DE19822652A1 - Optical particle counter system with coincidence recognition - Google Patents

Optical particle counter system with coincidence recognition

Info

Publication number
DE19822652A1
DE19822652A1 DE1998122652 DE19822652A DE19822652A1 DE 19822652 A1 DE19822652 A1 DE 19822652A1 DE 1998122652 DE1998122652 DE 1998122652 DE 19822652 A DE19822652 A DE 19822652A DE 19822652 A1 DE19822652 A1 DE 19822652A1
Authority
DE
Germany
Prior art keywords
pulse
optical particle
coincidence
evaluation
particle counting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1998122652
Other languages
German (de)
Inventor
Markus Klotz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE1998122652 priority Critical patent/DE19822652A1/en
Publication of DE19822652A1 publication Critical patent/DE19822652A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M11/00Counting of objects distributed at random, e.g. on a surface
    • G06M11/02Counting of objects distributed at random, e.g. on a surface using an electron beam scanning a surface line by line, e.g. of blood cells on a substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1493Particle size

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

In a counter system only impulse lengths (PL) within a tolerance region of (PxL) plus or minus (Tx) are counted for impulses of height (Hx), where x is set to correspond to the pulse height. As multiple small particles will not produce a pulse as wide as one large particle they can be discounted and the counter can then be used to accurately count individual particles of a certain size.

Description

Optische Einzelteilchenzähler werden für die Zahl- und Größenbestimmung von Partikeln eingesetzt. Die zu prüfenden Partikel (Fig. 1.1 u. 1.2) werden durch eine beleuchtete Meßzelle (Fig. 1.5 u. 1.6) geführt. Jedes Teilchen verursacht eine Änderung der Lichtmenge. Die aus diesem Vorgang resultierenden elektrischen Spannungspulse (Fig. 2, H) sind proportional zum Durchmesser des den Lichtstrahl passierenden Partikels und werden für die Größenbestimmung verwendet. Bei zufälliger räumlicher Verteilung der Partikel in der Strömung gibt es abhängig von der Partikelkonzentration immer eine endliche Wahrscheinlichkeit dafür, daß sich mehrere Partikel gleichzeitig im Meßvolumen befinden (Fig. 1; 1). Je höher die Anzahlkonzentration ist, um so größer wird der Anteil solcher Koinzidenzen. Koinzidenzen führen zu Fehlern bei der Größen- und Anzahlbestimmung. Bei der Aufzeichnung von Verteilungskurven findet eine Verschiebung in den Grobbereich statt. Die Amplitude von zwei kleinen Partikeln (Fig. 2; 1) läßt sich von der Amplitude eines größeren Partikels (Fig. 2; 2) nicht unterscheiden. Mit Hilfe des Koinzidenzerkennungssystems in der Auswerteeinheit (Fig. 1.3) kann der Spannungsimpuls (Fig. 2 ; 1) wie folgt als Fehler erkannt werden. Die Pulshöhe H wird bei der Messung erfaßt. Der Pulshöhe H wird ein Zeitfenster P2L-T2 bis P2L + T2 aus der Kalibriertabelle bzw. der Kalibrierkennlinie zugeordnet. Der Puls (Fig. 2; 1), erzeugt durch die Koinzidenz zweier Partikel (Fig. 1 ;1), fällt deutlich aus dem vorgegebenen Zeitfenster. Optical single particle counters are used to determine the number and size of particles. The particles to be tested ( Fig. 1.1 and 1.2) are passed through an illuminated measuring cell ( Fig. 1.5 and 1.6). Each particle causes a change in the amount of light. The electrical voltage pulses resulting from this process ( FIG. 2, H) are proportional to the diameter of the particle passing through the light beam and are used for the size determination. If the particles are randomly distributed in the flow, there is always a finite probability, depending on the particle concentration, that there are several particles in the measurement volume at the same time ( Fig. 1; 1). The higher the number concentration, the greater the proportion of such coincidences. Coincidences lead to errors in size and number determination. When recording distribution curves, there is a shift to the rough range. The amplitude of two small particles ( Fig. 2; 1) cannot be distinguished from the amplitude of a larger particle ( Fig. 2; 2). With the help of the coincidence detection system in the evaluation unit ( Fig. 1.3), the voltage pulse ( Fig. 2; 1) can be recognized as an error as follows. The pulse height H is recorded during the measurement. A time window P 2L -T 2 to P 2L + T 2 from the calibration table or the calibration characteristic curve is assigned to the pulse height H. The pulse ( Fig. 2; 1), generated by the coincidence of two particles ( Fig. 1; 1), clearly falls outside the specified time window.

Stand der TechnikState of the art

Beim Einsatz von Einzelteilchenzählern in der Korngrößenbestimmung werden dem Anwender durch das Auftreten von Koinzidenzen große Partikel vorgetäuscht (siehe Fig. 1.1 u. 2.1). Eine Qualitätskontrolle durch den Partikelzähler ist dadurch in vielen Anwendungen nicht mehr möglich.When using single particle counters in the grain size determination, the user is faked by the occurrence of coincidences large particles (see Fig. 1.1 and 2.1). Quality control by the particle counter is no longer possible in many applications.

Vorteileadvantages

Durch die Erkennung und Auswertung von Koinzidenzen ist es möglich Koinzidenzen zu erfassen und entsprechend zu bewerten. Beim Einsatz des Erkennungssystems kann man außerdem größere Produktmengen/Zeiteinheit vermessen und kostengünstigere Zuführsysteme einsetzen.It is possible by recognizing and evaluating coincidences Record coincidences and evaluate them accordingly. When using the Detection system can also larger product quantities / unit of time measured and use cheaper feeding systems.

Claims (3)

1. Optisches Partikelzählsystem mit Koinzidenzerkennung, dadurch gekennzeichnet, daß der vom Sensor (Fig. 1.4) erzeugte Spannungsimpuls sowohl auf die Impulshöhe H als auch auf die Impulslänge PL (Fig. 2) hin untersucht wird. Jeder Pulshöhe Hx ist eine Impulslänge PxL zugeordnet. Bei Überschreitung des Zeitfensters, festgelegt durch die Impulslänge PxL ± der Toleranz Tx, werden entsprechende Maßnahmen ergriffen. Bei Aufzeichnungen von Verteilungskurven kann der Puls einfach verworfen werden. Während der Messung wird mit konstanter Strömungsgeschwindigkeit gearbeitet, bzw. die Strömungsgeschwindigkeit wird erfaßt und als Parameter miteinbezogen.1. Optical particle counting system with coincidence detection, characterized in that the voltage pulse generated by the sensor ( Fig. 1.4) is examined both on the pulse height H and on the pulse length P L ( Fig. 2). A pulse length P xL is assigned to each pulse height H x . If the time window, determined by the pulse length P xL ± the tolerance T x, is exceeded , appropriate measures are taken. The pulse can simply be discarded when recording distribution curves. During the measurement, the flow velocity is constant, or the flow velocity is recorded and included as a parameter. 2. Optisches Partikelzählsystem mit Koinzidenzerkennung nach Anspruch 1, dadurch gekennzeichnet, daß eine zusätzliche Bewertung des Integrals des Spannungsimpulses (Fig. 2) und die Bildung der ersten Ableitung des Kurvenverlaufs, zu einer verfeinerten Erkennung und Auswertung möglicher Koinzidenzfehlern, herangezogen werden.2. Optical particle counting system with coincidence detection according to claim 1, characterized in that an additional evaluation of the integral of the voltage pulse ( Fig. 2) and the formation of the first derivative of the curve, for a refined detection and evaluation of possible coincidence errors are used. 3. Optisches Partikelzählsystem mit Koinzidenzerkennung nach Anspruch 1-2, dadurch gekennzeichnet, daß Pulshöhen Hx und Pulslängen PxL in Form einer Kalibriertabelle bzw. Kennlinie im Auswertesystem in Abhängigkeit von x hinterlegt werden, wobei x als Kennzahl für die Partikelgröße definiert wird. Die Erfassung der Parameter erfolgt im Kalibriermode, indem dem System Partikel mit definiertem Durchmesser (x) einzeln angeboten werden.3. Optical particle counting system with coincidence detection according to claims 1-2, characterized in that pulse heights H x and pulse lengths P xL are stored in the form of a calibration table or characteristic curve in the evaluation system as a function of x, where x is defined as a key figure for the particle size. The parameters are recorded in calibration mode by individually offering the system particles with a defined diameter (x).
DE1998122652 1998-05-20 1998-05-20 Optical particle counter system with coincidence recognition Withdrawn DE19822652A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1998122652 DE19822652A1 (en) 1998-05-20 1998-05-20 Optical particle counter system with coincidence recognition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1998122652 DE19822652A1 (en) 1998-05-20 1998-05-20 Optical particle counter system with coincidence recognition

Publications (1)

Publication Number Publication Date
DE19822652A1 true DE19822652A1 (en) 1999-11-25

Family

ID=7868421

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1998122652 Withdrawn DE19822652A1 (en) 1998-05-20 1998-05-20 Optical particle counter system with coincidence recognition

Country Status (1)

Country Link
DE (1) DE19822652A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006021487B3 (en) * 2006-05-05 2007-09-06 Parsum Gmbh Particle amount determination method for use in particle stream, involves using evaluation unit that provides pulses for control signals used in regulating flow rate and particle size of particles stream by reducing radiation intensity
WO2013186078A1 (en) * 2012-06-11 2013-12-19 Siemens Aktiengesellschaft Light-based particle detection with mass determination

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006021487B3 (en) * 2006-05-05 2007-09-06 Parsum Gmbh Particle amount determination method for use in particle stream, involves using evaluation unit that provides pulses for control signals used in regulating flow rate and particle size of particles stream by reducing radiation intensity
US8345236B2 (en) 2006-05-05 2013-01-01 Parsum Gmbh Method and apparatus for determining the particles contained in a particle stream
WO2013186078A1 (en) * 2012-06-11 2013-12-19 Siemens Aktiengesellschaft Light-based particle detection with mass determination

Similar Documents

Publication Publication Date Title
DE2325457C3 (en) Device for measuring the thickness of a transparent object
DE69321141T2 (en) NOISE REDUCTION IN A MAGNETOSTRICTIVE POSITION SENSOR BY DETERMINING A VALID TIME RANGE FOR TRANSMITTING ACOUSTIC REFERENCE IMPULSES
DE4411713A1 (en) Optical distance measuring device
DE1802269A1 (en) Method for measuring the concentration and / or size of particulate matter
DE10064738A1 (en) Measuring device and method for checking the measuring operation of a measuring device
DE69012227T2 (en) Device for measuring displacements.
DE69933910T2 (en) Zero voltage transition detector and method for determining the zero voltage transition point
DE3506328A1 (en) METHOD FOR CORRECTING CONCENTENCY ERRORS IN PARAMETER DATA OF PARTICLES RECEIVED IN A PARTICLE ANALYZING ARRANGEMENT, AND DEVICE FOR IMPLEMENTING THE METHOD
DE3133421C2 (en) Device for electrically monitoring the level of a liquid contained in a container
DE3209510C2 (en) Method and device for determining the particle size distribution of particles dispersed in fluids
DE2247205C3 (en) Device for comparing the spectral reflectance of colored surfaces
DE19822652A1 (en) Optical particle counter system with coincidence recognition
US2590057A (en) Half-life determining method
EP0704825B1 (en) Device for authenticating coins, tokens or other flat metal objects
US3982183A (en) Particle sizing apparatus
US3890568A (en) Method and apparatus for particle length measurement
DE3110943C2 (en)
DE2134937C2 (en) Photo analysis for liq. suspension contg. fine particles - uses summed signals corresponding to different optical reactions for each particle
US3331950A (en) Particle distribution plotting apparatus
DE69923857T2 (en) METHOD AND DEVICE FOR CHECKING BIMETAL COINS
WO1998057126A1 (en) Method for displaying statistically occurring events
DE2223285A1 (en) PARTICLE ANALYZER
DE19739732C2 (en) Method and device for assessing the radiation of a sample
DE2510829B2 (en) Photoelectric pulse pick-up
DE2014726B2 (en) Velocity and/or length measuring system - has twin-channel photodetector with standardisation input and averaging stage

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8125 Change of the main classification

Ipc: G01N 1502

8139 Disposal/non-payment of the annual fee