DE19923568A1 - Incorporating gcpE and yfgB genes into viruses and cells, for increasing isoprenoid content and identifying e.g. antimicrobial agents, comprises using DNA sequences from bacteria or parasites - Google Patents

Incorporating gcpE and yfgB genes into viruses and cells, for increasing isoprenoid content and identifying e.g. antimicrobial agents, comprises using DNA sequences from bacteria or parasites

Info

Publication number
DE19923568A1
DE19923568A1 DE19923568A DE19923568A DE19923568A1 DE 19923568 A1 DE19923568 A1 DE 19923568A1 DE 19923568 A DE19923568 A DE 19923568A DE 19923568 A DE19923568 A DE 19923568A DE 19923568 A1 DE19923568 A1 DE 19923568A1
Authority
DE
Germany
Prior art keywords
genes
gcpe
dna sequences
compound
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19923568A
Other languages
German (de)
Inventor
Hassan Jomaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jomaa Pharmaka GmbH
Original Assignee
Hassan Jomaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hassan Jomaa filed Critical Hassan Jomaa
Priority to DE19923568A priority Critical patent/DE19923568A1/en
Priority to JP2000620359A priority patent/JP2003500073A/en
Priority to CN00807856A priority patent/CN1351715A/en
Priority to PL00351756A priority patent/PL351756A1/en
Priority to BR0011289-5A priority patent/BR0011289A/en
Priority to EP00935082A priority patent/EP1179187A1/en
Priority to PCT/EP2000/004592 priority patent/WO2000072022A1/en
Priority to TR2001/03326T priority patent/TR200103326T2/en
Priority to CA002374608A priority patent/CA2374608A1/en
Priority to HU0201386A priority patent/HUP0201386A2/en
Priority to EA200101222A priority patent/EA200101222A1/en
Priority to AU50694/00A priority patent/AU5069400A/en
Priority to IL14634700A priority patent/IL146347A0/en
Priority to MXPA01011894A priority patent/MXPA01011894A/en
Publication of DE19923568A1 publication Critical patent/DE19923568A1/en
Priority to NO20015657A priority patent/NO20015657L/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/25Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving enzymes not classifiable in groups C12Q1/26 - C12Q1/66
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/42Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving phosphatase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/527Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving lyase

Abstract

Incorporating gcpE and yfgB genes into viruses and cells for increasing isoprenoid content and identifying e.g. antimicrobial agents, comprises using DNA sequences (I) from the gcpE or yfgB genes of bacteria or parasites or DNA sequences (II) which hybridize to the specified genes or encode a plastid protein with the same biological activity as those encoded by the genes. Incorporating gcpE and yfgB genes into viruses and cells comprises using: (i) DNA sequences (I) from the gcpE or yfgB genes of bacteria or parasites; or (ii) DNA sequences (II) which: (a) hybridize to the specified genes or their analogs or derivatives produced by insertion, deletion or substitution; or (b) encode a plastid protein with the same biological activity as those encoded by the specified genes. Independent claims are also included for the following: (1) plant cells containing (I) or (II); (2) transformed plant cells, and transgenic plants regenerated from them, that contain (I) or (II); (3) determining the enzymatic activity of a gcpE protein; or (4) screening compounds (A) that have antimycotic, antiparasitic or antiviral activity in humans or animals or antiviral, antiparasitic, fungicidal or herbicidal activity in plants.

Description

Die vorliegende Erfindung betrifft die Verwendung von DNA- Sequenzen, die für das gcpE-Protein aus Bakterien kodieren und die bei Integration in das Genom von Viren, Eukaryonten und Prokaryonten den Isoprenoid-Gehalt verändern sowie Verfahren zur Messung der Aktivität des gcpE-Gens in bezug auf die Iso­ prenoid-Synthese. Außerdem betrifft sie Verfahren zur Identifi­ ziereung von Stoffen mit herbizider, antiparasitärer, antivira­ ler, fungizider Wirkung bei Pflanzen und antiparasitärer, an­ timykotischer und antiviraler Wirkung bei Mensch und Tier.The present invention relates to the use of DNA Sequences coding for the gcpE protein from bacteria and which are integrated into the genome of viruses, eukaryotes and Prokaryotes change the isoprenoid content as well as procedures to measure the activity of the gcpE gene with respect to the iso prenoid synthesis. It also concerns identification procedures decoration of fabrics with herbicidal, anti-parasitic, antivira fungicidal activity in plants and antiparasitic timycotic and antiviral effects in humans and animals.

Der Biosyntheseweg zur Bildung von Isoprenoiden über den klas­ sischen Acetat/ Mevalonat-Weg und einen alternativen, Mevalo­ nat-unabhängigen Biosyntheseweg, den Desoxy-D-xylulose- Phosphat-Weg, ist bereits bekannt (Rohmer, M., Knani, M., Simo­ nin, P., Sutter, B., and Sahm, H. (1993): Biochem. J. 295: 517-524).The biosynthetic pathway for the formation of isoprenoids via the klas acetate / mevalonate path and an alternative, mevalo nate-independent biosynthetic pathway, the deoxy-D-xylulose Phosphate pathway is already known (Rohmer, M., Knani, M., Simo nin, P., Sutter, B., and Sahm, H. (1993): Biochem. J. 295: 517-524).

In der US 5 858 367 ist die Verwendung von aarC- Oligonukleotigen zum Auffinden von antibakteriellen Substanzen beschrieben.In US 5 858 367 the use of aarC- Oligonucleotides to find antibacterial substances described.

Überraschend hat sich jedoch nun herausgestellt, daß das gcpE- Protein zusätzlich noch eine Kinasefunktion im alternativen Stoffwechselweg für die Isoprenoidbiosynthese hat und die Phos­ phorylierung eines Zuckers oder eines Phosphorzuckers oder ei­ ner Vorstufe der Isoprenoidbiosynthese, insbesondere die Phos­ phorylierung von 2-C-Methyl-D-erythritol, 2-C-Methyl-D­ erythritol-phosphat, insbesondere 2-C-Methyl-D-erythritol-4- phosphat, 2-C-Methyl-D-erythrose, 2-C-Methyl-D-erythrose­ phosphat, insbesondere 2-C-Methyl-D-erythrose-4-phosphat,
CH2(OH)-C(CH3)=C(OH)-CH2-O-PO(OH)2,
CH2(OH)-C(CH3)=C(OH)-CH2-OH,
CH2(OH)-CH(CH3)-CO-CH2-O-PO(OH)2, CH2(OH)-CH(CH3)-CO-CH2-OH,
CH2=C(CH3)-CO-CH2-O-PO(OH)2, CH2=C(CH3)-CO-CH2-OH,
CH2=C(CH3)-CH(OH)-CH2-O-PO(OH)2, CH2=C(CH3)-CH(OH)-CH2-OH,
CH2(OH)-C(=CH2)-C(OH)-CH2-O-PO(OH)2,
CH2(OH)-C(=CH2)-C(OH)-CH2-OH,
CHO-CH(CH3)-CH(OH)-CH2-O-PO(OH)2, CHO-CH(CH3)-CH(OH)-CH2-OH,
CH2(OH)-C(OH)(CH3)-CH=CH-O-PO(OH)2,
CH2(OH)-C(OH)(CH3)-CH=CH-OH,
CH(OH)=C(CH3)-CH(OH)-CH2-O-PO(OH)2, CH(OH)=C(CH3)-CH(OH)-CH2-OH,
CH3-C(CH3)=CH-CH2-O-PO(OH)2, CH3-C(CH3)=CH-CH2-OH,
CH2=C(CH3)-CH2-CH2-O-PO(OH)2, CH2=C(CH3)-CH2-CH2-OH katalysiert.
Surprisingly, however, it has now been found that the gcpE protein also has a kinase function in the alternative metabolic pathway for isoprenoid biosynthesis and the phosphorylation of a sugar or a phosphorus sugar or a precursor of isoprenoid biosynthesis, in particular the phosphorylation of 2-C-methyl D-erythritol, 2-C-methyl-D erythritol-phosphate, especially 2-C-methyl-D-erythritol-4-phosphate, 2-C-methyl-D-erythrose, 2-C-methyl-D-erythrose phosphate , in particular 2-C-methyl-D-erythrose-4-phosphate,
CH 2 (OH) -C (CH 3 ) = C (OH) -CH 2 -O-PO (OH) 2 ,
CH 2 (OH) -C (CH 3 ) = C (OH) -CH 2 -OH,
CH 2 (OH) -CH (CH 3 ) -CO-CH 2 -O-PO (OH) 2 , CH 2 (OH) -CH (CH 3 ) -CO-CH 2 -OH,
CH 2 = C (CH 3 ) -CO-CH 2 -O-PO (OH) 2 , CH 2 = C (CH 3 ) -CO-CH 2 -OH,
CH 2 = C (CH 3 ) -CH (OH) -CH 2 -O-PO (OH) 2 , CH 2 = C (CH 3 ) -CH (OH) -CH 2 -OH,
CH 2 (OH) -C (= CH 2 ) -C (OH) -CH 2 -O-PO (OH) 2 ,
CH 2 (OH) -C (= CH 2 ) -C (OH) -CH 2 -OH,
CHO-CH (CH 3 ) -CH (OH) -CH 2 -O-PO (OH) 2 , CHO-CH (CH 3 ) -CH (OH) -CH 2 -OH,
CH 2 (OH) -C (OH) (CH 3 ) -CH = CH-O-PO (OH) 2 ,
CH 2 (OH) -C (OH) (CH 3 ) -CH = CH-OH,
CH (OH) = C (CH 3 ) -CH (OH) -CH 2 -O-PO (OH) 2 , CH (OH) = C (CH 3 ) -CH (OH) -CH 2 -OH,
CH 3 -C (CH 3 ) = CH-CH 2 -O-PO (OH) 2 , CH 3 -C (CH 3 ) = CH-CH 2 -OH,
CH 2 = C (CH 3 ) -CH 2 -CH 2 -O-PO (OH) 2 , CH 2 = C (CH 3 ) -CH 2 -CH 2 -OH catalyzed.

Die Erfindung betrifft daher die Verwendung von DNA-Sequenzen, die das gcpE-Protein bzw. das aarC-Protein aus Bakterien und Pflenzen kodieren oder DNA-Sequenzen, die für ein Analoges oder Derivat dieses Proteins kodieren, worin eine oder mehrere Ami­ nosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Po­ lypeptids wesentlich zu reduzieren.The invention therefore relates to the use of DNA sequences, which the gcpE protein or the aarC protein from bacteria and Pflenzen encode or DNA sequences for an analog or Encode derivative of this protein, wherein one or more Ami deleted, added or by other amino acids have been substituted without the enzymatic action of the Po to significantly reduce lypeptides.

Die DNA-Sequenzen sind in der US-5 858 367 offenbart sowie un­ ter den folgenden Accession-Nummern über die Internet-Adresse: http://www3.ncbi.nlm.nih.gov/Entrez/protein.html zu finden:
AAD07695, AAD18517, AAC75568, AAC67648, AAC65433, P36979, CAA15530, CAA98356, CAA98355, AAC24056, AAC07467, P54482, P44667, P27434, P27433, BAA17717, BAA20919, BAA16402, 523058, AAB51469, 1819264A, CAA45783, CAA45782, AAA21360, AAA21359, BAA02549, I39486, 2113330A.
The DNA sequences are disclosed in US Pat. No. 5,858,367 and can be found under the following accession numbers via the Internet address: http://www3.ncbi.nlm.nih.gov/Entrez/protein.html:
AAD07695, AAD18517, AAC75568, AAC67648, AAC65433, P36979, CAA15530, CAA98356, CAA98355, AAC24056, AAC07467, P54482, P44667, P27434, P27434, P27433, BAA17717, BAA16A29295, 527 BAA02549, I39486, 2113330A.

Die erfindungsgemäßen Sequenzen eignen sich für die Expression von Genen in Viren, Eukaryonten und Prokaryonten, die für die Isoprenoid-Biosynthese des 1-Desoxy-D-xylulose-Wegs verantwort­ lich sind.The sequences according to the invention are suitable for expression of genes in viruses, eukaryotes and prokaryotes that are responsible for the Isoprenoid biosynthesis of the 1-deoxy-D-xylulose pathway responsible are.

Erfindungsgemäß gehören zu den Eukaryonten oder eukaryontischen Zellen tierischen Zellen, Pflanzenzellen, Algen, Hefen, Pilze und zu den Prokaryonten oder prokaryontischen Bakterien Archae­ bakterien und Eubakterien. According to the invention belong to the eukaryotes or eukaryotic Animal cells, plant cells, algae, yeasts, fungi and the prokaryotes or prokaryotic bacteria Archae bacteria and eubacteria.  

Bei Integration einer DNA-Sequenz in ein Genom, auf der eine der oben angegebenen DNA-Sequenzen lokalisiert ist, wird die Expression der oben beschriebenen Gene in Viren, Eukaryonten und Prokaryonten ermöglicht. Die erfindungsgemäß transformier­ ten Viren, Eukaryonten und Prokaryonten werden in an sich be­ kannter Weise gezüchtet und das währenddessen gebildete Isopre­ noid isoliert und gegebenenfalls gereinigt. Nicht alle Isopre­ noide müssen isoliert werden, da die Isoprenoide in einigen Fällen direkt in die Raumluft abgegeben werden.When a DNA sequence is integrated into a genome on which one of the DNA sequences given above is located Expression of the genes described above in viruses, eukaryotes and prokaryotes. The transform according to the invention Viruses, eukaryotes and prokaryotes are inherently known as is known and the isoprene formed in the meantime noid isolated and cleaned if necessary. Not all isoprene noides need to be isolated because the isoprenoids in some Cases are released directly into the air.

Die Herstellung der verwendeten transgenen Viren, Eukaryonten und Prokaryonten zur Veränderung des Isoprenoid-Gehaltes, kann nach folgenden Schritten erfolgen:
The transgenic viruses, eukaryotes and prokaryotes used to change the isoprenoid content can be produced in the following steps:

  • a) Herstellung einer DNA-Sequenz mit folgenden Teilsequenzen
    • a) Promotor, der in Viren, Eukaryonten und Prokaryonten aktiv ist und die Bildung einer RNA im vorgesehenen Zielgewebe oder den Zielzellen sicherstellt,
    • b) DNA-Sequenz, die für ein Polypeptid mit der Aminosäure­ sequenz des gcpE-Protein aus Bakterien oder für ein Analoges oder Derivat dieses Polypeptids kodieren,
    • c) 3'-nichttranslatierte Sequenz, die in Viren, Eukaryon­ ten und Prokaryonten zur Addition von Poly-A Resten an das 3'-Ende der RNA führt,
    a) Production of a DNA sequence with the following partial sequences
    • a) promoter which is active in viruses, eukaryotes and prokaryotes and ensures the formation of an RNA in the intended target tissue or cells,
    • b) DNA sequence which codes for a polypeptide with the amino acid sequence of the gcpE protein from bacteria or for an analog or derivative of this polypeptide,
    • c) 3'-untranslated sequence which leads to the addition of poly-A residues to the 3 'end of the RNA in viruses, eukaryotes and prokaryotes,
  • b) Transfer und Einbau der DNA-Sequenz in das Genom von Viren, prokaryontischen oder eukaryontischen Zellen mit oder ohne Verwendung eines Vektors (z. B. Plasmid, virale DNA).b) transfer and incorporation of the DNA sequence into the genome of viruses, prokaryotic or eukaryotic cells with or without Use of a vector (e.g. plasmid, viral DNA).

Aus den transformierten Pflanzenzellen können die intakten gan­ zen Pflanzen regeneriert werden.The intact cells can be removed from the transformed plant cells zen plants are regenerated.

Die für die gcpE-Proteine oder ihre Analoga oder Derivate ko­ dierenden Sequenzen können mit einem die Transkription in be­ stimmten Organen oder Zellen sicherstellenden Promotor versehen werden, der in sense-Orientierung (3'-Ende des Promotors zum 5'-Ende der kodierenden Sequenz) an die Sequenz, die das zu bildende Protein kodiert, gekoppelt ist. An das 3'-Ende der ko­ dierenden Seqeunz wird ein die Termination der mRNA-Synthese bestimmendes Terminationssignal angehängt. Um das zu exprimie­ rende Protein in bestimmte subzelluläre Kompartimente, wie Chloroplasten, Amyloplasten, Mitochondrien, Vakuole, Cytosol oder Interzellularräume zu dirigieren, kann zwischen den Promo­ tor und die kodierende Sequenz noch eine für eine sogenannte Signalsequenz oder ein Transitpeptid kodierende Sequenz gesetzt werden. Die Sequenz muß im gleichen Leserahmen wie die kodie­ rende Sequenz des Proteins sein. Zur Vorbereitung der Einfüh­ rung der erfindungsgemäßen DNA-Sequenzen in höhere Pflanzen sind eine große Anzahl von Klonierungsvektoren verfügbar, die ein Replikationssignal für E.coli und einen Marker beinhalten, der eine Selektion der transformierten Zellen erlaubt. Beispie­ le für Vektoren sind pBR 322, pUC-Serien, M13mp-Serien, pACYC 184, EMBL 3 usw. Je nach Einführungsmethode gewünschter Gene in die Pflanze können weitere DNA-Sequenzen erforderlich sein. Werden zum Beispiel für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muß mindestens eine rech­ te Begrenzung, häufig jedoch die rechte und die linke Begren­ zung der Ti- und Ri-Plasmid T-DNA als Flankenbereich den einzu­ führenden Genen eingefügt werden. Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in EP 120516; Hoekama, in: The Binary Plant Vector System, Offset-drukkerij Kanters B. V. Alblasserdam (1985), Chapter V; Fraley et al., Crit. Rev. Plant Sci. 4,1-46 und An et al. (1985) EMBO J. 4, 277-287 beschrieben worden. Ist die eingeführte DNA einmal im Genom integriert, so ist sie in der Regel stabil und bleibt auch in den Nachkommen der ur­ sprünglich transformierten Zellen erhalten. Sie erhält norma­ lerweise einen Selektionsmarker, der den transformierten Pflan­ zenzellen Resistenz gegenüber einem Biozid oder einem Antibio­ tikum, wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phos­ phinotricin u. a. vermittelt. Der individuell verwendete Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingefügte DNA fehlt, gestatten.The ko for the gcpE proteins or their analogs or derivatives sequences can be used with a transcription in be certain organs or cells ensuring promoter be in the sense orientation (3 'end of the promoter to 5 'end of the coding sequence) to the sequence that the encoding protein is coupled. At the 3 'end of the knockout The ending sequence will be the termination of mRNA synthesis determining termination signal attached. To express that  protein in certain subcellular compartments, such as Chloroplasts, amyloplasts, mitochondria, vacuoles, cytosols or conducting intercellular spaces can be between promotions gate and the coding sequence another for a so-called Signal sequence or a transit peptide coding sequence set become. The sequence must be in the same reading frame as the code sequence of the protein. To prepare the introduction tion of the DNA sequences according to the invention in higher plants a large number of cloning vectors are available which contain a replication signal for E. coli and a marker, which allows selection of the transformed cells. Example le for vectors are pBR 322, pUC series, M13mp series, pACYC 184, EMBL 3 etc. Depending on the introduction method desired genes in the plant may require additional DNA sequences. For example, for the transformation of the plant cell the Ti or Ri plasmid used, at least one arithmetic te limitation, but often the right and left boundaries tion of the Ti and Ri plasmid T-DNA as the flank region leading genes. The use of T-DNA for the transformation of plant cells has been intensively investigated and sufficient in EP 120516; Hoekama, in: The Binary Plant Vector System, Offset-drukkerij Kanters B. V. Alblasserdam (1985) Chapter V; Fraley et al., Crit. Rev. Plant Sci. 4.1-46 and An et al. (1985) EMBO J. 4, 277-287. Is once the DNA is integrated into the genome, it is in generally stable and remains in the descendants of the original obtained originally transformed cells. She receives norma a selection marker that indicates the transformed plant cell resistance to a biocide or antibiotic tical, such as Kanamycin, G 418, Bleomycin, Hygromycin or Phos phinotricin u. a. mediated. The individually used marker should therefore oppose the selection of transformed cells Allow cells that lack the inserted DNA.

Für die Einführung von DNA in eine Pflanze stehen viele Techni­ ken zur Verfügung. Diese Techniken umfassen die Transformation mit Hilfe von Agrobakterien, z. B. Agrobacterium tumefaciens, die Fusion von Protoplasten, die Mikroinjektion von DNA, die Elekroporation, sowie ballistische Methoden und die Virusinfek­ tion. Aus dem transformierten Pflanzenmaterial können dann im geeigneten Medium, welches Antibiotika oder Biozide zur Selek­ tion enthalten kann, wieder ganze Pflanzen regeneriert werden. Bei der Injektion und Elektroporation sind an sich keine spezi­ ellen Anforderungen an die Plasmide gestellt. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert wer­ den, ist die Anwesenheit eines selektierbaren Markergens not­ wendig. Die transformierten Zellen wachsen innerhalb der Pflan­ zen in der üblichen Weise (McCormick et al. (1986), Plant Cell Reports 5, 81-84). Die Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen haben, gekreuzt werden. Die daraus entstehen­ den Individuen haben die entsprechenden phänotypischen Eigen­ schaften.There are many techniques for introducing DNA into a plant ken available. These techniques include transformation with the help of agrobacteria, e.g. B. Agrobacterium tumefaciens, the fusion of protoplasts, the microinjection of DNA, the Electroporation, as well as ballistic methods and the virus infection  tion. From the transformed plant material can then suitable medium, which antibiotics or biocides for Selek tion, whole plants can be regenerated again. When it comes to injection and electroporation, there are no special features The demands placed on the plasmids. But should out cells transformed in this way regenerate whole plants the presence of a selectable marker gene is necessary agile. The transformed cells grow within the plant zen in the usual way (McCormick et al. (1986) Plant Cell Reports 5, 81-84). The plants can be grown normally and with plants that have the same transformed genetic makeup or other genes have to be crossed. The result from it the individuals have the corresponding phenotypic properties create.

Für die Einführung der DNA in die Wirtsorganismen eignen sich Expressionsvektoren, die eine oder mehrere der erfindungsgemä­ ßen DNA-Sequenzen enthalten. Solche Expressionsvektoren erhält man, indem man die erfindungsgemäßen DNA-Sequenzen mit geeigne­ ten funktionellen Regulationssignalen versieht. Solche Regula­ tionssignale sind DNA-Sequenzen, die für die Expression verant­ wortlich sind, beispielsweise Promotoren, Operatoren, Enhancer, ribosomale Bindungsstellen, und die vom Wirtsorganismus erkannt werden.Suitable for the introduction of the DNA into the host organisms Expression vectors which one or more of the DNA sequences included. Receives such expression vectors one by using the DNA sequences according to the invention with suitable provides functional regulatory signals. Such regulations tion signals are DNA sequences that are responsible for expression are literal, for example promoters, operators, enhancers, ribosomal binding sites, and those recognized by the host organism become.

Gegebenenfalls können noch weitere Regulationssignale, die bei­ spielsweise Replikation oder Rekombination der rekombinanten DNA im Wirtsorganismus steuern, Bestandteil des Expressionsvek­ tors sein.If necessary, other regulatory signals, which at for example, replication or recombination of the recombinant Control DNA in the host organism, part of the expression vector be tors.

Für die Expression der erfindungsgemäßen Enzyme eignen sich be­ sonders solche Wirtszellen und Organismen, die keine intrinsi­ schen Enzyme mit der Funktion der DOXP-Synthase, der DOXP- Reduktoisomerase oder der gcpE-Kinase aufweisen. Dies trifft für Archaebacterien, Tiere, Pilze, Schleimpilze und einige Eu­ bakterien zu. Durch das Fehlen dieser intrinsischen Enzymakti­ vitäten wird die Detektion und Aufreinigung der rekombinanten Enzyme wesentlich erleichtert. Auch wird es erst dadurch mög­ lich, mit geringem Aufwand die Aktivität und insbesondere die Hemmung der Aktivität der erfindungsgemäßen rekombinanten Enzy­ me durch verschiedenen Chemikalien und Pharmaka in Rohextrakten aus den Wirtszellen zu messen.Be suitable for the expression of the enzymes according to the invention especially those host cells and organisms that are not intrinsic enzymes with the function of DOXP synthase, the DOXP Have reductoisomerase or the gcpE kinase. This is true for archaebacteria, animals, fungi, slime molds and some eu bacteria too. Due to the lack of these intrinsic enzyme stocks the detection and purification of the recombinant Enzymes much easier. This also makes it possible  Lich, with little effort the activity and especially the Inhibition of the activity of the recombinant enzyme according to the invention me through various chemicals and pharmaceuticals in raw extracts to measure from the host cells.

Die Expression der erfindungsgemäßen Enzyme erfolgt vorteilhaf­ terweise dann in eukaryontischen Zellen, wenn posttranslatori­ sche Modifikationen und eine native Faltung der Polypeptidkette erreicht werden soll. Außerdem wird in Abhängigkeit vom Expres­ sionssystem bei der Expression genomischer DNA-Sequenzen er­ reicht, daß Introns durch Spleißen der DNA beseitigt und die Enzyme in der für die Parasiten charakteristischen Polypep­ tidsequenz produziert werden. Für Introns codierende Sequenzen können auch durch rekombinante DNA-Technologie aus den zu ex­ primierenden DNA-Sequenzen beseitigt oder experimentell einge­ fügt werden.The enzymes according to the invention are advantageously expressed usually in eukaryotic cells when posttranslatori modifications and a native folding of the polypeptide chain should be achieved. In addition, depending on the express sion system in the expression of genomic DNA sequences is enough that introns are removed by splicing the DNA and the Enzymes in the polypep characteristic of the parasites tide sequence are produced. Sequences coding for introns can also by recombinant DNA technology from the ex priming DNA sequences eliminated or experimentally inserted be added.

Die Isolierung des Proteins kann aus der Wirtszelle oder dem Kulturüberstand der Wirtszelle nach dem Fachmann bekannten Ver­ fahren erfolgen. Es kann auch eine in vitro Reaktivierung der Enzyme erforderlich sein.The isolation of the protein can be from the host cell or the Culture supernatant of the host cell according to Ver drive done. It can also be an in vitro reactivation of the Enzymes may be required.

Zur Erleichterung der Aufreinigung können die erfindungsgemäßen Enzyme oder Teilsequenzen der Enzyme als Fusionsprotein mit verschiedenen Peptidketten exprimiert werden. Dazu eigenen sich besonders Oligo-Histidin-Sequenzen und Sequenzen, die von der Glutathion-S-Transferase, Thioredoxin oder Calmodulin-bindenden Peptiden abgeleitet sind. Fusionen mit Thioredoxin-abgeleiteten Sequenzen eignen sich besonders für prokaryontische Expression, da dadurch die Löslichkeit der rekombinanten Enzyme erhöht wird.To facilitate purification, the inventive Enzymes or partial sequences of the enzymes as a fusion protein different peptide chains can be expressed. Suitable for this especially oligo-histidine sequences and sequences by the Glutathione-S-transferase, thioredoxin or calmodulin-binding Peptides are derived. Mergers with thioredoxin-derived Sequences are particularly suitable for prokaryotic expression, since this increases the solubility of the recombinant enzymes becomes.

Weiterhin können die erfindungsgemäßen Enzyme oder Teilsequen­ zen der Enzyme als Fusionsprotein mit solchen, dem Fachmann be­ kannten, Peptidketten exprimiert werden, daß die rekombinanten Enzyme in das extrazelluläre Millieu oder in bestimmte Kompar­ timente der Wirtszellen transportiert werden. Dadurch kann so­ wohl die Aufreinigung, als auch die Untersuchung der biologi­ schen Aktivität der Enzyme erleichtert werden.Furthermore, the enzymes or partial sequences according to the invention zen of the enzymes as a fusion protein with such, the expert be knew, peptide chains are expressed that the recombinant  Enzymes in the extracellular environment or in certain Kompar moments of the host cells are transported. This can be so probably the purification, as well as the investigation of the biological the activity of the enzymes.

Bei der Expression der erfindungsgemäßen Enzyme kann es sich als zweckmäßig erweisen, einzelne Codone zu verändern. Dabei ist der gezielte Austausch von Basen in der kodierenden Region auch sinnvoll, wenn die genutzten Codone in den Parasiten ab­ weichend sind von der Codonnutzung im heterologen Expressions­ system, um eine optimale Synthese des Proteins zu gewährlei­ sten. Zudem sind oft Deletionen von nicht-translatierten 5' bzw. 3'-Abschnitten sinnvoll, beispielsweise wenn mehrere destabili­ sierende Sequenzmotive ATTTA im 3'-Bereich der DNA vorliegen. Dann sollten diese bei der bevorzugen Expression in Eukaryonten deletiert werden. Veränderungen dieser Art sind Deletionen, Ad­ ditionen oder Austausch von Basen und ebenfalls Gegenstand. der vorliegenden Erfindung.The expression of the enzymes according to the invention can be prove to be expedient to change individual codons. Here is the targeted exchange of bases in the coding region also useful if the codons used in the parasites depart from codon usage in heterologous expressions system to ensure an optimal synthesis of the protein most. In addition, deletions of untranslated 5 'or 3 'sections make sense, for example if several destabili Sequence motifs ATTTA are present in the 3 'region of the DNA. Then these should be given preferential expression in eukaryotes be deleted. Changes of this kind are deletions, ad ditions or exchange of bases and also subject. the present invention.

Weiterhin können die erfindungsgemäßen Enzyme unter standardi­ sierten Bedingungen durch dem Fachmann bekannte Techniken durch in vitro-Translation gewonnen werden. Dafür geeignete Systeme sind Kaninchen-Reticulozyten- und Weizenkeimextrakte und Bakte­ rienlysate. Auch kann in vitro transskribierte mRNA in Xenopus- Oocyten translatiert werden.Furthermore, the enzymes according to the invention can be found under standardi conditions by techniques known to those skilled in the art obtained in vitro translation. Suitable systems are rabbit reticulocyte and wheat germ extracts and bacts rienlysate. In vitro mRNA transcribed in Xenopus Oocytes are translated.

Durch chemische Synthese können Oligo- und Polypeptide herge­ stellt werden, aer Sequenzen aus der Peptidsequenz der erfin­ dungsgemäßen Enzyme abgeleitet sind. Bei geeigneter Wahl der Sequenzen besitzen derartige Peptide Eigenschaften, die für die vollständigen erfindungsgemäßen Enzyme charakteristisch sind. Derartige Peptide können in großen Mengen hergestellt werden und eignen sich besonders für Studien über die Kinetik der En­ zymaktivität, die Regulation der Enzymaktivität, die dreidimen­ sionale Struktur der Enzyme, die Hemmung der Enzymaktivität durch verschiedenen Chemikalien und Pharmaka und die Bindungs­ geometrie und Bindungsaffinität verschiedener Liganden.Chemical synthesis can produce oligo- and polypeptides are aer sequences from the peptide sequence of the inventions enzymes according to the invention are derived. With a suitable choice of Sequences have such peptides properties that for the complete enzymes according to the invention are characteristic. Such peptides can be produced in large quantities and are particularly suitable for studies on the kinetics of enes enzyme activity, the regulation of enzyme activity, the three dimensions sional structure of the enzymes, the inhibition of enzyme activity  through various chemicals and pharmaceuticals and the binding geometry and binding affinity of different ligands.

Es hat sich herausgestellt, daß auch in vielen Parasiten, Viren und Pilzen dieser der Desoxy-D-xylulose-Phosphat- Stoffwechselweg ebenfalls vorliegt.It has been found that even in many parasites, viruses and mushrooms this the deoxy-D-xylulose phosphate Metabolic pathway also exists.

Die Erfindung umfaßt daher außerdem ein Verfahren zum Screening einer Verbindung. Gemäß diesem Verfahren wird ein Wirtsorganis­ mus, der einen rekombinanten Expressionsvektor enthält, wobei der Vektor zumindest einen Teil der Olignukleotidsequenz, die für das gcpE-Protein kodiert, oder Varianten oder Homologe die­ ser aufweist, utxd außerdem eine Verbindung, von der vermutet wird, daß sie eine antimikrobielle, antiparasitäre, antivirale und antimykotische Wirkung bei Mensch und Tier oder eine bakte­ rizide, antimikrobielle, herbizide oder fungizide Wirkung bei Pflanzen hat, bereitgestellt. Anschließend wird der Wirtsorga­ nismus mit der Verbindung in Kontakt gebracht und die Wirksam­ keit der Verbindung bestimmt.The invention therefore also includes a method of screening a connection. According to this procedure, becomes a host organ mus containing a recombinant expression vector, wherein the vector contains at least a portion of the oligonucleotide sequence encoded for the gcpE protein, or variants or homologs serx, utxd also has a connection that is suspected will be an antimicrobial, antiparasitic, antiviral and antifungal effects in humans and animals or a bacterium ricidal, antimicrobial, herbicidal or fungicidal activity Plants. Then the host orga contact with the connection and the effectiveness connection.

Ein weiterer Gegenstand dieser Erfindung sind Methoden zur Be­ stimmung der enzymatische Aktivität der gcpE-Kinase. Diese kann nach den bekannten Anleitungen bestimmt werden. Hierbei wird die Phosphorylierung eines Zuckers oder eines Phosphorzuckers oder einer Vorstufe der Isoprenoidbiosynthese, insbesondere die Phosphorylierung von 2-C-Methyl-D-erythritol, 2-C-Methyl-D- erythritol-phosphat, insbesondere 2-C-Methyl-D-erythritol-4- phosphat, 2-C-Methyl-D-erythrose, 2-C-Methyl-D-erythrose­ phosphat, insbesondere 2-C-Methyl-D-erythrose-4-phosphat,
CH2(OH)-C(CH3)=C(OH)-CH2-O-PO(OH)2,
CH2(OH)-C(CH3)=C(OH)-CH2-OH,
CH2(OH)-(OH3)-CH(CH3)-CO-CH2-O-PO(OH)2, CH2(OH)-CH3)-CH(CH3)-CO-CH2-OH,
CH2=C(CH3)-CO-CH2(OH)-CH2-O-PO(OH)2, CH2=C(CH3)-CO-CH2-OH,
CH2=C(CH3)-CH(OH)-CH2-O-PO(OH)2, CH2=C(CH3)-CH(OH)-CH2-OH,
CH2(OH)-C(=CH2)-C(OH)-CH2-O-PO(OH)2,
CH2(OH)-C(=CH2)-C(OH)-CH2-OH,
CHO-CH(CH3)-CH(OH)-CH2-O-PO(OH)2, OHO-CH(CH3)-CH(OH)-CH2-OH,
CH2(OH)-C(OH)(CH3)-CH=CH-O-PO(OH)2,
CH2(OH)-C(OH)(CH3)-CH=CH-OH,
CH(OH)= C(CH3)-CH(OH)-CH2-O-PO(OH)2, CH(OH)= C(CH3)-CH(OH)-CH2-OH,
CH3-C(CH3)=CH-CH2-O-PO(OH)2, CH3-C(CH3)=CH-CH2-OH,
CH2=C(CH3-CH2-CH2-O-PO(OH)2, CH2=C(CH3)-CH2-CH2-OH detektiert.
Another object of this invention are methods for determining the enzymatic activity of the gcpE kinase. This can be determined according to the known instructions. The phosphorylation of a sugar or a phosphorus sugar or a precursor of isoprenoid biosynthesis, in particular the phosphorylation of 2-C-methyl-D-erythritol, 2-C-methyl-D-erythritol-phosphate, in particular 2-C-methyl-D- erythritol-4-phosphate, 2-C-methyl-D-erythrose, 2-C-methyl-D-erythrose phosphate, in particular 2-C-methyl-D-erythrose-4-phosphate,
CH 2 (OH) -C (CH 3 ) = C (OH) -CH 2 -O-PO (OH) 2 ,
CH 2 (OH) -C (CH 3 ) = C (OH) -CH 2 -OH,
CH 2 (OH) - (OH3) -CH (CH 3 ) -CO-CH 2 -O-PO (OH) 2 , CH 2 (OH) -CH 3 ) -CH (CH 3 ) -CO-CH 2 - OH,
CH 2 = C (CH 3 ) -CO-CH 2 (OH) -CH 2 -O-PO (OH) 2 , CH 2 = C (CH 3 ) -CO-CH 2 -OH,
CH 2 = C (CH 3 ) -CH (OH) -CH 2 -O-PO (OH) 2 , CH 2 = C (CH 3 ) -CH (OH) -CH 2 -OH,
CH 2 (OH) -C (= CH 2 ) -C (OH) -CH 2 -O-PO (OH) 2 ,
CH 2 (OH) -C (= CH 2 ) -C (OH) -CH 2 -OH,
CHO-CH (CH 3 ) -CH (OH) -CH 2 -O-PO (OH) 2 , OHO-CH (CH 3 ) -CH (OH) -CH 2 -OH,
CH 2 (OH) -C (OH) (CH 3 ) -CH = CH-O-PO (OH) 2 ,
CH 2 (OH) -C (OH) (CH 3 ) -CH = CH-OH,
CH (OH) = C (CH 3 ) -CH (OH) -CH 2 -O-PO (OH) 2 , CH (OH) = C (CH 3 ) -CH (OH) -CH 2 -OH,
CH 3 -C (CH 3 ) = CH-CH 2 -O-PO (OH) 2 , CH 3 -C (CH 3 ) = CH-CH 2 -OH,
CH 2 = C (CH 3 -CH 2 -CH 2 -O-PO (OH) 2 , CH 2 = C (CH 3 ) -CH 2 -CH 2 -OH detected.

Ein weiterer Gegenstand dieser Erfindung ist die Verwendung dieser Meßverfahren zur Ermittlung von Stoffen, die die Aktivi­ tät der jeweiligen Enzyme inhibieren.Another object of this invention is the use of these measuring methods for the determination of substances that the Aktivi inhibit the activity of the respective enzymes.

Claims (3)

1. Verfahren zur Bestimmung der enzymatische Aktivität des gcpE-Proteins aus Bakterien, dadurch gekennzeichnet, daß Phosphorylierung eines Zuckers oder eines Phosphorzuckers oder einer Vorstufe der Isoprenoidbiosynthese, insbesondere die Phosphorylierung von 2-C-Methyl-D-erythritol, 2-C- Methyl-D-erythritol-phosphat, insbesondere 2-C-Methyl-D- erythritol-4-phosphat, 2-C-Methyl-D-erythrose, 2-C-Methyl- D-erythrosephosphat, insbesondere 2-C-Methyl-D-erythrose- 4-phosphat, CH2(OH)-C(CH3)=C(OH)-CH2-O-PO(OH)2,
CH2(OH)-C(CH3)=C(OH)-CH2-OH,
CH2(OH)-CH(CH3)-CO-CH2-O-PO(OH)2, CH2(OH)-CH(CH3)-CO-CH2-OH,
CH2=C(CH3)-CO-CH2-O- PO(OH)2, CH2=C(CH3)-CO-CH2-OH,
CH2=C(CH3)-CH(OH)-CH2-O- PO(OH)2, CH2=C(CH3)-CH(OH)-CH2-OH,
CH2(OH)-C(=CH2)-C(OH)-CH2-O-PO(OH)2,
CH2(OH)-C(=CH2)-C(OH)-CH2-OH,
CHO-CH(CH3)-OH(OH)-CH(OH)-CH2-O-PO(OH)2, CHO-CH (CH3)-OH(OH)-CH(OH)-CH2-OH,
CH2(OH)-C(OH)(CH2)-CH=CH-O-PO(OH)2,
CH2(OH)-C(OH)(CH3)-CH=CH-OH,
CH(OH)=C(CH3)-CH(OH)-CH2-O-PO(OH)2,
CH(OH)= C(CH3)-CH(OH)-CH2-OH,
CH3-C(CH3)=CH-CH2-O-PO(OH)2, CH3-C(CH2)=CH-CH2-OH,
CH2=C(CH3)-CH2-CH2-O-PO(OH)2, CH2=C (CH2)-CH2-CH2-OH,
detektiert wird.
1. A method for determining the enzymatic activity of the gcpE protein from bacteria, characterized in that phosphorylation of a sugar or a phosphorus sugar or a precursor of isoprenoid biosynthesis, in particular the phosphorylation of 2-C-methyl-D-erythritol, 2-C-methyl -D-erythritol phosphate, in particular 2-C-methyl-D-erythritol-4-phosphate, 2-C-methyl-D-erythrose, 2-C-methyl-D-erythrose phosphate, in particular 2-C-methyl-D -erythrose- 4-phosphate, CH 2 (OH) -C (CH 3 ) = C (OH) -CH 2 -O-PO (OH) 2 ,
CH 2 (OH) -C (CH 3 ) = C (OH) -CH 2 -OH,
CH 2 (OH) -CH (CH 3 ) -CO-CH 2 -O-PO (OH) 2 , CH 2 (OH) -CH (CH 3 ) -CO-CH 2 -OH,
CH 2 = C (CH 3 ) -CO-CH 2 -O- PO (OH) 2 , CH 2 = C (CH 3 ) -CO-CH 2 -OH,
CH 2 = C (CH 3 ) -CH (OH) -CH 2 -O- PO (OH) 2 , CH 2 = C (CH 3 ) -CH (OH) -CH 2 -OH,
CH 2 (OH) -C (= CH 2 ) -C (OH) -CH 2 -O-PO (OH) 2 ,
CH 2 (OH) -C (= CH 2 ) -C (OH) -CH 2 -OH,
CHO-CH (CH 3 ) -OH (OH) -CH (OH) -CH 2 -O-PO (OH) 2 , CHO-CH (CH 3 ) -OH (OH) -CH (OH) -CH 2 - OH,
CH 2 (OH) -C (OH) (CH 2 ) -CH = CH-O-PO (OH) 2 ,
CH 2 (OH) -C (OH) (CH 3 ) -CH = CH-OH,
CH (OH) = C (CH 3 ) -CH (OH) -CH 2 -O-PO (OH) 2 ,
CH (OH) = C (CH 3 ) -CH (OH) -CH 2 -OH,
CH 3 -C (CH 3 ) = CH-CH 2 -O-PO (OH) 2 , CH 3 -C (CH 2 ) = CH-CH 2 -OH,
CH 2 = C (CH 3 ) -CH 2 -CH 2 -O-PO (OH) 2 , CH 2 = C (CH 2 ) -CH 2 -CH 2 -OH,
is detected.
2. Verfahren zum Screening einer Verbindung, wobei das Verfah­ ren umfaßt:
  • a) Bereitstellen einer Wirtszelle, die einen rekombinanten Expressionsvektor enthält, wobei der Vektor zumindest einen Teil der DNA-Sequenz die für ein gcpE-Gen aus Bakterien für ein Analoges oder Derivat des Polypeptids kodiert, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypep­ tids wesentlich zu reduzieren, aufweist und außerdem ei­ ne Verbindung, von der vermutet wird, daß sie eine an­ timykotische, antiparasitäre oder antivirale Wirkung bei Mensch und Tier hat,
  • b) In-Kontakt-Bringen der Wirtszelle mit der Verbindung und
  • c) Bestimmung der antimykotischen, antiparasitären oder an­ tiviralen Wirksamkeit der Verbindung.
2. A method of screening a compound, the method comprising:
  • a) Providing a host cell containing a recombinant expression vector, the vector encoding at least part of the DNA sequence encoding a bacterial gcpE gene for an analog or derivative of the polypeptide, wherein one or more amino acids are deleted, added, or by others Amino acids have been substituted without significantly reducing the enzymatic action of the polypeptide, and also a compound which is suspected to have a timykotic, antiparasitic or antiviral effect in humans and animals,
  • b) contacting the host cell with the compound and
  • c) Determination of the antifungal, antiparasitic or tiviral activity of the compound.
3. Verfahren zum Screening einer Verbindung, wobei das Verfah­ ren umfaßt:
  • a) Bereitstellen einer Wirtszelle, die einen rekombinanten Expressionsvektor enthält, wobei der Vektor zumindest einen Teil der DNA-Sequenz die für ein gcpE-Gen aus Bakterien für ein Analoges oder Derivat des Polypeptids kodiert, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypep­ tids wesentlich zu reduzieren, aufweist und außerdem ei­ ne Verbindung, von der vermutet wird, daß sie eine anti­ virale, antiparasitäre, fungizide oder herbizide Wirkung bei Pflanzen hat,
  • b) In-Kontakt-Bringen der Wirtszelle mit der Verbindung und
  • c) Bestimmung der antiviralen, antiparasitären, fungiziden oder herbiziden Wirksamkeit der Verbindung.
3. A method of screening a compound, the method comprising:
  • a) Providing a host cell containing a recombinant expression vector, the vector encoding at least part of the DNA sequence encoding a bacterial gcpE gene for an analog or derivative of the polypeptide, wherein one or more amino acids are deleted, added, or by others Amino acids have been substituted without significantly reducing the enzymatic action of the polypeptide, and also have a compound which is suspected to have an anti-viral, antiparasitic, fungicidal or herbicidal action in plants,
  • b) contacting the host cell with the compound and
  • c) Determination of the antiviral, antiparasitic, fungicidal or herbicidal activity of the compound.
DE19923568A 1999-05-21 1999-05-21 Incorporating gcpE and yfgB genes into viruses and cells, for increasing isoprenoid content and identifying e.g. antimicrobial agents, comprises using DNA sequences from bacteria or parasites Ceased DE19923568A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
DE19923568A DE19923568A1 (en) 1999-05-21 1999-05-21 Incorporating gcpE and yfgB genes into viruses and cells, for increasing isoprenoid content and identifying e.g. antimicrobial agents, comprises using DNA sequences from bacteria or parasites
TR2001/03326T TR200103326T2 (en) 1999-05-21 2000-05-20 The use of genes from the deoxy-D-xylulose phosphate biosynthetic pathway to alter the concentration of isoprenoid
CA002374608A CA2374608A1 (en) 1999-05-21 2000-05-20 Use of genes of the deoxy-d-xylulose phosphate biosynthetic pathway for altering the concentration of isoprenoid
PL00351756A PL351756A1 (en) 1999-05-21 2000-05-20 Use of genes of the deoxy-d-xylulose phosphate biosynthetic pathway for altering the concentration of isoprenoid
BR0011289-5A BR0011289A (en) 1999-05-21 2000-05-20 Use of genes in the deoxy-d-xylulose phosphate biosynthetic pathways to alter the isoprenoid concentration
EP00935082A EP1179187A1 (en) 1999-05-21 2000-05-20 Use of genes of the deoxy-d-xylulose phosphate biosynthetic pathway for altering the concentration of isoprenoid
PCT/EP2000/004592 WO2000072022A1 (en) 1999-05-21 2000-05-20 Use of genes of the deoxy-d-xylulose phosphate biosynthetic pathway for altering the concentration of isoprenoid
JP2000620359A JP2003500073A (en) 1999-05-21 2000-05-20 Use of Deoxy-D-xylulose phosphate biosynthetic pathway genes to alter isoprenoid concentrations
CN00807856A CN1351715A (en) 1999-05-21 2000-05-20 Use of genes of the deoxy-D-xylulose phosphate biosynthetic pathway for altering the concentration of isoprenoid
HU0201386A HUP0201386A2 (en) 1999-05-21 2000-05-20 Use of genes of the deoxy-d-xylulose phosphate biosynthetic pathway for altering the concentration of isoprenoid
EA200101222A EA200101222A1 (en) 1999-05-21 2000-05-20 APPLICATION OF GENES OF THE PATH OF BIOSYNTHESIS WITH THE PARTICIPATION OF DEOXY-D-XYLULOSE-PHOSPHATE TO CHANGE THE CONCENTRATION OF ISOPRENOIDS
AU50694/00A AU5069400A (en) 1999-05-21 2000-05-20 Use of genes of the deoxy-d-xylulose phosphate biosynthetic pathway for altering the concentration of isoprenoid
IL14634700A IL146347A0 (en) 1999-05-21 2000-05-20 Use of genes of the deoxy-d-xylulose phosphate biosynthetic pathway for altering the concentration of isoprenoid
MXPA01011894A MXPA01011894A (en) 1999-05-21 2000-05-20 Use of genes of the deoxy-d-xylulose phosphate biosynthetic pathway for altering the concentration of isoprenoid.
NO20015657A NO20015657L (en) 1999-05-21 2001-11-20 Use of genes from the deoxy-D-xylulose phosphate biosynthesis reaction pathway to change the concentration of avisoprenoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19923568A DE19923568A1 (en) 1999-05-21 1999-05-21 Incorporating gcpE and yfgB genes into viruses and cells, for increasing isoprenoid content and identifying e.g. antimicrobial agents, comprises using DNA sequences from bacteria or parasites

Publications (1)

Publication Number Publication Date
DE19923568A1 true DE19923568A1 (en) 2000-11-23

Family

ID=7908891

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19923568A Ceased DE19923568A1 (en) 1999-05-21 1999-05-21 Incorporating gcpE and yfgB genes into viruses and cells, for increasing isoprenoid content and identifying e.g. antimicrobial agents, comprises using DNA sequences from bacteria or parasites

Country Status (2)

Country Link
DE (1) DE19923568A1 (en)
EA (1) EA200101222A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035810A2 (en) * 2002-10-11 2004-04-29 Bioagency Ag Verfahren zur bestimmung der enzymatischen aktivität des lytb- und gcpe-proteins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035810A2 (en) * 2002-10-11 2004-04-29 Bioagency Ag Verfahren zur bestimmung der enzymatischen aktivität des lytb- und gcpe-proteins
WO2004035810A3 (en) * 2002-10-11 2004-08-05 Bioagency Ag Verfahren zur bestimmung der enzymatischen aktivität des lytb- und gcpe-proteins

Also Published As

Publication number Publication date
EA200101222A1 (en) 2002-04-25

Similar Documents

Publication Publication Date Title
EP1115849B1 (en) Genes of the 1-desoxy-d-xylulose biosynthetic pathway
EP0765393B1 (en) Dna molecules which code for a plastid 2-oxoglutarate/malate translocator
Bingham et al. Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice
DE69834192T2 (en) WHEAT RHT GEN FOR GENETIC CONTROL OF PLANT GROWTH AND DEVELOPMENT
Isaac et al. The maize cytochrome c oxidase subunit I gene: sequence, expression and rearrangement in cytoplasmic male sterile plants
DE69233477T2 (en) TRANSGENIC NON-HUMAN ANIMALS WITHOUT PRION PROTEIN
Korczak et al. Structure of the rabbit fast-twitch skeletal muscle Ca2+-ATPase gene.
EP1597373B1 (en) Glyphosate-tolerant sugar beet
EP0616035A2 (en) Transgenic pathogen resistant organism
DE60028578T2 (en) CHANGED PLANTS
DE60316300T2 (en) ROOT SPECIFIC PROMOTERS AND THEIR USES
DE10021688A1 (en) New DNA sequences involved in isoprenoid biosynthesis, useful in screening for compounds with e.g. antimicrobial and herbicidal activity
DE69935903T2 (en) GENUINE ANIMALS
DE19752647C1 (en) Reduction of the chlorophyll content in oil plant seeds
WO2000072022A1 (en) Use of genes of the deoxy-d-xylulose phosphate biosynthetic pathway for altering the concentration of isoprenoid
DE19923568A1 (en) Incorporating gcpE and yfgB genes into viruses and cells, for increasing isoprenoid content and identifying e.g. antimicrobial agents, comprises using DNA sequences from bacteria or parasites
DE19923567A1 (en) Genes of the 1-deoxy-D-xylulose biosynthetic pathway
DE19740578A1 (en) Procedure for the identification of target genes of transcription factors
WO2018029300A1 (en) Resistance gene to rhizomania
DE69823712T2 (en) Rab3 GEP protein
DE60035972T2 (en) PROCESS FOR TRANSFERRING BNYVV RESISTANCE IN SUGAR BEET PLANTS
DE60031410T2 (en) MUTED GENE OF GRASS FAMILY AND PLANTS WITH REDUCED DEVELOPMENT THAT KEEP THIS GEN
DE19600357C1 (en) DNA sequence encoding a phosphoenolpyruvate phosphate translocator, plasmids, bacteria, yeasts and plants containing this transporter
DE60225046T2 (en) PRODUCTION OF EUKARYONTIC PROTEINS AND NUCLEIC ACID MOLECULES IN C. ELEGANS
DE4340116A1 (en) New transcription factor mutants and their use

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: JOMAA PHARMAKA GMBH, 35392 GIESSEN, DE

8181 Inventor (new situation)

Free format text: JOMAA, HASSAN, DR., 35398 GIESSEN, DE

8127 New person/name/address of the applicant

Owner name: BIOAGENCY AG, 22177 HAMBURG, DE

8131 Rejection