gew.-% Ölkörpern
mit der Maßgabe, daß sich die Mengenangaben zu 100 Gew.-% ergänzen.
2. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß sie als Komponente (a1) alkoxylierte Carbonsäureester der Formel (I) enthalten,
R1CO(OAlk)nOR2 (I)
in der R1CO für einen aliphatischen Acylrest mit 6 bis 30 Kohlenstoffatomen, OAlk für einen OCH2CH2-, OCHCH3CH2- und/oder OCH2-CHCH3-Rest, n durchschnittlich für Zahlen von 1 bis 30 und R2 für einen aliphatischen Alkylrest mit 1 bis 4 Kohlenstoffatomen steht.
3. Mittel nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß sie als Komponente (a1) alkoxylierte Carbonsäureester der Formel (I) enthalten, in der R1CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 10 bis 18 Kohlenstoffatomen, OAlk für einen OCH2CH2-Rest, n für Zahlen von 5 bis 20 und R2 für einen Methylrest steht.
4. Mittel nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als Kom­ ponente (a2) Fettalkoholpolyglycolether der Formel (II) enthalten,
R3O(CH2CH2O)mH (II)
in der R3 für einen linearen oder verzweigten, gesättigten oder ungesättigten Kohlenwasser­ stoffrest mit 12 bis 18 Kohlenstoffatomen und m für Zahlen von durchschnittlich 2 bis 6 steht.
5. Mittel nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie Fettalko­ holpolyglycolether der Formel (II) enthalten, in der R3 für einen linearen oder verzweigten, gesät­ tigten oder ungesättigten Kohlenwasserstoffrest mit 12 bis 14 Kohlenstoffatomen steht.
6. Mittel nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie als Kom­ ponente (a3) Polyole enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Glyce­ rin, Alkylenglycolen, technischen Oligoglyceringemischen, Methylolverbindungen, Niedrigalkylglu­ cosiden, Zuckeralkoholen, Zuckern, Aminozuckern und Dialkoholamine.
7. Mittel nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie als Kom­ ponente (a4) Alkyl- und/oder Alkenyloligoglykoside der Formel (III) enthalten,
R4O-[G]p (III)
in der R4 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zucker­ rest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht.
8. Mittel nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie als Kom­ ponente (b) Rizinusöl enthalten.
9. Verwendung von Mischungen nach Anspruch 1 zur Herstellung von klaren, alkanolaminfreien kos­ metischen Zubereitungen.
10. Verwendung von Mischungen nach Anspruch 1 zur Herstellung von klaren, alkanolaminfreien Haar- und Hautpflegemitteln.
DE1999127168 1999-06-15 1999-06-15 Ölbäder Withdrawn DE19927168A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE1999127168 DE19927168A1 (de) 1999-06-15 1999-06-15 Ölbäder
PCT/EP2000/005173 WO2000076459A2 (de) 1999-06-15 2000-06-06 Alkanolamid- und wasserfreie ölbäder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1999127168 DE19927168A1 (de) 1999-06-15 1999-06-15 Ölbäder

Publications (1)

Publication Number Publication Date
DE19927168A1 true DE19927168A1 (de) 2000-12-21

Family

ID=7911240

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1999127168 Withdrawn DE19927168A1 (de) 1999-06-15 1999-06-15 Ölbäder

Country Status (2)

Country Link
DE (1) DE19927168A1 (de)
WO (1) WO2000076459A2 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818410A1 (de) * 1998-04-24 1999-10-28 Wella Ag Haar- und Körperreinigungsmittel mit verminderter Hautirritation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2525107B1 (fr) * 1982-04-15 1986-04-18 Firmenich Cie Nouvelles preparations pour le bain en sachets hydrosolubles
US5220046A (en) * 1991-08-22 1993-06-15 Vista Chemical Company Process for alkoxylation of esters and products produced therefrom
DE4301820C2 (de) * 1993-01-23 1996-04-25 Henkel Kgaa Schäumende Emulsionen, Verfahren zu ihrer Herstellung und ihre Verwendung
JPH07197083A (ja) * 1993-12-28 1995-08-01 Kao Corp 洗浄剤組成物
FR2736830B1 (fr) * 1995-07-20 1997-10-10 Fabre Pierre Dermo Cosmetique Composition cosmetique pour hygiene corporelle sous la forme d'une emulsion huile dans l'eau
GB2318291B (en) * 1996-10-15 1998-09-23 Robin Morley 8-Methoxypsoralen containing additives for topical application in bath water
DE19856555A1 (de) * 1998-12-08 2000-06-15 Cognis Deutschland Gmbh Ölbäder
DE19910704B4 (de) * 1999-03-10 2006-04-20 Cognis Ip Management Gmbh Kosmetische Zubereitungen und deren Verwendung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818410A1 (de) * 1998-04-24 1999-10-28 Wella Ag Haar- und Körperreinigungsmittel mit verminderter Hautirritation

Also Published As

Publication number Publication date
WO2000076459A2 (de) 2000-12-21
WO2000076459A3 (de) 2001-05-10

Similar Documents

Publication Publication Date Title
DE19917743A1 (de) Desodorierende Zubereitungen
DE19856555A1 (de) Ölbäder
DE19837841A1 (de) Verwendung von wäßrigen Wachsdispersionen als Konsistenzgeber
DE19910704B4 (de) Kosmetische Zubereitungen und deren Verwendung
DE19919630A1 (de) Sonnenschutzmittel
DE19851451A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE19916211C2 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE19904329A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE19846773A1 (de) Kosmetische Zubereitungen
DE19825462C2 (de) Emulgatoren
DE19916208A1 (de) Sonnenschutzmittel
DE19846538C2 (de) Quartäre Ammoniumverbindungen
EP0980683A1 (de) Verfahren zur Herstellung von stabilen Emulsionen
DE19917745A1 (de) Milde wäßrige Zubereitungen
DE19956601A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE19916210C2 (de) Kosmetische Zubereitungen
WO1999066895A1 (de) Kosmetische zubereitungen in stiftform
EP1128808B1 (de) Verwendung von kationaktiven mischungen
DE19916209C2 (de) Kosmetische Zubereitungen
DE19927168A1 (de) Ölbäder
DE19846537C2 (de) Betaine
DE19956603A1 (de) Verwendung von Alkyl- und/oder Alkenyloligoglykosid-Fettsäureestern als Pigmetndispergator
DE19956185A1 (de) Emulsionen
DE19917493A1 (de) Verwendung von Mischungen zur Herstellung von Abschminkmitteln
DE19855956A1 (de) Sterolphosphate

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG, 40589 DUESSELDOR

8139 Disposal/non-payment of the annual fee