DE19911284A1 - Rotational friction welding of a sleeve connector between crosslinked polyethylene pipes by inserting a sleeve of similar material between the pipe ends and rotating - Google Patents

Rotational friction welding of a sleeve connector between crosslinked polyethylene pipes by inserting a sleeve of similar material between the pipe ends and rotating

Info

Publication number
DE19911284A1
DE19911284A1 DE1999111284 DE19911284A DE19911284A1 DE 19911284 A1 DE19911284 A1 DE 19911284A1 DE 1999111284 DE1999111284 DE 1999111284 DE 19911284 A DE19911284 A DE 19911284A DE 19911284 A1 DE19911284 A1 DE 19911284A1
Authority
DE
Germany
Prior art keywords
friction
pipes
sleeve
cross
linked polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE1999111284
Other languages
German (de)
Other versions
DE19911284C2 (en
Inventor
Wolfgang Tobias
Otto Latzusch
Gunter Bernstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunststoff Zentrum in Leipzig GmbH
Original Assignee
Kunststoff Zentrum in Leipzig GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunststoff Zentrum in Leipzig GmbH filed Critical Kunststoff Zentrum in Leipzig GmbH
Priority to DE1999111284 priority Critical patent/DE19911284C2/en
Publication of DE19911284A1 publication Critical patent/DE19911284A1/en
Application granted granted Critical
Publication of DE19911284C2 publication Critical patent/DE19911284C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0672Spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1226Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least one bevelled joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • B29C66/52291Joining tubular articles involving the use of a socket said socket comprising a stop
    • B29C66/52292Joining tubular articles involving the use of a socket said socket comprising a stop said stop being internal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7375General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured
    • B29C66/73755General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being fully cured, i.e. fully cross-linked, fully vulcanized
    • B29C66/73756General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being fully cured, i.e. fully cross-linked, fully vulcanized the to-be-joined areas of both parts to be joined being fully cured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • B29C66/73941General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset characterised by the materials of both parts being thermosets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93451Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed by controlling or regulating the rotational speed, i.e. the speed of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Abstract

The sleeve connector comprises either a tube section, a butt welding sleeve(3) or an injection molded overlapping rotational welding socket of cross-linked polyethylene. The connector is positioned between the non-rotating pipes(1,2) and rotated about its axis while both pipes are moved axially towards each other to effect friction between the end faces(4,5,6,7) of the connector and pipes and produce a rotational friction weld. Preferred Features: With increasing frictional pressure the temperature of the mating faces(4-7) reaches 420-440 deg C to give a uniform melt viscosity. The friction period is 7-12s and when friction ceases an axial pressure of 0.9-1.2bar is applied to the joint until the melt cools.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer Muffenverbindung durch Rotationsreibschweißen für vernetzte Polyethylenrohre (PE-X-Rohre) zur Nutzung dieser Rohre im industriellen und erdverlegten Rohrleitungsbau. Die hohe Abrieb- und Verschleißfestigkeit der vernetzten Polyethylenrohre (PE-X-Rohre) bringt Vor­ teile im Abwasserbereich und für Kabelrohre sowie bei der Verlegetechnik von Wasserrohren, da sie eine höhere Beständigkeit gegen Ziehriefen aufweisen als die unvernetzten Polyethylenrohre.The invention relates to a method for producing a socket connection Rotary friction welding for cross-linked polyethylene pipes (PE-X pipes) for use of these pipes in industrial and underground pipeline construction. The high abrasion and wear resistance of the cross-linked polyethylene pipes (PE-X pipes) brings forward parts in the wastewater sector and for cable ducts as well as in the laying technology of Water pipes because they have a higher resistance to drawing marks than the uncrosslinked polyethylene pipes.

Vernetzte Polyethylenrohre (PE-X-Rohre) zeichnen sich gegenüber Polyethylen­ rohren hoher Dichte (PE-HD-Rohre) durch hervorragende Eigenschaften hinsicht­ lich höherer Festigkeit, Alterungsstabilität, Temperaturbeständigkeit, Resistenz ge­ gen aggressive Medien sowie hohe Kerbschlagzähigkeit und Beständigkeit gegen Spannungsrißkorrosion aus und sind deshalb für den erdverlegten Gas- und Was­ serrohrleitungsbau bestens geeignet. Sie finden ihren Einsatz auch für Druckluftan­ lagen, Heißwasserleitungen und Industrieanlagen.Cross-linked polyethylene pipes (PE-X pipes) are distinguished from polyethylene high density pipes (PE-HD pipes) due to excellent properties Lich higher strength, aging stability, temperature resistance, resistance ge aggressive media as well as high impact strength and resistance to Stress corrosion cracking and are therefore for underground gas and what Ideally suited for pipeline construction. They are also used for compressed air locations, hot water pipes and industrial plants.

Ein wesentliches Problem bei der Herstellung von Rohrleitungssystemen aus vernetztem Polyethylen (PE-X) stellt die Verbindungstechnik dar.A major problem in the manufacture of piping systems Cross-linked polyethylene (PE-X) is the connection technology.

Mit zunehmendem Vernetzungsgrad des Polyethylens (PE) verschlechtert sich nämlich seine Schweißbarkeit.The degree of crosslinking of polyethylene (PE) deteriorates namely its weldability.

Verbindungsverfahren, die sich durch hohe Wirtschaftlichkeit im traditionellen PE-Industrierohrleitungsbau auszeichnen, wie das Heizelementschweißen für Rohrdurchmesser <110 mm und das Heizelementmuffenschweißen für kleine Durchmesser bis 125 mm, sind für vernetzte PE-Rohre (PE-X-Rohre) nicht ein­ setzbar. Vernetztes Polyethylen (PE-X) schmilzt infolge seiner molekularen Struktur unter Wärmeeinwirkung im Schweißtemperaturbereich für Polyethylen hoher Dichte (PE-HD) nicht mehr auf, sondern wird nur gummielastisch weich. Connection methods, which are characterized by high economic efficiency in the traditional PE industrial pipeline construction, such as heating element welding for Pipe diameter <110 mm and heating element socket welding for small ones Diameters up to 125 mm are not suitable for cross-linked PE pipes (PE-X pipes) settable. Cross-linked polyethylene (PE-X) melts due to its molecular structure under the influence of heat in the welding temperature range for high density polyethylene (PE-HD) no longer, but only becomes rubber-elastic soft.  

Nach allgemeinem Kenntnisstand kann davon ausgegangen werden, daß vernetz­ tes Polyethylen untereinander nicht schweißbar ist (Fachvortrag "Der Rohrwerk­ stoff PE-X: Rohrwerkstoffeigenschaften, Qualitätssicherung und Haupteinsatzge­ biete" Tagungsband und Vortrag zu den Wiesbadener Kunststoffrohrtagen 1998 am 27. u. 28. 04. 1998).According to general knowledge, it can be assumed that networking tes polyethylene is not weldable to each other (specialist lecture "The pipe mill PE-X material: pipe material properties, quality assurance and main application offer "Conference proceedings and lecture on the Wiesbaden Plastic Pipe Days 1998 on the 27th and April 28, 1998).

Seit Mitte der 80-ziger Jahre ist es bekannt, vernetzte Polyethylenrohre (PE-X- Rohre) im Bereich der Trinkwasser-Hausinstallation, im Heizungs- und Warmwas­ ser-, zwischenzeitlich auch im Fernwärmebereich und bei Gasdruckleitungen ein­ zusetzen. Als Verbindungselemente zwischen den Rohren wurden eigens Schlauchtüllen- und Quetschverbinder aus Messing und Stahl entwickelt, auf die die Rohrenden aufgesteckt und zusätzlich mit Edelstahlschellen gesichert wurden (Fachzeitschrift gwf - Gas-Erdgas, 131, 1990, Heft 10/11, Seite 477-482).It has been known since the mid-1980s that cross-linked polyethylene pipes (PE-X- Pipes) in the area of domestic drinking water installation, in heating and hot water in the meantime also in district heating and gas pressure lines clog. As connecting elements between the tubes were specially Hose nozzle and crimp connector made of brass and steel developed to the the pipe ends were attached and additionally secured with stainless steel clamps (Journal gwf - Gas-Erdgas, 131, 1990, issue 10/11, pages 477-482).

Nachteilig bei dieser Lösung ist der hohe Kosten- und Montageaufwand im Bereich der Verbindungstechnik.The disadvantage of this solution is the high cost and assembly costs in the area the connection technology.

Gegenwärtig werden vernetzte Polyethylenrohre (PE-X-Rohre) durch mechanische Quetsch- oder Schiebehülsen-Fittings aus Messing verbunden. Diese Verbindun­ gen mit Formteilen sind material- und kostenaufwendig, zum anderen sind sie werkstoffbedingte Störstellen im Eigenschaftsbild des vernetzten Polyethylens. Sie finden ihren Einsatz bevorzugt für Druckluftanlagen, Heißwasserleitungen und Industrieanlagen.Currently, cross-linked polyethylene pipes (PE-X pipes) are replaced by mechanical ones Crimped or sliding sleeve fittings made of brass connected. This connection conditions with molded parts are expensive in terms of material and costs, on the other hand they are material-related defects in the property profile of cross-linked polyethylene. she are preferably used for compressed air systems, hot water pipes and Industrial plants.

Das große Interesse aller Rohrleitungsbauer, insbesondere des Gas- und Wasser­ faches, an der Nutzung der hervorragenden Eigenschaften der vernetzten Poly­ ethylenrohre (PE-X-Rohre) führte zu Untersuchungen von Verbindungs­ möglichkeiten der PE-X-Rohre und der Zuverlässigkeit solcher Verbindungen. Nach allgemeinem Erkenntnisstand ging man wieder davon aus, daß vernetztes Polyethylen (PE-X) nicht schweißbar ist. Die Untersuchungen in- und ausländischer Institute und Rohrleitungsbauunternehmen ergaben aber, daß es möglich ist, ver­ netztes Polyethylen (PE-X) mit unvernetztem Polyethylen (PE-HD) zu verschwei­ ßen. Es wurde aber auch festgestellt, daß vernetztes Polyethylen (PE-X) mit ver­ netztem Polyethylen (PE-X) nicht schweißbar ist. The great interest of all pipeline builders, especially gas and water multiple, in the use of the excellent properties of the cross-linked poly ethylene pipes (PE-X pipes) led to investigations of connections Possibilities of PE-X pipes and the reliability of such connections. According to the general level of knowledge, it was again assumed that networked Polyethylene (PE-X) is not weldable. The investigations domestic and foreign Institutes and pipeline construction companies showed that it is possible to ver to weld meshed polyethylene (PE-X) with uncrosslinked polyethylene (PE-HD) eat. However, it was also found that cross-linked polyethylene (PE-X) with ver wetted polyethylene (PE-X) is not weldable.  

Heizelementschweißverbindungen zwischen vernetzten Polyethylenrohren (PE-X- Rohren) und Rohren aus Polyethylen hoher Dichte (PE-HD-Rohren) erreichten ei­ nen Schweißfaktor von <0,5 ("Einsatz des Rohrwerkstoffes PE-X in der Gasversor­ gung", Mitgliederinformation Nov. 1997 des Kunststoff-Rohrverbandes e. V. Bonn). Allerdings ist eine Verbindung PE-X-Rohr/PE-HD-Rohr ohne wirtschaftliche Bedeu­ tung.Heating element welding connections between cross-linked polyethylene pipes (PE-X- Pipes) and pipes made of high density polyethylene (PE-HD pipes) reached ei a welding factor of <0.5 ("Use of the pipe material PE-X in the gas supplier gung ", member information Nov. 1997 of the Plastic Pipe Association eV Bonn). However, a PE-X pipe / PE-HD pipe connection is of no economic importance tung.

Dagegen wurde der Einsatz von Elektroschweißmuffen aus Polyethylen hoher Dichte (PE-HD) erfolgreich erprobt und ist jetzt Stand der Technik. Beim Schweiß­ vorgang wird das PE-HD aufgeschmolzen, das PE-X wird nur gummielastisch weich. Festigkeituntersuchungen ergaben, daß diese Verbindung für den Bereich der Gas- und Wasserversorgung geeignet ist. Einige Rohrleitungen sind im Betrieb ("Der Rohrleitungswerkstoff PE-X; Rohrwerkstoffeigenschaften, Qualitätssicherung und Haupteinsatzgebiete", Tagungsband und Vortrag zu den internationalen Wiesbadener Kunststoffrohrtagen 1998 am 27. und 28. 04. 98 und "Entscheidungs­ kriterien bei der Auswahl von Rohrwerkstoffen in der Gasversorgung", ebenfalls aus dem zitierten Tagungsband).In contrast, the use of electric welding sleeves made of polyethylene became higher Density (PE-HD) successfully tested and is now state of the art. When sweat process, the PE-HD is melted, the PE-X only becomes elastic soft. Strength tests showed that this connection for the area the gas and water supply is suitable. Some pipelines are in operation ("The pipe material PE-X; pipe material properties, quality assurance and main areas of application ", conference proceedings and lecture on the international Wiesbaden Plastic Pipe Days 1998 on April 27th and 28th, 98 and "Decision criteria in the selection of pipe materials in the gas supply ", likewise from the cited conference proceedings).

Nachteilig bei diesem Verbindungsverfahren mit Elektroschweißfittings ist, daß die Kosten bei größer werdenden Rohrdurchmessern durch die teueren Elektro­ schweißfittings stark ansteigen und dieses Verfahren für das Relining von maroden Rohrleitungssystemen ebenfalls nicht geeignet ist, da die Elektroschweißfittings beim Einziehen der PE-X-Rohre stören.A disadvantage of this connection method with electrofusion fittings is that Costs for larger pipe diameters due to the expensive electrical weld fittings rise sharply and this process for relining ailing Pipe systems is also unsuitable because of the electrofusion fittings disrupt when pulling in the PE-X pipes.

Aus der Schutzrechtsliteratur wurde mit DD-WP 139 544 ein Verfahren zum Ver­ binden vernetzter Halbzeuge, insbesondere von Rohren aus vernetztem Polyethy­ len, bekannt. Danach werden die Fügeflächen der zu verschweißenden Rohrenden mit einem flächigen Heizelement, dessen Arbeitstemperatur mindestens 450°C beträgt, in einer Anwärmzeit von maximal 8 Sekunden aufgeheizt und nach dem Entfernen des Heizelementes unter hohem Druck zusammengefügt, wobei der Druck bis zum Abkühlen der Fügezone auf Umgebungstemperatur aufrecht erhal­ ten wird. Dieses Verfahren hat keinen Eingang in die Praxis gefunden, da keine reproduzierbaren und keine befriedigenden Schweißnahtfestigkeiten erreicht wur­ den.DD-WP 139 544 became a procedure for ver bind cross-linked semi-finished products, especially pipes made of cross-linked polyethylene len, known. Then the joining surfaces of the pipe ends to be welded with a flat heating element whose working temperature is at least 450 ° C is heated in a warm-up time of maximum 8 seconds and after the Removing the heating element assembled under high pressure, the Maintain pressure until the joint zone cools down to ambient temperature will. This method has not found its way into practice because none  reproducible and no satisfactory weld strength was achieved the.

Über Reibschweißvorgänge und zum Reibschweißen finden sich in der Fachlitera­ tur ausführliche Angaben. Das Reibschweißen von thermoplastischen Kunststoffen wurde bereits 1942 von Henning erwähnt (Kunststoffe, Jahrgang 32, 1942, Heft 4, Seite 104). Gemäß dem Verfahrensprinzip beim Rotationsreibschweißen wird die Wärme, die zum Plastizieren des Werkstoffes benötigt wird, durch Grenzflächen­ reibung zwischen den zu verschweißenden Teilen erzeugt. Dabei wird meist eines der Teile in eine rotierende Bewegung versetzt, das andere wird in einer Aufnahme festgehalten. Die Reibung wird dadurch erzeugt, daß gleichzeitig ein senkrecht auf die Reibfläche wirkender Druck ausgeübt wird. Das Rotationsreibschweißen kann nur bei Formteilen eingesetzt werden, die rotationssymmetrische Verbindungsflä­ chen besitzen (Kugeln, Rohre, Scheiben u. a.). Die Schweißzeit liegt beim Rotati­ onsreibschweißen bei etwa einer Sekunde und damit in einem sehr wirtschaftlichen Bereich (Kunststoffe, Jahrgang 71, 1981, Heft 10, S. 764-768).About friction welding processes and friction welding can be found in the specialist literature detailed information. Friction welding of thermoplastics was already mentioned by Henning in 1942 (Kunststoffe, year 32, 1942, issue 4, Page 104). According to the principle of rotation friction welding, the Heat required to plasticize the material through interfaces created friction between the parts to be welded. Usually one becomes the parts are set in a rotating movement, the other is in a recording captured. The friction is generated in that at the same time a perpendicular to the friction surface acting pressure is exerted. Rotary friction welding can can only be used for molded parts that have a rotationally symmetrical connection surface own (balls, pipes, discs, etc.). The welding time is with the Rotati friction welding at about a second and thus in a very economical way Area (plastics, year 71, 1981, issue 10, pp. 764-768).

Als reibschweißgeeignete Thermoplaste werden in der Fachliteratur u. a. Polyamid (PA), Polyethylen (PE), Polypropylen (PP), Polycarbonat (PC), Polystyrol (PS) und Polyvinylchlorid (PVC) genannt. Dabei läßt sich bei Verbindungen an Fügeteilen aus dem gleichen Kunststoff eine Nahtfestigkeit von 80 bis 100% des Grundwerk­ stoffes erreichen (Schweißen und Schneiden, Düsseldorf, Jahrgang 22, 1970, Heft 2, Seite 56-62 und Kunststoffe, Jahrgang 62, 1972, Heft 8, Seite 478-482). Reibschweißverbindungen für Rohre aus Polypropylen (PP) und Polyethylen (PE) werden bisher vornehmlich im Chemieanlagenbau eingesetzt. Zu diesem Zweck wurden spezielle Reibschweißmaschinen entwickelt und gebaut.Thermoplastics that are suitable for friction welding are described in the specialist literature. a. polyamide (PA), polyethylene (PE), polypropylene (PP), polycarbonate (PC), polystyrene (PS) and Called polyvinyl chloride (PVC). It can be used for connections on parts to be joined from the same plastic a seam strength of 80 to 100% of the base work material (welding and cutting, Düsseldorf, born 22, 1970, Issue 2, pages 56-62 and plastics, year 62, 1972, Issue 8, pages 478-482). Friction welding connections for pipes made of polypropylene (PP) and polyethylene (PE) have been used primarily in chemical plant construction. To this end special friction welding machines were developed and built.

Die Reibschweißverbindung wurde dabei zum Herstellen eines Flanschanschlus­ ses für eine lösbare Rohrverbindung mit sogenannten Losflanschen eingesetzt. Die dazu erforderlichen Bundbuchsen wurden mittels Rotationsreibschweißen auf die Stirnflächen der Rohrenden aufgeschweißt (Plastverarbeiter, Jahrgang 25, 1974, Heft 4, Seite 225-228). The friction welding connection was used to create a flange connection ses used for a detachable pipe connection with so-called loose flanges. The the flange bushings required for this purpose were friction-welded onto the End faces of the pipe ends welded on (plastic processor, born 25, 1974, Issue 4, pages 225-228).  

Das Rotationsreibschweißen findet zwar zunehmend Anwendung in der Industrie, bezieht sich aber ausschließlich auf das Schweißen thermoplastischer unvernetzter Kunststoffe. Ein Verfahren zum Verbinden von vernetzten Polyethylenrohren (PE- X-Rohren), die keinen thermoplastischen, sondern einen thermoelastischen Cha­ rakter besitzen, ist durch Rotationsreibschweißen nicht bekannt.Rotary friction welding is increasingly used in industry, but only refers to welding thermoplastic uncrosslinked Plastics. A process for connecting cross-linked polyethylene pipes (PE- X-tubes), which are not thermoplastic, but a thermo-elastic cha owning is not known from rotary friction welding.

Die Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung einer stoffschlüssi­ gen Stumpf oder Muffenverbindung für vernetzte PE-Rohre (PE-X-Rohre), vor­ zugsweise für kleine Rohrdurchmesser bis 125 mm zu schaffen, welches sich durch hohe Schweißnahtfestigkeit, Wirtschaftlichkeit und Praxisnähe auszeichnet.The object of the invention is to provide a method for producing a material key butt or socket connection for cross-linked PE pipes (PE-X pipes) preferably for small pipe diameters up to 125 mm characterized by high weld seam strength, economy and practical relevance.

Die Erfindung geht von dem an sich bekannten Rotationsreibschweißverfahren aus, bei dem die Wärme zum Plastizieren des Nahtwerkstoffes durch Grenzflä­ chenreibung zwischen den Teilen erzeugt wird. Dabei wird ein Teil in eine um seine Achse rotierende Bewegung gebracht, das andere wird in einer Auflage fixiert. Die Reibung wird dadurch erzeugt, daß beide Teile durch eine axial wirkende Druck­ kraft zusammengeführt werden.The invention is based on the rotary friction welding method known per se in which the heat for plasticizing the seam material through interfacial friction between the parts is generated. A part is divided into its own Axis rotating movement brought, the other is fixed in one edition. The Friction is generated in that both parts by an axially acting pressure be brought together by force.

Erfindungsgemäß wird beim Rotationsreibschweißen von vernetzten Polyethylen­ rohren (PE-X-Rohren) als Stumpf- oder Muffenverbindung ein Rohrstück oder eine Stumpfschweißmuffe aus vernetztem Polyethylen (PE-X) oder eine gespritzte Überlappmuffe aus vernetztem Polyethylen (PE-X) als Verbindungselement zwi­ schen den zwar axial beweglichen, aber nicht rotierenden Rohren in eine Drehbe­ wegung um die Rohrachse versetzt.According to the invention, in rotary friction welding of cross-linked polyethylene pipes (PE-X pipes) as a butt or socket connection a pipe section or a Butt welded socket made of cross-linked polyethylene (PE-X) or a sprayed Overlapping sleeve made of cross-linked polyethylene (PE-X) as a connecting element between the axially movable but not rotating tubes in a rotary movement offset around the pipe axis.

Gleichzeitig erfolgt eine axiale Zustellbewegung der Rohre, bis zwischen dem rotie­ renden Rohrstück und den Stirnflächen der Rohre Reibung entsteht und sich ein Reibungsdruck aufbaut. Bei Verwendung einer vernetzten Rotationsüberlappmuffe entsteht die Reibung bei Zuführung der Rohre infolge der Passungstoleranzen zwi­ schen Innenumfang der Überlappmuffe und dem Außenumfang der Rohre. At the same time there is an axial feed movement of the tubes until between the rotie The pipe section and the end faces of the pipes create friction and become Friction pressure builds up. When using a networked rotary overlap sleeve the friction arises when the pipes are fed due to the fit tolerances between inner circumference of the overlap sleeve and the outer circumference of the pipes.  

Im Gegensatz zum Reibschweißen unvernetzter Polyethylenrohre (PE-HD-Rohre), deren Reibflächen bei ca. 160°C in eine thermoplastische Schmelze übergehen, erfolgt bei vernetzten PE-Rohren (PE-X-Rohren) erfindungsgemäß eine Reibung des thermoelastischen Werkstoffes bis zum im Reibungsbereich lokalen thermischen Aufschluß der thermoelastisch-molekularen Netzstruktur in eine thermoplastische Struktur durch einen Temperaturanstieg <420°C aber <440°C, vorzugsweise 430°C. Erst dann bildet sich eine schweißfähige Schmelzeschicht mit einem integralen thermoplastisch-viskosen Charakter, die im Grenzflächen­ bereich die niedrigste Viskosität besitzt und die durch die Reibbewegung sehr stark schert und sich turbulent vermischt. Nach dem Erreichen des Schmelzezustandes erfolgt ein abruptes Stoppen der Reibbewegung unter beibehalten des axialen Druckes bis zur Abkühlung, was zu einer thermoplastischen stofflichen Verbindung führt.In contrast to friction welding of non-cross-linked polyethylene pipes (PE-HD pipes), whose friction surfaces change into a thermoplastic melt at approx. 160 ° C, In the case of cross-linked PE pipes (PE-X pipes), friction occurs according to the invention of the thermoelastic material to the local one in the friction area thermal digestion of the thermoelastic-molecular network structure into one thermoplastic structure due to an increase in temperature <420 ° C but <440 ° C, preferably 430 ° C. Only then does a weldable melt layer form with an integral thermoplastic-viscous character that in the interfaces area has the lowest viscosity and very strong due to the rubbing movement shears and mixes turbulently. After reaching the melt state there is an abrupt stop of the frictional movement while maintaining the axial Pressure until cooling, resulting in a thermoplastic material connection leads.

Beim Einsatz einer Überlapp-Rotationsmuffe aus vernetztem Polyethylen (PE-X) wird die Reibung dadurch begünstigt, indem die Muffe eine konische Muffen­ innenwandung mit einem Anschlagsteg in der Muffenmitte besitzt. Der Winkel der konischen Muffenbohrung beträgt vorzugsweise bis 3°.When using an overlap rotary sleeve made of cross-linked polyethylene (PE-X) the friction is promoted by the fact that the sleeve is a conical sleeve has an inner wall with a stop bar in the middle of the sleeve. The angle of the conical sleeve bore is preferably up to 3 °.

Ein Expandieren der Überlapp-Rotationsmuffe während des Reib- und Schweiß­ vorganges durch radiale Kräfte wird durch eine die Muffe umgreifende Spannvor­ richtung verhindert.An expansion of the overlap rotating sleeve during the friction and sweat process by radial forces is achieved by a clamping device encompassing the sleeve direction prevented.

Bei Rohrdurchmessern bis 125 mm beträgt die Drehzahl der Rotationsschweiß­ muffe vorzugsweise wanddicken- und durchmesserabhängig 300 1/min bis 700 1/min. die Reibzeit 7 s bis 12 s und der spezifische Haltedruck 0,9 bar bis 1,2 bar.For pipe diameters up to 125 mm, the speed of rotation welding is depending on the wall thickness and diameter, preferably up to 300 1 / min 700 rpm. the friction time 7 s to 12 s and the specific holding pressure 0.9 bar to 1.2 bar.

Die mit dem erfindungsgemäßen Rotationsreibschweißverfahren erzielten Vorteile bestehen insbesondere darin, daß vernetzte Polyethylenrohre (PE-X-Rohre), insbesondere bis zu einem Rohrdurchmesser von 125 mm, qualitativ hochwertig und kostengünstig mit einer einfachen rohrförmigen Schweißmuffe oder Überlapp­ schweißmuffe aus artgleichem Werkstoff problemlos zu beliebig langen Rohr­ leitungen verschweißt werden können. Beim Verschweißen der PE-X-Rohre mit einer Stumpfschweißmuffe entspricht der Rohrdurchmesser an der Schweißstelle dem Originaldurchmesser, so daß rotationsstumpfgeschweißte PE-X-Rohre problemlos für das Relining von Rohrleitungssystemen eingesetzt werden können.The advantages achieved with the rotary friction welding method according to the invention consist in the fact that cross-linked polyethylene pipes (PE-X pipes), in particular up to a pipe diameter of 125 mm, high quality and inexpensive with a simple tubular welding sleeve or overlap Welding socket made of the same type of material to any length of pipe lines can be welded. When welding the PE-X pipes with  a butt welding socket corresponds to the pipe diameter at the welding point the original diameter, so that rotationally butt-welded PE-X pipes can easily be used for relining piping systems.

Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im folgenden näher beschrieben.An embodiment of the invention is shown in the drawings and will described in more detail below.

Es sollen eine Rotationsreib-Stumpfschweißverbindung mit einer Stumpfschweiß­ muffe sowie eine Rotationsreib-Überlappschweißverbindung mit einer Überlapp­ schweißmuffe an vernetzten Polyethylenrohren (PE-X-Rohren) der Dimensionierung d = 90 mm hergestellt werden.There should be a rotary friction butt weld connection with a butt weld sleeve and a rotary friction overlap weld connection with an overlap welding sleeve on cross-linked polyethylene pipes (PE-X pipes) Dimensioning d = 90 mm can be produced.

Es zeigen:Show it:

Fig. 1 Positionierung der Elemente für eine Rotationsreib-Stumpf­ schweißverbindung, Fig. 1 of the positioning elements for a Rotationsreib-butt-welded connection,

Fig. 2 Rotationsreib-Stumpfschweißverbindung, Fig. Rotationsreib 2-butt weld joint,

Fig. 3 Positionierung der Elemente für eine Rotationsreib-Überlapp­ schweißverbindung, Fig. 3 for a positioning of the elements Rotationsreib-lap weld,

Fig. 4 Rotationsreib-Überlappschweißverbindung. Fig. 4 rotary friction lap weld.

Nach Fig. 1 und Fig. 2 wird zur Herstellung einer Rotationsreib-Stumpfschweiß­ verbindung der vernetzten Polyethylenrohre 1 und 2 eine Stumpfschweißmuffe 3 der Dimensionierung d = 90 mm aus vernetztem Polyethylen verwendet. Die Stumpfschweißmuffe 3 wird axial fluchtend zwischen den Rohren 1 und 2 ange­ ordnet und in eine rotierende Bewegung um die Rohrachse gebracht. Die Drehzahl beträgt 600 1/min. Die Rohre 1 und 2 sind fest eingespannt und lagefixiert aber axial beweglich. Durch sie wird ein axial wirkender Zustelldruck von 1 bar auf die Stirnflächen 4 und 5 der rotierenden Stumpfschweißmuffe 3 aufgebracht, wobei durch die Grenzflächenreibung der Rohrstirnflächen 6 und 7 auf den Stirnflächen 4 und 5 der Stumpfschweißmuffe 3 eine Temperatur von vorzugsweise 430°C erzeugt und durch thermischen Aufschluß des PE-X in eine thermoplastische Schmelzeschicht mit hoher Scherung und turbulenter Mischung gebildet wird. Nach dem Erreichen des Schmelzezustandes der Grenzflächen 4; 5 und 6; 7 nach einer Reibzeit von 10 s erfolgt ein abruptes Stoppen der Reibbewegung der Stumpf­ schweißmuffe 3 unter Beibehalten des Zustelldruckes, was zu einer stoff­ schlüssigen Schweißverbindung 8 und 9 zwischen den Rohrstirnflächen 6; 7 und den Stirnflächen 4; 5 der Stumpfschweißmuffe 3 führt.According to Fig. 1 and Fig. 2, a butt welding sleeve 3 of dimensioning d = 90 mm made of cross-linked polyethylene is used to produce a rotary friction butt weld connection of the cross-linked polyethylene pipes 1 and 2 . The butt welding sleeve 3 is axially aligned between the tubes 1 and 2 and arranged in a rotating movement around the tube axis. The speed is 600 1 / min. The tubes 1 and 2 are firmly clamped and fixed in position but axially movable. Through them an axially acting feed pressure of 1 bar is applied to the end faces 4 and 5 of the rotating butt welding socket 3 , whereby a temperature of preferably 430 ° C. is generated and generated by the boundary surface friction of the pipe end faces 6 and 7 on the end faces 4 and 5 of the butt welding socket 3 thermal digestion of the PE-X is formed in a thermoplastic melt layer with high shear and turbulent mixture. After reaching the melt state of the interfaces 4 ; 5 and 6 ; 7 after a rubbing time of 10 s there is an abrupt stopping of the rubbing movement of the butt welding sleeve 3 while maintaining the feed pressure, which leads to a material weld connection 8 and 9 between the pipe end faces 6 ; 7 and the end faces 4 ; 5 of the butt welding socket 3 leads.

Der Zustelldruck wird bis zur Abkühlung der Schweißverbindung 8; 9 auf Umge­ bungstemperatur aufrecht erhalten.The feed pressure is maintained until the weld joint 8 ; 9 maintained at ambient temperature.

Das Rotationsreib-Überlappschweißen von vernetzten Polyethylenrohren (PE-X- Rohren) wird in Fig. 3; 4 dargestellt. Als Verbindungselement der vernetzten Poly­ ethylenrohre (PE-X-Rohre) 1 und 2 wird eine Überlapp-Rotationsmuffe 10 aus ver­ netztem Polyethylen (PE-X) eingesetzt. Die Überlapp-Rotationsmuffe 10 besitzt eine konische Muffeninnenwandung 11 mit einem Konuswinkel α von 1° bis 3°, vorzugsweise 2° und einen Anschlagsteg 12 in der Mitte der Muffenbohrung. Zur Ausführung der Rotationsreib-Überlappschweißverbindung wird die Überlapp- Rotationsmuffe 10 mit einer Drehzahl von 500 1/min in eine rotierende Bewegung um die Rohrachse und gegenüber den feststehenden Rohren 1 und 2 versetzt. Gleichzeitig werden die Rohre 1 und 2 durch eine gegenseitige Zustellbewegung mit ihren Rohrenden in die rotierende Überlapp-Rotationsmuffe 10 bis zum An­ schlagsteg 12 eingefahren, wobei zwischen der Innenwand 11 der Überlapp- Rotationsmuffe 10 und der Außenfläche der Rohrenden infolge der Grenzflächen­ reibung, die durch den Konuswinkel α der Muffeninnenwand 11 verstärkt wird, eine Temperatur von <420°C aber <440°C, vorzugsweise 430°C erreicht wird und eine thermoplastische, turbulent gescherte Schmelzeschicht entsteht. The rotary friction lap welding of cross-linked polyethylene pipes (PE-X pipes) is shown in Fig. 3; 4 shown. As a connecting element of the cross-linked polyethylene pipes (PE-X pipes) 1 and 2 , an overlap rotating sleeve 10 made of cross-linked polyethylene (PE-X) is used. The overlap rotary sleeve 10 has a conical sleeve inner wall 11 with a cone angle α of 1 ° to 3 °, preferably 2 ° and a stop web 12 in the middle of the sleeve bore. In order to carry out the rotary friction overlap welding connection, the overlap rotary sleeve 10 is set in a rotating movement about the tube axis and with respect to the fixed tubes 1 and 2 at a speed of 500 rpm. At the same time, the tubes 1 and 2 are moved by a mutual feed movement with their tube ends in the rotating overlap rotary sleeve 10 to the impact web 12 , with friction between the inner wall 11 of the overlap rotary sleeve 10 and the outer surface of the tube ends due to the interfaces caused by the cone angle α of the inner wall 11 of the sleeve is increased, a temperature of <420 ° C. but <440 ° C., preferably 430 ° C. is reached and a thermoplastic, turbulently sheared melt layer is formed.

Nach einer Reibzeit von 12 s erfolgt ein abruptes Stoppen der Rotationsbewegung der Überlapp-Rotationsmuffe 10 und es entsteht unter dem gebildeten Schmelze­ druck eine stoffschlüssige Schweißverbindung 13; 14 zwischen den Rohrenden und der Überlapp-Rotationsmuffe 10. Die Schweißverbindung 13; 14 bleibt bis zur Abkühlung auf Umgebungstemperatur fixiert.After a rubbing time of 12 s there is an abrupt stopping of the rotational movement of the overlap rotary sleeve 10 and pressure-producing a welded joint 13 is formed under the melt formed; 14 between the pipe ends and the overlap rotating sleeve 10 . The welded joint 13 ; 14 remains fixed at ambient temperature until it cools down.

Das Expandieren der Überlapp-Rotationsmuffe während des Reib- und Schweiß­ vorganges durch radiale Kräfte wird durch eine nicht weiter dargestellte Spannvor­ richtung verhindert. The expansion of the overlap rotating sleeve during the friction and welding process by radial forces is by a not shown Spannvor direction prevented.  

Aufstellung der verwendeten BezugszeichenList of the reference symbols used

11

Polyethylenrohr
Polyethylene pipe

22nd

Polyethylenrohr
Polyethylene pipe

33rd

Stumpfschweißmuffe
Butt weld socket

44th

Stirnfläche
Face

55

Stirnfläche
Face

66

Rohrstirnfläche
Pipe face

77

Rohrstirnfläche
Pipe face

88th

Schweißverbindung
Welded joint

99

Schweißverbindung
Welded joint

1010th

Überlapp-Rotationsmuffe
Overlap rotary sleeve

1111

Muffeninnenwandung
Inner sleeve wall

1212th

Anschlagsteg
Footbridge

1313

Schweißverbindung
Welded joint

1414

Schweißverbindung
α Konuswinkel
Welded joint
α cone angle

Claims (3)

1. Verfahren zur Herstellung einer Muffenverbindung für vernetzte Polyethylenroh­ re (PE-X-Rohre) durch Rotationsreibschweißen, vorzugsweise für PE-X-Rohre bis zu einem Rohrdurchmesser von 125 mm, dadurch gekennzeichnet, daß als Muffenverbindung ein Rohrstück aus vernetztem Polyethylen oder eine Stumpf­ schweißmuffe (3) aus vernetztem Polyethylen oder eine gespritzte Überlapp- Rotationsmuffe (10) aus vernetztem Polyethylen als Verbindungselement dient, welches zwischen den axial beweglichen aber nicht rotierenden Rohren (1; 2) in eine Drehbewegung um die Rohrachse versetzt wird, daß gleichzeitig eine axiale Zustellbewegung der Rohre (1; 2) erfolgt bis zwischen den Reibflächen der Rohre und den Reibflächen des Verbindungselementes Grenzflächenrei­ bung entsteht, sich ein Reibungsdruck aufbaut und eine Temperatur <420°C aber <440°C, vorzugsweise 430°C erzeugt wird, die einen thermischen Auf­ schluß des thermoelastischen Materials in eine thermoplastische Schmelze mit annähernd gleicher Viskosität, hoher Scherung und turbulenter Mischung bildet, daß eine Reibzeit von 7 s bis 12 s eingehalten wird, daß danach der Reibvor­ gang abrupt gestoppt wird und nach dem Stoppen unter Beibehaltung eines Haltedruckes von 0,9 bar bis 1,2 bar eine stoffschlüssige Schweißverbindung entsteht.1. A process for producing a socket connection for cross-linked polyethylene pipes (PE-X pipes) by rotary friction welding, preferably for PE-X pipes up to a pipe diameter of 125 mm, characterized in that a pipe section made of cross-linked polyethylene or a die is used as the socket connection Welded sleeve ( 3 ) made of cross-linked polyethylene or a sprayed overlap rotary sleeve ( 10 ) made of cross-linked polyethylene serves as a connecting element, which is set in a rotational movement between the axially movable but non-rotating tubes ( 1 ; 2 ) around the tube axis, that at the same time an axial Infeed movement of the tubes ( 1 ; 2 ) takes place until boundary surface friction occurs between the friction surfaces of the tubes and the friction surfaces of the connecting element, a friction pressure builds up and a temperature <420 ° C but <440 ° C, preferably 430 ° C is generated, which one On thermal closure of the thermoelastic material in a thermoplastic melt mi t approximately the same viscosity, high shear and turbulent mixture, that a friction time of 7 s to 12 s is maintained, that the friction process is then stopped abruptly and after stopping while maintaining a holding pressure of 0.9 bar to 1.2 bar a cohesive weld connection is created. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Drehzahl des Verbindungselementes 300 1/min bis 700 1/min beträgt.2. The method according to claim 1, characterized in that the speed of the Connecting element is 300 1 / min to 700 1 / min. 3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß das Verbindungselement eine Überlapp-Rotationsmuffe (10) ist, die eine konische Muffeninnenwandung (11) mit einem Konuswinkel α bis 3° besitzt und daß in der Mitte der Überlapp-Rotationsmuffe (10) ein Anschlagsteg (12) angeordnet ist.3. The method according to claims 1 and 2, characterized in that the connecting element is an overlap rotary sleeve ( 10 ) having a conical sleeve inner wall ( 11 ) with a cone angle α to 3 ° and that in the middle of the overlap rotary sleeve ( 10 ) a stop web ( 12 ) is arranged.
DE1999111284 1999-03-13 1999-03-13 Process for producing a socket connection for cross-linked polyethylene pipes (PE-X pipes) by rotary friction welding Expired - Fee Related DE19911284C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1999111284 DE19911284C2 (en) 1999-03-13 1999-03-13 Process for producing a socket connection for cross-linked polyethylene pipes (PE-X pipes) by rotary friction welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1999111284 DE19911284C2 (en) 1999-03-13 1999-03-13 Process for producing a socket connection for cross-linked polyethylene pipes (PE-X pipes) by rotary friction welding

Publications (2)

Publication Number Publication Date
DE19911284A1 true DE19911284A1 (en) 2000-09-14
DE19911284C2 DE19911284C2 (en) 2003-03-20

Family

ID=7900899

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1999111284 Expired - Fee Related DE19911284C2 (en) 1999-03-13 1999-03-13 Process for producing a socket connection for cross-linked polyethylene pipes (PE-X pipes) by rotary friction welding

Country Status (1)

Country Link
DE (1) DE19911284C2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007118555A1 (en) * 2006-04-12 2007-10-25 A. Raymond Et Cie Fluid line connecting part
WO2014127996A2 (en) 2013-02-21 2014-08-28 R. Stahl Schaltgeräte GmbH Housing with a rotational friction welding seam
CN106696283A (en) * 2016-11-18 2017-05-24 华创天元实业发展有限责任公司 Welding method for steel-strip-reinforced helical polyethylene drain pipes and welding device for implementing method
US11754215B2 (en) 2020-07-20 2023-09-12 Saudi Arabian Oil Company Apparatus and method for friction welding of reinforced thermosetting resin pipe joints
US11761571B2 (en) 2020-07-20 2023-09-19 Saudi Arabian Oil Company Apparatus and method for electrofusion welding of reinforced thermosetting resin pipe joints
US11794418B2 (en) 2020-07-20 2023-10-24 Saudi Arabian Oil Company Apparatus and method for threaded-welded reinforced thermosetting resin pipe joints

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007118555A1 (en) * 2006-04-12 2007-10-25 A. Raymond Et Cie Fluid line connecting part
WO2014127996A2 (en) 2013-02-21 2014-08-28 R. Stahl Schaltgeräte GmbH Housing with a rotational friction welding seam
DE102013101727A1 (en) 2013-02-21 2014-09-04 R.Stahl Schaltgeräte GmbH Housing with a rotary friction weld
CN106696283A (en) * 2016-11-18 2017-05-24 华创天元实业发展有限责任公司 Welding method for steel-strip-reinforced helical polyethylene drain pipes and welding device for implementing method
CN106696283B (en) * 2016-11-18 2019-01-29 华创天元实业发展有限责任公司 A kind of steel strip reinforced spiral polythene drainpipe welding method and welder
US11754215B2 (en) 2020-07-20 2023-09-12 Saudi Arabian Oil Company Apparatus and method for friction welding of reinforced thermosetting resin pipe joints
US11761571B2 (en) 2020-07-20 2023-09-19 Saudi Arabian Oil Company Apparatus and method for electrofusion welding of reinforced thermosetting resin pipe joints
US11794418B2 (en) 2020-07-20 2023-10-24 Saudi Arabian Oil Company Apparatus and method for threaded-welded reinforced thermosetting resin pipe joints

Also Published As

Publication number Publication date
DE19911284C2 (en) 2003-03-20

Similar Documents

Publication Publication Date Title
Eslami et al. Shoulder design developments for FSW lap joints of dissimilar polymers
CA1306091C (en) Joining polyolefinic members by fusion
US5199153A (en) Method for making a flanged pipe length having a lining of plastic material
WO2010022885A1 (en) Connection or branch element for connecting to an end section of a tube in a laser transmission method
DE19911284C2 (en) Process for producing a socket connection for cross-linked polyethylene pipes (PE-X pipes) by rotary friction welding
EP1752699A2 (en) Line-coupling between a fitting and a composite pipe as well as a method of production of a line-coupling
DE19856718B4 (en) Process for butt welding of cross-linked polyethylene pipes (PE-X pipes)
CH683026A5 (en) Welded coupling sleeve for crosslinked polyethylene@ pipe - has non-crosslinked polyethylene@ inner layer and outer reinforcement
DE19958412A1 (en) Method for joining crosslinked polyethylene pipes comprises heating ends to be joined then holding them together under pressure to produce weld
EP1161336B1 (en) Method for joining a pipe made of pe-x to a pipe fitting made of pe by heating element socket welding, device for carrying out said method and junction produced by said method
EP1740877B1 (en) Clamp made of a thermally weldable material
EP0813666B1 (en) Hat-shaped connection sleeve for house service connections in sewer pipes
EP2194303A1 (en) Medium-lead component for steering a media flow
DE10359912A1 (en) Composite component, comprises an inner plastic layer and an outer mantle layer, connected via an intermediate layer which absorbs electromagnetic radiation
Shapheek et al. Optimization of cooling time for polyethylene fusion joints
DE19913836C2 (en) Process for producing a pipe connection and pipe connection
DE4025840C3 (en) Process for the production of pipeline connections from polyolefin
EP0350651A2 (en) Process for bonding articles
EP3298316B1 (en) Flange connection for components composed of plastic, in particular for tubular components composed of plastic
DE19933977C2 (en) Method for connecting a connecting pipe to a main pipe renovated using a relining pipe made of plastic material
DE10044336A1 (en) Flange connection for high pressure double jacket pipes
EP0875362A2 (en) Joint between tube and connecting element made by HF welding
DE2363727A1 (en) Plastic pipe fittings for weld connection - have radial and axial contact faces to form welding seam
DE202004013061U1 (en) Injection molded saddle, for the junction between polyethylene gas/water pipes, is of polyethylene which is treated by electron/gamma rays for conversion into cross linked polyethylene to match the pipe material for welding
JPS59377B2 (en) How to connect crosslinked resin pipes

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8304 Grant after examination procedure
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee